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Abstract. Recently, the Residue Number System and the Cox-Rower architec-
ture have been used to compute efficiently Elliptic Curve Cryptography over
FPGA. In this paper, we are rewriting the conditions of Kawamura’s theorem
for the base extension without error in order to define the maximal range of the
set from which the moduli can be chosen to build a base. At the same time, we
give a procedure to compute correctly the truncation function of the Cox mod-
ule. We also present a modified ALU of the Rower architecture using a second
level of Montgomery Representation. Such architecture allows us to select the
moduli with the new upper bound defined with the condition. This modification
makes the Cox-Rower architecture suitable to compute 521 bits ECC with radix
downto 16 bits compared to 18 with the classical Cox-Rower architecture. We
validate our results through FPGA implementation of a scalar multiplication at
classical cryptography security levels (NIST curves). Our implementation uses
35% less LUTs compared to the state of the art generic implementation of ECC
using RNS for the same performance [5]. We also slightly improve the computa-
tion time (latency) and our implementation shows best ratio throughput/area for
RNS computation supporting any curve independently of the chosen base.

Keywords: Residue Number System, High Speed, Hardware Implementation, Elliptic
Curve Cryptography, FPGA

1 Introduction

The Residue Number System (RNS) has shown interest for efficient implementation
and high performances in large integer computations for public key cryptography and
digital signature[6,5]. Due to the ability to compute any operation quickly (O(n) com-
plexity in RNS vs O(nlog2(3)) in multiprecision for multiplications when using Karat-
suba) without carry propagation and with natural parallelism, RNS has gained interest
in the literature[11,12,1]. Recently, it has also been demonstrated to be suitable for pair-
ing computations[3,13]. Improvement has been made for efficient computation of the
final exponentiation in [2]. All these implementations are based on the Cox-Rower ar-
chitecture proposed by Kawamura for RSA [6] and improved by Guillermin for ECC
computations [5].



In this paper, we reformulate the conditions for the base extension in order to build
bases for the RNS Cox-Rower. Then, we present a new ALU that takes advantages of
the new conditions for the base extension.

The paper is organised as follow: in Section 2, we will recall briefly mathematical
background about RNS, Montgomery over RNS and approximations made in the base
extension. Section 3 deals with the range of the moduli set induced by the approxima-
tion made during the base extension. The truncation function of the Cox is re-evaluated
under those conditions. Section 4 presents a new Rower architecture, together with its
base extension algorithm, to take advantage of the maximal range of the moduli set de-
fined in Section 3. Section 5 gives results with scalar multiplication as well as area and
performance comparisons with the classical Rower architecture. Section 6 concludes
the paper.

2 Background Review

2.1 Residue Number System

RNS represents a number using a set of smaller integers. Let B = {m1, . . . ,mn} be
a set of coprime natural integers. B is also called a base. Let M =

∏n
i=1mi. The

RNS representation of X ∈ Z/MZ is the unique set of positive integers {X}B =
{x1, . . . , xn} with xi = X mod mi. The conversion from RNS representation to bi-
nary representation can be computed using the Chinese Remainder Theorem (other
methodology as Mixed Radix is possible):

X =

(
n∑
i=1

(xiM
−1
i mod mi)Mi

)
mod M with Mi =

M

mi
(1)

Operations in RNS are computed as follows:
∀X,Y ∈ Z/MZ,∃Z ∈ Z/MZ s.t.:

Z = X � Y mod M ⇔ zi = xi � yi mod mi with � ∈ {+,−, ∗,÷}

and ÷ only available when Y is coprime with M and a divisor of X .

Notation: In the rest of the paper, {X}B will refer to the representation of X in the
RNS base B. We use braces to denote the fact that this is a set of integers.

2.2 RNS and Montgomery

RNS arithmetic has several drawbacks over multiprecision arithmetic. One of them is
that reduction over p is complex. Reduction over p is still possible when using Mont-
gomery Reduction since it computes exactly the value using a base extension[9,10].
Thereafter, we recall the algorithm to compute the Montgomery Reduction in RNS[6,5,10].

The main part of Montgomery Reduction relies on the Base Extension function (BE
in the algorithm) that is described in the next section.
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Algorithm 1: Montgomery Reduction in RNS
Input: {X}B, {X}B′

Output: {S}B, {S}B′

1 Precomputed: {−p−1}B, {p}B′ , {M−1}B′

2 {Q}B ← {X}B ∗ {−p−1}B
3 {Q}B′ ← BE({Q}B,B,B′)
4 {S}B′ ← ({X}B′ + {Q}B′ ∗ {p}B′) ∗ {M−1}B′

5 {S}B ← BE({S}B′ ,B′,B)

2.3 Base Extension

Let n be the cardinality of the base in RNS. In [9,10], Posch and Posch introduced
a floating approach to compute the base extension function. In [6], Kawamura came
to a similar result, but the base extension function introduced by Kawamura supposes
that the moduli mi are pseudo-Mersenne numbers of the form mi = 2r − µi with
0 ≤ µi � 2r,∀i ∈ [[1, n]]. The base extension function relies on the conversion from
RNS representation to binary representation. From (1), we have:

x =

n∑
i=1

(xiM
−1
i mod mi)Mi − kM,

for some k to be determined. Let ξi(xi) = xiM
−1
i mod mi but we will use ξi to

lighten notations. Then it follows:

n∑
i=1

ξi/mi = k + x/M

Since 0 ≤ x/M < 1, we have k ≤
n∑
i=1

ξi/mi < k + 1. Hence:

k =

⌊
n∑
i=1

ξi/mi

⌋
(2)

Thanks to the special form of mi and to the condition 0 ≤ µi � 2r, Kawamura has
approximated mi by 2r to ease the computation. Let k̂ be:

k̂ =

n∑
i=1

truncq(ξi)

2r
+ α where truncq(ξi) =

⌊
ξi

2(r−q)

⌋
2(r−q) and 0 ≤ α < 1 (3)

One can see that 0 ≤ ξi− truncq(ξi) ≤ 2(r−q)− 1. To evaluate the error due to the
truncation approximation, Kawamura introduced some definitions that we recall here:

εmi
=

2r −mi

2r
, δmi

=
ξi − truncq(ξi)

mi
(4)
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ε = max
i∈[[1,n]]

(εmi
), δ = max

i∈[[1,n]]
(δmi

) (5)

The denominator’s approximations error is called εmi
whereas δmi

is due to the
numerator’s approximation. Then, Kawamura proved 2 theorems for the base extension
function. The conditions of one of the theorems will help to find the µi’s upper bound
(called µmax), which is the maximal range of the set from which we can select the
moduli to build a base.

Theorem 1 (Kawamura [6]). If 0 ≤ n(ε+ δ) ≤ α < 1 and 0 ≤ x < (1− α)M , then
k̂ = k and the base extension function extends the base without error.

One can see from the proof of the Theorem 1 in [6] that the conditions can be
relaxed in:

0 ≤ n(ε+ δ(1− ε)) ≤ α and 0 ≤ x < (1− α)M with α < 1 (6)

This new condition will help us to estimate µmax’s upper bound. To our knowledge,
conditions on µmax have not been clearly established. In order to ease the moduli se-
lection, we define the conditions on µmax in the next section.

3 New Bounds for the Cox-Rower Architecture

3.1 µi’s Upper Bound for RNS Base

In the previous section, we have presented Kawamura’s approximation of the factor k
for the base extension. The only condition given by Kawamura is 0 ≤ µi � 2r. In
this section, we will explore the different equations to evaluate the impact on µi’s upper
bound. From (4) and (5), we have:

ε = max

(
2r −mi

2r

)
=

2r −min(mi)

2r
which leads to min(mi) = 2r(1− ε)

On the other hand, ∀x ∈ Z/MZ we have:

0 ≤ δ = max

(
ξi − truncq(ξi)

mi

)
≤ 2(r−q) − 1

min(mi)
=

2(r−q) − 1

2r(1− ε)
From the new condition (6), it follows that:

0 ≤ n
(
ε+

2(r−q) − 1

2r(1− ε)
(1− ε)

)
≤ α then 0 ≤ ε ≤ α

n
− 2(r−q) − 1

2r
(7)

Now, we will evaluate Equation (7) in ε to find the condition on mi since ε =
2r−min(mi)

2r = µmax

2r . Let substitute ε in (7):

0 ≤ µmax
2r
≤ α

n
− 2r−q − 1

2r
⇔ 0 ≤ µmax ≤ 2r

α

n
− 2r−q + 1 (8)
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If q = r, then µmax is maximum and is in the range of:

0 ≤ µmax ≤ 2r
α

n
(9)

Then, we can rewrite an equivalent condition of the Theorem 1 using only the pa-
rameters α, r, n, q and µmax, which is more explicit for implementations:

Theorem 2. If 0 ≤ µmax ≤ 2r αn − 2r−q +1 and 0 ≤ x < (1−α)M with α < 1, then
k̂ = k and the base extension function extends the base without error.

With this new formulation, we can easily build bases for the RNS Cox-Rower ar-
chitecture.

3.2 Lower Bound for the parameter q of the Cox

In [6], Kawamura described a procedure to determine n, ε, δ, α and q for a given p.
While n is easy to determine (same order of magnitude as n ≈ log2(p)/r), q is deter-
mined using the approximations ε� 1 and 2−(r−q) � 1 with Theorem 1’s conditions.
While those approximations are asymptotically correct, we want to determine q for any
range of parameters. We give, here, a new procedure to determine correctly q from
α, n, r and µmax.

Once the bases are choosen using (9), from the Theorem 2’s conditions, the follow-
ing equation can be applied to find the parameter q:

q ≥
⌈
− log2

(α
n
+ 2−r − µmax

2r

)⌉
with µmax = max

µi∈{B,B′}
(µi) (10)

This is a necessary and sufficient condition to get an exact computation. Unlike
Kawamura’s method [6], no assumption is made on ε (or equivalently on µmax) and
2−(r−q).

4 A New Cox-Rower Architecture

In the previous section, conditions on µmax has been determined. In this section, we
first present the algorithm and the classical ALU used to compute the reduction in-
side the Rower. To our knowledge, it is the only ALU used with the RNS Cox-Rower
architecture[8,5,3,13,2].

Then, we introduce the new ALU proposed in this paper. This new ALU has been
designed to fit on FPGAs, and we compare it with the classical ALU. Our comparison
analysis uses 3 types of cells: DSP (Digital Signal Processing) blocks, LUTs (Look-
Up Table) and registers (basic elements of FPGA) to compare the 2 ALUs. Multipli-
ers are implemented inside DSP blocks on FPGA, with some additional features such
as pre/post-adder/substracter. LUTs are the cell bases to implement any combinatorial
logic.
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Algorithm 2: Efficient Reduction Algorithm

Input: a ≤ 2r, b ≤ 2r and mi = 2r − µi with 0 ≤ µi <
√
2r

Output: z = (ab) mod mi

1 c← ab = c12
r + c0

2 d← c1µi = d12
r + d0

3 e← d1µi

4 z ← (e+ d0 + c0) mod mi

4.1 Classical Rower Unit

The Cox-Rower architecture defined in [6,8,5,3,13] computes the reduction inside the
Rower using Algorithm 2 when 0 ≤ µi <

√
2r.

The last addition (line 4 of Algorithm 2) gives a number up to 3 ·2r < 4mi. It is also
possible to reduce the last addition during the computation of the multiplications, if the
adder/reducer block are not the critical path of the design compared to the multipliers.
Such implementation gives good results for efficient implementation and computation
for Fp/RSA and ECC [6,8,5,3,13,2]. Figure 1 presents the ALU of the Rower unit in-
troduced by Guillermin [5].

Fig. 1. Classical ALU’s Rower

The first reduction stage (second level in Fig. 1) is not necessary because its output is
reduced within the second stage (third level in Fig. 1) (in the design, we have 2r+mi <
3mi but 2r +2r < 3mi). The last part of the design is two accumulators before adding
and reducing the 2 branches.
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4.2 New Rower Unit

A drawback of the previous ALU is the condition 0 ≤ µi ≤
√
2r. This restriction on

moduli is taken to allow efficient reduction. Notice that, on the contrary, the condition
we derived in (9) has to be met to ensure a base extension without error.

Then the two following cases can be met:

(i) 0 ≤ µmax ≤ 2r αn <
√
2r. In that case, choosing moduli in the range [2r αn ;

√
2r]

may lead to erroneous computations.
(ii) 0 ≤ µmax ≤

√
2r < 2r αn . In this second case we observe that, using the classical

ALU, we are restricted for the choice of moduli while our conditions (9) shows that
taking more moduli without inducing errors is possible.

As an example, when r ≥ 14 and log2(p) = 521, we are restricted by the condition
0 ≤ µmax ≤

√
2r to select the moduli. The condition given for efficient reduction,

when r is large, is sufficient to be in (ii), which is the case in [6,8,5,3,13,2].
We propose here a new ALU for the Rower unit to exploit the upper bound µmax ≤

2r αn given by our condition (9). Using this upper bound, we will be able to use smaller
radix than the classical ALU for computing equivalent size of p (r = 16 for computing
log2(p) = 521 whereas we need r = 18 with the classical ALU). Our ALU is based on
the Montgomery reduction3 inside the Rower unit (called inner level of Montgomery).
Our ALU computes the reduction using Algorithm 3 without any assumption on mi

excepted the one that mi is coprime with 2r to ease the computation in hardware4.

Algorithm 3: Inner Montgomery Reduction algorithm
Input: a ≤ 2r, b ≤ mi,mi = 2r − µi with gcd(mi, 2

r) = 1,mi < 2r

Output: z = (ab2−r) mod mi

1 c← ab = c12
r + c0

2 q ← (c0(−m−1
i )) mod 2r = q0

3 s← (q0mi) + c = s12
r + s0

4 z ← s1 mod mi

The most significant bits of the last addition (line 3 of Algorithm 3) gives a number
up to 2mi (compared to 4mi with the classical ALU). Figure 2 presents the ALU of the
Rower unit proposed in this paper.

Levels of multiplication and reduction are also well separated, which makes our
design fully pipelinable inside DSP blocks of the FPGA. Our ALU has also one accu-
mulator. Moreover, we can take advantage of the adder integrated in the DSP blocks to
compute the last addition of the Montgomery reduction algorithm (Algorithm 3).

3 Barrett reduction is also possible, but we would need larger multipliers for the same results.
4 For mi = 2r (only one even number can be selected), we use a classical multiplier and gather

the r least significant bits of the multiplier

7



Fig. 2. New ALU’s Rower

4.3 Computation Algorithm

The computation of the Montgomery reduction over RNS (called outer level of Mont-
gomery), when using the classical ALU, is given in [5]. We recall this algorithm in
the Appendix. It is based on precomputation of values depending on the parameters of
the elliptic curve (a4, a6, p with y2 = x3 + a4x + a6) and on the values of the bases
(mi,Mi,M

−1
i ,M,M−1, m′i,M

′
i ,M

′−1
i ,M ′).

Our ALU uses the same algorithm as the one given in [5]. Differences reside in the
precomputed values. Indeed, values that have to be computed are {X2r}B = {x̃i =
xi2

r mod mi}5. Mainly, we precompute the values using Montgomery representation
inside the ALU (which is ×2r mod mi in the inner level of Montgomery). When
we use the base extension function, we need to compute the real value (inner level
of Montgomery representation to normal representation mod mi) to extend it to the
second base. The new ALU needs the same number of cycles in order to compute the
outer Montgomery compared to the classical ALU (Algorithms for outer Montgomery
computation, as well as precomputed values, for the classical ALU and our ALU are
given in Appendix A).

4.4 Comparison Analysis

Despite the fact that our ALU was designed specifically to fit on FPGA, we give some
comparisons for ASIC implementations.

5 It is well known that the Montgomery representation is stable for addition and product using
Algorithm 3
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Area analysis. Size of the multipliers are not the same between the classical ALU and
our ALU. When using the classical ALU, we need 3 multipliers of size r× r → 2r, r×
r/2 → 3r/2 and r/2 × r/2 → r (line 1, 2 and 3 of Algorithm 2). Our ALU costs the
same number of multipliers, but the size will be r×r → 2r, r×r → r and r×r → 2r.
With our ALU, we fully used the full size of the DSP blocks on FPGA whereas quarter
and half of the DSP blocks are lost with the classical ALU. When looking at LUTs
used on FPGA, our ALU is less complex (in term of additions and reductions) than the
classical ALU. This reduces the number of LUTs used within our ALU. The final adder
in Montgomery reduction algorithm (Algorithm 3) can also be included inside the DSP
blocks of the FPGA to help reducing the number of LUTs used, which is not the case
with the classical ALU. Looking at Fig. 2, we can estimate that we would use 5 times
less LUTs with our ALU than with the classical one. For ASIC, those considerations
are no more true since the cost of the reduction level is far more important on FPGA
than in ASIC (where multipliers are far more area consuming than adders).

Timing analysis. Timing path of a classical multiplier is an affine function on the size of
its inputs. In the classical ALU, for each multiplications, we need the most significant
bits of the previous multiplication (line 2 and 3 of Algorithm 2). In ASIC or FPGA, this
is usually the critical path of the design if it is not well pipelined. On the other hand,
our ALU only needs the least significant bits from one multiplier to the next (line 2 and
3 of Algorithm 3), which reduces the length of the critical timing path.

Others considerations. Stages of multiplications and reductions are well separated,
which reduces the fanouts, placement and routing issues. Stages of multiplication are
also fully pipelinable without any impact on the final reduction in our ALU.

Remarks. With the classical ALU, Kawamura’s approximation on ε� 1 and 2−(r−q) �
1 to determine q is correct when r is large enough to have

√
2r � 2r αn . With the new

ALU, the procedure to determine q, defined in the previous section, is available.

5 Experiments and Comparison

5.1 Validation on FPGA

Target technology. We have implemented our ALU (and also the classical ALU [5] for
the purpose of comparison) on a Xilinx Kintex-7 FPGA using the KC705 evaluation
board available from Xilinx. This board includes the device xc7k325t which is a mid
range FPGA on the 28nm process node.

Parameters design. We have implemented the classical cryptography security level
from NIST but no restriction is given on the parameters of the elliptic curve but to be
a valid curve. DSP blocks of the Xilinx 7 series family are signed multipliers of size
25× 18→ 43. Since we need only the unsigned part of the multiplier, and we want to
be base-independent, we choose to take radix r = 17. The base has been chosen such
that we can take α = 0.5.
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Implementation. For both design (classical ALU and our ALU) and each curve, Table 1
gives the area in terms of slices6, maximum frequency after Place and Route, number
of cycles for a whole computation (binary to RNS or INT2RNS, scalar multiplication
or MULT, final inversion or INV, and RNS to binary transformation or RNS2INT), the
computation time, q (size of the adder in the Cox module), log2(µmax) and the ratio
bits.s−1/slices. The slice count is independent on DSP slices or BRAM (Block RAM).
Table 2, in Appendix A, gives the details account on LUTs, registers, DSP and BRAM,
as well as the cycles for each command. Area implementation results take the datapath,
the sequencer and the interface into accounts. Only the ALU has been modified as well
as the precomputations.

Design Curve n Cycles Slices Fmax Latency q log2(µmax) Ratio
Classical ALU (C)

160 10 78892
1614 233,8 0,337 ms 5 7 293,7

Our ALU (O) 1011 285,7 0,276 ms 5 7 573,1
C

192 12 106205
1880 231,3 0,459 ms 5 7 222,4

O 1190 283,0 0,375 ms 5 7 429,8
C

224 14 137360
2249 232,5 0,590 ms 5 8 168,6

O 1358 285,0 0,481 ms 5 8 342,2
C

256 16 172520
2540 224,2 0,769 ms 5 8 130,9

O 1630 281,5 0,612 ms 5 8 256,2
O 384 23 339463 2163 281,0 1,208 ms 6 9 146,9
O 521 31 585926 2565 265,9 2,203 ms 7 10 92,2

Table 1. P&R performances and comparisons

Comparison of the 2 ALUs. Because of the condition given for an efficient reduction
(0 ≤ µi ≤

√
2r = 362) with the classical ALU, we were not able to build 2 bases

with r = 17 for log2(p) > 256 which is a critical size for the DSP block for the Xilinx
FPGA. On the other hand, using our ALU and the condition (9) (0 ≤ µmax ≤ 2r αn =
2114), we were able to build 2 bases up to log2(p) = 521. To reach similar size of
p, Guillermin took r = 18 with the classical ALU to overcome this issue [5], which
it’s not acceptable if we want to use 1 DSP block per multiplication and don’t want to
penalize the maximal frequency and latency.
As expected in the previous section, we use 35% less area, globally, with the Mont-
gomery ALU than with the classical ALU. The area reduction given here takes into
account the logic for the whole datapath, the sequencer and the interface. The area re-
duction inside the ALU is around 75%. The area of the 256 bits with the classical ALU
is almost the same as with the 521 bits for our ALU.
The gap on the maximal frequency between the 2 ALUs is due to the placement and
routing issues. Indeed, critical timing paths of the classical ALU are from multipliers to
adder/reducers blocks (Fig. 1). The multiple interconnections make those paths really

6 The slices is the cells counting system on Xilinx FPGA. A slice on a Kintex-7 includes 4 LUTs
with 6 inputs and 8 registers.
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difficult to place and route efficiently (essentially due to the fanouts). On the other hand,
critical timing paths of our ALU is from one multiplier to the next multiplier. Thus, if
we want to increase the frequency, we will have to increase the pipeline. For scalar mul-
tiplication in ECC, a pipeline of 5 registers is enough to have 95% of the pipeline used
during the whole computation (Guillermin came to similar results [5]). For application
to pairing computations, we can increased the pipeline to 10 registers thus expecting
better frequency than for scalar multiplication[3,13].

5.2 Comparison

We compare our design with 3 others design RNS and non RNS. Our architecture sup-
ports any elliptic curve over Fp and implements the Montgomery Ladder algorithm to
be SPA resistant. We used projective coordinates for computations. We considered the
general elliptic curve in the Weierstrass form y2 = x3+a4x+a6 with no assumption on
the parameters. Our architecture does not make assumption on the form of the moduli
except that they respect Theorem 2’s conditions.

(i) First design is the one given in [5] and is based on RNS. The ALU used is the classi-
cal one. A larger size of radix has also been used in his implementation. This design
shows really fast computation with any elliptic curve over Fp. To our knowledge,
it is the fastest implementation of elliptic curve scalar multiplication with generic
curves independently of the choosen base on FPGA using RNS Cox-Rower archi-
tecture. For ratio comparison, a slice in recent Xilinx devices (virtex-5 and beyond)
is equivalent to 3 ALMs7 in Altera. To achieve high running frequency, all the pre-
computed values and the GPR are implemented into registers inside ALMs.

(ii) Second design is an implementation of a specific curve where p is a pseudo-Mersenne
number [4]. Using the property of the pseudo-Mersenne value, this implementation
can be specialized to run at high frequency and quickly computing the multiplica-
tion scalar.

(iii) Third design is based on fast quotient pipelining Montgomery multiplication al-
gorithm in [7]. The scalar multiplication algorithm is based on window method
algorithm. Jacobian coordinates is used and a4 parameter is set to −3 (which is not
a real restriction with Weierstrass form through an isogeny). To our knowledge, it
is the fastest implementation of scalar multiplication over ECC and smallest design
for such performance with generic curves.

Design Curve Device Size (DSP) Frequency Latency Ratio

Our work 256 any Kintex-7 1630 slices (46) 281,5 0,612 ms 256,2
521 any 2565 slices (91) 265,9 2,203 ms 92,2

[5] 256 any Stratix-2 9177 ALM (96) 157,2 0,68 ms 123,1
512 any 17017 ALM (244) 144,97 2,23 ms 40,47

[4] 256 NIST Virtex-4 1715 slices (32) 490 0,49 ms 304,6

[7] 256 any Virtex-4 4655 slices (37) 250 0,44 ms 250,0
Virtex-5 1725 slices (37) 291 0,38 ms 390,5

7 An ALM, in the Stratix-2 family, contains 2 LUTs with 5 inputs and 2 registers, and equivalent
to the Xilinx Virtex-4 slice.
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Design (i) is the one we compare during the paper. Our implementation is smaller
and a slightly faster than the implementation in [5].

Design (ii) used the specific form of the parameter p to improve the overall perfor-
mance. This design is faster than ours, but it is dependent on the pseudo-Mersenne form
of the parameter p of the elliptic curve.

Design (iii) shows really fast computation of ECC scalar multiplication. Compared
to our design, the gain in computation time comes from the use of Jacobian coordinates
and the window method algorithm whereas we use Montgomery Ladder and projective
coordinates. But when comparing the numbers of cycles to complete a multiplication
and an addition/substraction, 35 cycles is needed to compute a multiplication whereas
we need 2n + 3 cycles (35 cycles for 256 bits), and 7 cycles is needed to compute an
addition/substraction, whereas we need 1 cycle for an addition/substraction. Eventually,
the gain in performance is not scalable to any size of elliptic curve as our work.

6 Conclusion and perspectives

In this paper, we established the link between moduli’s properties and base extension for
the Cox-Rower architecture. To our knowledge, that was not clearly defined yet. Now,
the given bounds are more appropriate for designers. We also give a new procedure to
determine q parameter which is used for truncation in the Cox module. We propose a
new ALU design, based on an inner Montgomery reduction. This ALU is designed to
fully use the bounds of the Cox-Rower architecture and to reduce the combinatorial
area of the architecture on FPGA without penalizing performance. Moreover, using the
same pipeline depth, we manage to increase the frequency of our ALU compare to the
classical one.

In future works, we will increase the pipeline depth in DSP blocks for applica-
tions to pairing computations in order to improve computation time. Furthermore, we
will take advantage of the pre-substracter of the DSP block to easily compute (−AB)
mod p and reduce computation time. In the perspective of improving the algorithmic,
we will study the use of different coordinates and implementations, such as Jacobian
coordinates and window method. Although our ALU is designed for FPGA, we will
also study the potential application of our ALU to ASIC.
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A Algorithm to compute the Montgomery reduction over RNS
and Implementation details

Let B and B′ be 2 RNS bases such that B = {mi} and B′ = {m′i} with M =∏n
i=1mi, M ′ =

∏n
i=1m

′
i, gcd(p,M) = 1 and gcd(M,M ′) = 1. Algorithm 4 recalls

the Montgomery reduction over RNS, when using the classical ALU. Precomputed val-
ues are in bald.

Algorithm 5 is the algorithm for the Montgomery reduction over RNS, when using
our ALU. Operation ⊗ will denote the inner Montgomery multiplication and reduction
(Algorithm 3) such that a⊗ b mod m = ab2−r mod m.
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Algorithm 4: Montgomery Reduction over RNS with classical ALU
Input: {X}B = {xi} and {X}B′ = {x′i}
Output: {S = (XM−1 mod p) mod M}B = {si} and {S = (XM−1 mod p)

mod M ′}B′ = {s′i}
1 for i = 1 to n do
2 qi ← xi(−p−1)M−1

i mod mi

3 q′i ← 0
4 si ← 0

5 end
6 k ← 0 // Initialization of the cox with α = 0
7 for i = 1 to n do
8 k ← k + truncq(qi) // Evaluating the factor k
9 for j = 1 to n do

10 q′j ← (q′j + qiMipM
−1M′

−1
j ) mod m′j

11 end
12 end
13 for i = 1 to n do
14 q′i ← (q′i + b k

2r
c(−M)pM−1M′

−1
i ) mod m′i

15 end
16 for i = 1 to n do
17 s′i ← (q′i + x′iM

−1M′
−1
i ) mod m′i

18 end
19 k ← errinit // Initialization of the cox with α = errinit
20 for i = 1 to n do
21 k ← k + truncq(s

′
i) // Evaluating the factor k

22 for j = 1 to n do
23 sj ← (sj + s′iM

′
i) mod mj

24 end
25 end
26 for i = 1 to n do
27 si ← (si + b k

2r
c(−M′)) mod mi

28 s′i ← (s′iM
′
i) mod m′i

29 end
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Algorithm 5: Montgomery Reduction over RNS with Montgomery ALU

Input: {X̃}B = {x̃i = xi2
r mod mi} and {X̃}B′ = {x̃′i = x′i2

r mod m′i}
Output: {S̃ = (XM−1 mod p)2r mod M}B = {s̃i = si2

r mod mi} and
{S̃ = (XM−1 mod p)2r mod M ′}B′ = {s̃′i = s′i2

r mod m′i}
1 for i = 1 to n do
2 qi ← x̃i ⊗ (−p−1)M−1

i mod mi

3 q′i ← 0
4 si ← 0

5 end
6 k ← 0 // Initialization of the cox with α = 0
7 for i = 1 to n do
8 k ← k + truncq(qi) // Evaluating the factor k
9 for j = 1 to n do

10 q′j ← (q′j + qi ⊗MipM
−1M′

−1
j 2r) mod m′j

11 end
12 end
13 for i = 1 to n do
14 q′i ← (q′i + b k

2r
c ⊗ (−M)pM−1M′

−1
i 2r) mod m′i

15 end
16 for i = 1 to n do
17 s′i ← (q′i + x̃′i ⊗M−1M′

−1
i ) mod m′i

18 end
19 k ← errinit // Initialization of the cox with α = errinit
20 for i = 1 to n do
21 k ← k + truncq(s

′
i) // Evaluating the factor k

22 for j = 1 to n do
23 sj ← (sj + s′i ⊗M′i2

2r) mod mj

24 end
25 end
26 for i = 1 to n do
27 si ← (si + b k

2r
c ⊗ (−M′)22r) mod mi

28 s′i ← (s′i ⊗M′i2
2r) mod m′i

29 end

Design Curve LUTs Regs DSP BRAM INT2RNS MULT INV RNS2INT

Classical

160 4864 2959 28 10 228 66406 11598 682
192 5691 3497 34 12 262 89659 15446 862
224 6688 4028 40 14 300 116227 19805 1058
256 7482 4605 46 16 336 146144 24804 1270

Ours

160 2988 2023 28 10 228 66406 11598 682
192 3446 2346 34 12 262 89659 15446 862
224 3847 2696 40 14 300 116227 19805 1058
256 4250 3532 46 16 336 146144 24804 1270
384 5517 4962 67 23 462 289101 47810 2090
521 7067 5882 91 31 606 500577 81437 3306

Table 2. Performances details
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