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A general approach for improving RNS

Montgomery exponentiation using pre-processing

Abstract

The hardware implementation of modular exponentiation for very large integers is a well-known topic in

digital arithmetic. An effective approach for obtaining parallel and carry-free implementations consists in using

the Montgomery exponentiation algorithm and executing the necessary operations in RNS. Two efficient methods

for performing the RNS Montgomery exponentiation have been proposed by Kawamura et al. and by Bajard and

Imbert. The above approaches mainly differ in the algorithm used for implementing the base extension.

This paper presents a modified RNS Montgomery exponentiation algorithm, where several multiplications are

moved outside the main execution loop and replaced by an effective pre-processing stage producing a significant

saving on the overall delay. Since the proposed modification can be applied to both the above algorithms, two

versions are specifically discussed.

In order to evaluate the effect of the designed modification, the implementations by Kawamura et al. and

by Bajard and Imbert. are selected as a reference, and a sharp comparison between the common part of these

algorithms and the proposed approach is carried out. This analysis focuses on the arithmetic-algorithmic level, and

it is aimed at quantifying the specific weight of each multiplication operation, by taking into account the impact

of the number of parallel multipliers in each RNS cell and the level of pipelining. The analysis shows that the

application of the proposed approach could produce a consistent reduction in the number of execution steps, thanks

to the removal of the most computationally expensive multiplications. The improvement is particularly relevant for

fast implementations, as the reduction factor increases with the number of pipeline stages and parallel multipliers

per arithmetic cell.

Since the base extension methods used in the two reference algorithms require different arithmetic cells, an

analysis at the architecture level is also carried out, with the aim of further characterizing the improvement provided

by the proposed approach. Thus, a cell architecture based on work by Kawamura et al. is presented and analyzed at

first. Then, a novel architecture adapted to the algorithm by Bajard and Imbert. is designed. The overall comparison

shows that with the proposed approach, a 18.5% speedup can be achieved for an implementation over 1024 bits,

without any significant area overhead.

Index Terms

RNS, Montgomery Multiplication.
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I. INTRODUCTION

The computation of the Montgomery exponentiation (ME) in the Residue Number System (RNS) [1]

allows limiting the delay due to carry propagation and reaching a high degree of parallelism [2]. This

approach mainly requires the execution of a set of Montgomery multiplications (MMs) [3]. However, in

RNS, some operations (e.g. division, comparison, modulo) are natively difficult to execute. Hence, several

approaches have been proposed in order to fully exploit the potential of RNS for modular exponentiation,

by minimizing the impact of related drawbacks.

A fast RNS ME algorithm has been presented in [4]. This approach requires two Base Extensions (BEs)

for each RNS MM. The algorithm employed for performing BE, that has been presented in [5], is partic-

ularly expensive from the computational point of view. It executes BE through iterated approximations.

The approximation is correct in the majority of the cases, and when there is an offset, it is corrected.

In [6], Kawamura et al. proposed a RNS ME technique applied to RSA, with an improved BE algorithm.

The new BE is characterized by a summation that provides a result modulo a small multiple of the base,

which is corrected after the sum of each element. The proposed approach has been detailed in [7], where

an architecture has also been presented.

In [8], Bajard et al. proposed an implementation of the MM based on both the RNS and the Mixed

Radix Number System (MRS), where the MRS corresponds to a weighted system associated with the

RNS. Then, in [9], the same authors proposed a Montgomery multiplication method fully implemented in

RNS. This approach employs an approximated BE and the algorithm proposed in [10], where the result

is approximated and corrected by using an extra modulo. Finally in [11], Bajard and Imbert detailed the

application of the previous ME approach in the context of RSA.

The RNS MM has also been studied in different contexts, out of the exponentiation. In [12], an

implementation for elliptic curve cryptography on FPGA is presented. This implementation employs the

algorithm proposed in [6] with some pre-computations suitable to the particular architecture presented in

the paper. In [2], an implementation of RNS MM on GPU is presented. Experimental results achieved in

the above context show that the algorithm described in [9] provides the best performance.

This paper proposes a modified ME algorithm for RNS. The novelties of the algorithm are in the

pre-processing stage, which is used to reduce the number of multiplications performed in the loop of the

exponentiation algorithm. It is worth observing that, even though in the specific case the ME is considered,

the basic approach used here is more general and can be easily applied in other contexts. In particular, the
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analysis of the designed pre-processing method for generic modular multiplication is presented in [13].

The differences with respect to previous approaches consist in the values that are pre-computed, and in

the new ME and MM algorithms. The modifications discussed in the current work are applicable to both

the state-of-the-art MM algorithms [6], [9], which mainly differ for the BE correction methods. Hence,

in the following, the proposed modifications will be presented in two versions specifically tailored to the

characteristics of these methods.

The authors of the above works evaluate the time performance of their RNS MM algorithms according

to the number of modular multiplications. By calling k the number of elements for RNS base, the number

of modular multiplications is reduced from 2k2 +9k and 2k2 +8k, to 2k2 +6k and 2k2 +5k by Kawamura

and Bajard BE, respectively.

In order to evaluate the weight of each modular multiplication required by the proposed and by the

state-of-the-art algorithms, a detailed algorithmic analysis has been carried out. The analysis compares

the proposed approach with the common part of the state-of-the-art algorithm [6], [11]. The evaluation

is focused on the number of execution stages required by each multiplication, according to the number

of pipeline stages and parallel multipliers present in each arithmetic cell. When an architecture with k

cells is considered, the number of execution steps required by the RNS MM algorithm used in [6], [11]

(not considering the BE correction) is 2dk/Me − 2 + b1/(p + M − 1)c + 8p, where p is the number

of pipeline stages of the arithmetic cells and M ≤ k is the number of parallel multipliers per cell. The

proposed approach allows achieving a reduction equal to 4p− b1/(p + M − 1)c execution steps; hence,

the improvement is proportional to the number of pipeline stages and, for this, it is more suitable to high

speed architectures.

An analysis at the architectural level is also carried out, in order to fully exploit the effects of the two

versions of the proposed approach. An architecture based on the work presented in [7] is designed and

analyzed. Then, a new architecture suitable to the algorithm proposed in [11] is proposed, and an overall

comparison is presented, showing that with the proposed approach a 18.5% speedup can be achieved for

an implementation over 1024 bits, without any significant area overhead.

The remaining of the paper is organized as follows: in Section II, the proposed RNS ME algorithm

is presented, while in Section III, it is analyzed and compared to related works. In Section IV, the

implementation of the arithmetic cells is analyzed, and the effects of the proposed approach are discussed.

Finally in Section V, some conclusions are drawn.
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TABLE I

LIST OF SYMBOLS

Context Symbol Meaning Symbol Meaning
A RNS base B RNS base
k Number of base elements r Number of bits of each base element

RNS bases aj jth element of the base A; ∀j; 1 ≤ j ≤ k bi ith element of the base B;∀i; 1 ≤ i ≤ k

A
Qk

j=1 aj B
Qk

i=1 bi

Aj
A
aj

;∀j; 1 ≤ j ≤ k Bi
B
bi

;∀i; 1 ≤ i ≤ k

A−1
j Multiplicative inverse of Aj on aj B−1

i Multiplicative inverse of Bi on bi

B−1
A Multiplicative inverse of B on A B−1

N Multiplicative inverse of B on N
ci 2r − ai h Maximum number of bits of ci

MM R Montgomery number N Modulo of the operation
BE Values λ Approximation x̃−x

B
Architecture p Stages of pipeline M Parallel multipliers
Kawamura et al. BE [6] c Approximated value of q

A
f Floor of c; (bcc)

α Initial value of c; {0; 0.5} % Number of accumulated bits of qi

Bajard et al. BE [11] ar Redundant base element A−1
r Multiplicative inverse of A on ar

Accents t̃ilde Approximated values dhat Values multiplied by A−1
j in A

Operations and Relations << Left shift ≡ Equivalent

TABLE II

ABBREVIATIONS

Abbreviation Meaning Abbreviation Meaning
RNS Residue Number System CRT Chinese Remainder Theorem
ME Montgomery Exponentiation MM Montgomery Multiplication
BE Base Extension KBE1 1st BE of the proposed MM based on Kawamura et al.

KBE2 2nd BE of the proposed MM based on Kawamura et al. BBE1 1st BE of the proposed MM based on Bajard and Imbert
BBE2 2nd BE of the proposed MM based on Bajard and Imbert MAU Multiplication and adder unit

F(S)MRU First (Second) modular reduction unit CSA Carry-save adder
gcd(x, y) Greatest common divisor lcm(x, y) Least common multiple

II. PROPOSED ALGORITHM

This paper presents a new RNS ME. This section illustrates the proposed technique, by analyzing the

modifications introduced with respect to previous approaches. Tables I and II provide a description of the

main symbols and abbreviations used in the discussion.

A. RNS

In RNS, a number is represented according to a base A = (a1, a2, ..., ak), which is made up of k relative

prime numbers, where k is called the base size. Therefore, any number x, where 0 ≤ x < A =
∏k

i=1 ai

is uniquely represented by a sequence of positive integers (x1, x2, ..., xk), where xi = x mod ai, ∀i :

1 ≤ i ≤ k. It is worth observing that, because of the independence of all the elements, in RNS the

multiplication, addition, and subtraction operations can be carried out independently and in parallel for

each element.

Using the Chinese Remainder Theorem (CRT) [14], it is possible to convert a value x from an RNS

base to a radix system, thus achieving a high parallelism. The reconstruction expression is:
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Algorithm 1: State-of-the-art RNS Montgomery exponen-
tiation [6], [11]
Input: x in A ∪ B and e = (eg−1...e1e0)b

Output: z = (xe) mod N in A ∪ B
Precomputation: B2 mod N ,

B mod N in A ∪ B
1: x̄←− MM (x,B2 mod N)

-
2: zbi = (B mod N)bi for i = 1...k
3: zaj = (B mod N)aj for j = 1...k
4: for i from g − 1 down to 0 do
5: z ←− MM (z, z)
6: if ei = 1 then
7: z ←− MM(z, x̄)
8: end if
9: end for

10: z ←− MM(z, 1)
-

Algorithm 2: Proposed RNS Montgomery exponentia-
tion
Input: x in A ∪ B and e = (eg−1...e1e0)b

Output: z = (xe) mod N in A ∪ B
Precomputation: B2 mod N , B mod N in A ∪ B,

Aj mod aj and A−1
j mod aj for j = 1...k

1: x̄←− MM (x, B2 mod N)
2: ˆ̄xaj = x̄jA

−1
j mod aj for j = 1...k

3: zbi = (B mod N)bi for i = 1...k
4: ẑaj = (B mod N)aj A

−1
j mod aj for j = 1...k

5: for i from g − 1 down to 0 do
6: ẑ ←− MM (ẑ, ẑ)
7: if ei = 1 then
8: ẑ ←− MM(ẑ, ˆ̄x)
9: end if

10: end for
11: ẑ ←− MM(ẑ, 1̂)
12: zaj = ẑaj Aj mod aj for j = 1...k

Fig. 1. Comparison between the proposed RNS Montgomery exponentiation and the state-of-the-art algorithm

x = (
k∑

i=1

((xiA
−1
i ) mod ai)Ai) mod A (1)

where Ai = A
ai

and A−1
i is the multiplicative inverse of Ai on ai. The result of (

∑k
i=1((xiA

−1
i ) mod ai)Ai

is equal to x+λA, where λ < k. In order to complete the BE, the modular reductions of x by the elements

of the new base must be performed.

B. Montgomery Exponentiation (ME)

The ME is based on the MM, where MM(x × y mod N ) gives w = xyR−1 mod N . ME computes

xe mod N at the average cost of 3/2 log2 e+2 MMs. Let us denote x̄ and ȳ, such that x̄ = xR mod N and

ȳ = yR mod N ; then z = x̄ȳR−1 mod N = xyR mod N . Therefore, the exponentiation can be executed

by iterating MM on x̄.

The comparison between the state-of-the-art RNS ME algorithm (the main part of the ME algorithm

is common to both [6] and [11]) and the proposed algorithm is shown in Figure 1. Step 1 of both the

algorithms calculates x̄, as previously described. Steps 2 and 3 in Algorithm 1 [6], [11] initialize the

exponentiation process, which is executed in the loop from step 4 to step 9. The proposed RNS ME

algorithm (Algorithm 2) executes 3 multiplication steps more than Algorithm 1. Before executing the

loop, all the values on base A are multiplied by A−1
j (steps 2 and 4). The multiplication by A−1

j is used

in the state-of-the-art BE algorithm, in order to extend the values from A to B. In the proposed algorithm

both the input values in A of the RNS MM are pre-multiplied by A−1
j so a multiplication by Aj in
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Algorithm 3: State-of-the-art RNS Montgomery multipli-
cation [6], [9]
Input: x, y, and N in A∪B∪ar, such thatI A =

∏k
j=1 aj ,

B =
∏k

i=1 bi, and gcd (A,B) = 1, gcd(N,B) = 1,
0 ≤ xy < NB, B > 4N , and A > 2N

Output: w ≡ xyB−1
N (mod N),

w < 2N in A ∪ B ∪ ar

Precomputation: B−1
A , N in A ∪ ar; N−1 in B

1: s = xy in B
2: s = xy in A ∪ ar

3: u = s(−N−1) in B
4: u in A ∪ ar ⇐ BE1(u in B)
5: t = uN in A ∪ ar

6: v = s + t in A ∪ ar

7: w = vB−1
A in A ∪ ar

8: w in B ⇐ BE2(w in A ∪ ar)

Algorithm 4: Proposed RNS Montgomery multiplica-
tion
Input: x̂, ŷ, and N in A∪B∪ar, such thatI A =

∏k
j=1 aj ,

B =
∏k

i=1 bi, and gcd (A,B) = 1, gcd(N,B) = 1,
0 ≤ xy < NB, B > 4N , and A > 2N

Output: w ≡ xyB−1
N (mod N), w < 2N in B,

ŵ ≡ xyB−1
N A−1

j (mod N) in A ∪ ar

Precomputation:
1: s = xy in B
2: ˆ̂s = x̂ŷ in A ∪ ar

-
3: ŵ in A ∪ ar ⇐ BE1(s in B, ˆ̂s in A)

-
-
-

4: w in B ⇐ BE2(ŵ in A ∪ ar)
I With BBEs B > (k + 1)2N and A > (k + 1)N

Fig. 2. Comparison between the proposed RNS Montgomery multiplication and the state-of-the-art algorithm

the RNS MM is required to reach the value for that BE. In contrast to the original multiplication, the

correction can be merged to another multiplication, decreasing the number of modular multiplications in

the loop. The values that are multiplied by A−1
j in A are represented with a ĥat accent. In order to reach

the correct result of the exponentiation, another multiplication by Aj is required after the loop of RNS

MMs (step 12).

C. RNS Montgomery Multiplication

In general, in RNS the MM [6], [9] is performed on two RNS bases,A = (a1, ..., ak) and B = (b1, ..., bk),

such that A =
∏k

j=1 aj , B =
∏k

i=1 bi, and gcd (A,B) = 1. B is used as the Montgomery constant, so B−1
A

must be pre-computed on the base A, where B−1
A is the multiplicative inverse on A of B. The input values

of each RNS MM, Algorithm 3 in Fig. 2, are x and y in A ∪ B, and the output is w = xyB−1
N mod N ,

in A ∪ B, where B−1
N is the multiplicative inverse of B modulo N .

The relevant characteristics of MM implementation in RNS are described in the following. Step 3 is

only performed on B, so that the modular reduction by B does not require additional operations. After

the modular reduction, the BE to A of step 4 is required, since a subsequent step requires a different base

in order to perform a division by B and gcd (A,B) = 1. The multiplication in step 5 and the addition in

step 6 are only performed on A, since the result of the multiplication in B is equal to the additive inverse

on B of the result of step 1 and so the result of the addition in B is 0. The multiplication by B−1 in step

7, which corresponds to the division in MM step 6, is only performed on A, since gcd (B,B) 6= 1. The

last operation is the BE to B, so that the result can be used as input for other MMs.
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In [9] and [6], the respective authors have proposed two different techniques to perform the BE. Both

techniques are based on (1), but avoid the last modular reduction by A in order to save computational

effort. In [6], the final modular reduction of both BEs required by the RNS MM are replaced by an

approximation and a correction. In [9], the final modular reduction of the first BE is not executed, so

all the subsequent results are obtained modulo a multiple of the base. However, the second BE gives the

exact value due to a correction executed at the end of the summation of multiplications. The adopted

correction technique has been presented in [10], and it requires that all the values calculated on A are

also calculated on an additional base element ar.

This paper presents a new RNS MM, Algorithm 4, which requires less modular multiplication steps.

In order to reach this result, some values are pre-computed and the algorithm is modified accordingly:

1) The multiplication by −N−1 in B of Algorithm 3 step 3 can be moved into the subsequent BE,

and merged with the multiplication by B−1
i in B, which corresponds to xiA

−1
j in (1). Therefore,

−N−1B−1
i must be pre-computed in order to avoid a multiplication step.

2) The multiplication by N in A of Algorithm 3 step 5 can be moved into the previous BE, and merged

with the summation of multiplications by Aj in A of (1). Therefore, AjN must be pre-computed

in order to avoid a multiplication step.

3) The multiplication by B−1
A can be split in two parts. One part can be moved in the first BE, and

merged with the summation of multiplications by AjN in A of (1). Therefore, AjNB−1
A (instead of

AjN ) must be pre-computed. Also s inA must be multiplied by B−1
A , so the number of multiplication

steps is not reduced, but the new multiplication can be moved in the first BE.

4) The input values in A are pre-multiplied by A−1
j (Algorithm 2, steps 2 and 4), so a multiplication

by Aj is required to reach the correct value for the second BE. This correction can be merged to

the multiplication by B−1
A and no additional execution steps are required. For this, B−1

A A−1
j must

be pre-computed.

As already said, the proposed approach is presented in two versions, which employ different BE

algorithms. The only difference in the MM algorithm is the presence of the RNS base element ar, since

this special correction base is required only by the version based on the approach proposed in [9], which

uses the BE of [10] for the second one. According to this version, Algorithm 3 and 4 include the base

element ar.

The input values of the proposed RNS MM (Algorithm 4) are x̂ and ŷ in A∪B∪ar (which correspond
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Algorithm 5: First Base Extension proposed Kawamura et
al. [6]
Input: u in B, α = 0
Output: u in A
Precomputation: B−1

i mod bi for i = 1...k,
Bi in A for i = 1...k,
−B in A.

1: qi = ubiB
−1
i mod bi for i = 1...k

2: c = α
3: uaj = 0 for j = 1...k
4: for i = 1 to k do
5: c = c +

trunc(qi)
2r

6: f I = bcc
7: c = c− f
8: uaj = (uaj + qiBi + f(−B)) mod aj

for j = 1...k
9: end for

Algorithm 6: First Base Extension based on the algorithm
by Kawamura et al. (KBE1)
Input: s in B, α = 0, ˆ̂s in A
Output: ŵ in A
Precomputation: −N−1B−1

i mod bi for i = 1...k,
BiNB−1

A A−1
j in A for i = 1...k, −BNB−1

A A−1
j ,

B−1
A Aj in A.

1: qi = (sbi(−N−1B−1
i )) mod bi for i = 1...k

2: c = α
3: ŵaj = ˆ̂sajB

−1
A Aj for j = 1...k

4: for i = 1 to k do
5: c = c +

trunc(qi)
2r

6: f I = bcc
7: c = c− f
8: ŵaj = (ŵaj + qiBiNB−1

A A−1
j +

f(−BNB−1
A A−1

j )) mod aj for j = 1...k
9: end for

I f ∈ {0, 1}
Fig. 3. Comparison between the first BE presented in [6] and the proposed BE (KBE1)

Algorithm 7: Second Base Extension proposed Kawamura
et al. [6]
Input: w in A, α = 0.5
Output: w in B
Precomputation: A−1

j mod aj for j = 1...k,
Aj in B for j = 1...k, −A in B.

1: qj = wajA
−1
j mod bj for i = 1...k

2: c = α
3: wbi = 0 for i = 1...k
4: for j = 1 to k do
5: c = c +

trunc(qj)
2r

6: f I = bcc
7: c = c− f
8: wbi = (wbi + qjAj + f(−A)) mod bi for i = 1...k
9: end for

Algorithm 8: Second Base Extension based on the algo-
rithm by Kawamura et al. (KBE2)
Input: ŵ = q in A, α = 0.5
Output: w in B
Precomputation: Aj in B for j = 1...k,
−A in B.
-

1: c = α
2: wbi = 0 for i = 1...k
3: for j = 1 to k do
4: c = c +

trunc(qj)
2r

5: f I = bcc
6: c = c− f
7: wbi = (wbi + qjAj + f(−A)) mod bi for j = 1...k
8: end for

I f ∈ {0, 1}
Fig. 4. Comparison between the second BE presented in [6] and the proposed BE (KBE2)

to x and y in B and xA−1
j and yA−1

j in A ∪ ar). The output is ŵ, which is equivalent to (xyB−1
N )

(mod N) < 2N in B, and to ((xyB−1
N ) (mod N))A−1

j in A ∪ ar.

In the following, the steps of the algorithms in Fig. 2 are analyzed in details. Step 1 of Algorithm 3

corresponds to step 1 of the proposed algorithm (Algorithm 4). Step 2 of Algorithm 4 is the multiplication

of two values pre-multiplied by A−1
j ; thus, it provides the same results of step 2 in Algorithm 3, multiplied

by A−2
j . In Algorithm 4, steps 3, 5, 6, and 7 of Algorithm 3 are moved into the first BE. Moreover, the

multiplication by Aj , which is required to correct the input, is also moved into the first BE.
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D. BE based on the approach by Kawamura et al. (KBE)

Fig. 3 shows the first BE proposed by Kawamura et al. in [6] (Algorithm 5), and the proposed BE based

on Kawamura et al. approach (KBE1) (Algorithm 6). KBE1 includes all the operations of Algorithm 5

as well as the operations of Algorithm 3 steps 3, 5, 6, and 7.

The modular reductions by A in the first BE and by B in the second BE would require a great

computational effort, so they are replaced by an approximation and a correction, that are expected to be able

to reduce the delay. The result of the summation in the BE of x from A to B is x̃ = x+λA, where λ ∈ Z

and 0 ≤ λ < k. Instead of performing the modular reduction in order to reach x, the algorithm proposed

by Kawamura et al. calculates the approximate value of λ, λ̃ = bα +
∑k

0 trunc(qi)/2
rc ' b

∑k
0 qi/bic.

The value of λ̃ is estimated accumulating the % most significant bits of qi, cut by trunc() and divided

by 2r. Moreover, trunc(qi) = qi ∧ (1(r)...1(r−%+1)0(r−%)...0(1))(2) , and ∧ means a bitwise AND operation.

Kawamura et al. introduced a further variable (α), which represents the starting value of the parameter

that is used to correct the error introduced by the approximation. In [6], two theorems prove that with

correct values of α, with a low %, and by selecting the base elements so that 2r is close to bi, the

approximation does not introduce errors. During the first BE α = 0 and the input is unknown; thus,

according to Theorem 2 in [6], the result of the BE is x̃ < 2B, which is approximate. During the second

BE α = 0.5 and the input is lower then 2N ; hence, according to Theorem 1 in [6], the result of the BE

is correct. With r = 32, k = 33, and max(2r − ai; 2
r − bi) < 216, ∀i, it is possible to choose % ≥ 7. This

approach requires that A ≥ 2N and B ≥ 4N . The two BEs have the same algorithm with exchanged

bases, but according to the theorems presented in [6], the first BE produces an approximate result, which

is corrected by the second BE.

Step 1 of Algorithm 5 is the multiplication of each xi by B−1
i , modulo bi. In KBE1, this multiplication

is merged to the multiplication by −N−1 of Algorithm 3 step 3; thus, instead of B−1
i , −N−1B−1

i is

pre-computed. It can be easily demonstrated that the result of this operation is the same as the result of

the corresponding operation in the Kawamura et al. BE, for the associative property.

Step 3 of Algorithm 5 is a simple initialization. In KBE1, step 3 executes the multiplication in step 7

of Algorithm 3 merged with the multiplication by Aj , used to correct the A−2
j factor. Therefore, AjB

−1
A

must be pre-computed.

Step 8 of Algorithm 5 requires, for each base element aj , the summation of the results of the multi-

plications of each result of step 1 by the corresponding Bi mod aj , and of −B, when the floor f of the
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Algorithm 9: First Base Extension employed by Bajard et
al. [9], [11]
Input: u in B
Output: ũ in A ∪ ar

Precomputation: B−1
i mod bi for i = 1...k,

Bi in A ∪ ar for i = 1...k.
1: qi = ubiB

−1
i mod bi for i = 1...k

2: ũaj =
∑k

i=1 qiBi mod aj for j = 1...k and j = r

Algorithm 10: First BE based on the algorithm by Bajard
et al. (BBE1)
Input: s in B, ˆ̂s in A ∪ ar

Output: ŵ = q in A ∪ ar

Precomputation: −N−1B−1
i mod bi for i = 1...k,

BiNB−1
A A−1

j in A for i = 1...k, B−1
A Aj in A.

1: qi = sbi(−N−1B−1
i ) mod bi for i = 1...k

2: ŵaj = ˆ̂sajB
−1
A Aj +

∑k
i=1 qi(BiNB−1

A A−1
j ) mod aj

for j = 1...k and j = r

Fig. 5. Comparison between the first BE used in [9] and the proposed BE (BBE1)

Algorithm 11: Second Base Extension employed by Bajard
et al. [9]–[11]
Input: w in A ∪ ar

Output: w in B
Precomputation: A−1

j mod aj for j = 1...k,
A−1

r mod ar, −A in B, Aj in B for j = 1...k,
Aj mod ar for i = 1...k.

1: qj = waj(A−1
j ) mod aj for j = 1...k

2: dr = (
∑k

j=1 qj(Aj mod ar)) mod ar

3: β = (dr − xr)(A−1
r ) mod ar

4: di = (
∑k

j=1 qj(Aj)) mod bi for i = 1...k
5: wbi = (di − (Aβ) mod bi) mod bi for i = 1...k

Algorithm 12: Second BE Based on the algorithm by
Bajard et al. (BBE2)
Input: ŵ = q in A, wr in ar

Output: w in B
Precomputation: A−1

r mod ar, −A in B,
Aj in B for j = 1...k,
Aj mod ar for j = 1...k.
-

1: dr = (
∑k

j=1 qj(Aj mod ar)) mod ar

2: β = (dr − xr)(A−1
r ) mod ar

3: di = (
∑k

j=1 qj(Aj)) mod bi for i = 1...k
4: wbi = (di − (Aβ) mod bi) mod bi for i = 1...k

Fig. 6. Comparison between the second BE used in [9] and the proposed BE (BBE2)

approximation is equal to 1. In KBE1, the multiplications in Kawamura et al. step 8 are merged to the

multiplication by N in Algorithm 3 step 5, by B−1
A in Algorithm 3 step 7, and by A−1

j in the second BE.

Instead of of Bi mod aj and −B, BiNB−1
A A−1

j mod aj and −BNB−1
A A−1

j are pre-computed, respectively

It can also be easily demonstrated that the result of step 8 of KBE1 is the same result of the corre-

sponding operations in Algorithm 5, for the associative property and for the distributive property,

The second BE proposed in [6], Algorithm 7 in Fig 4, uses the same algorithm of the first BE

(Algorithm. 5), but with the bases switched. The proposed algorithm (KBE2), Algorithm 8, is the same,

but it does not perform step 1 of Algorithm 7, since the input value is already multiplied by A−1
j .

E. BE based on the approach by Bajard et al. (BBE)

In [9], Bajard at al. propose a MM algorithm requiring two different BEs; the former, Algorithm 9 in

Fig. 5, trades approximation for speed, whereas the latter, Algorithm 11 in Fig. 6 originally proposed by

Shenoy and Kumaresan [10], corrects the result. The result of the approximate BE of x is x̃ = x + λB,

and no correction steps are performed in order to reach the correct results. Further details are presented

in [11], where the algorithm is applied to the ME in the contexts of RSA. The approximation does not

affect the final result of the MM, provided that overflows after the BE are avoided through the use of
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larger bases guaranteeing:

A,B > N(k + 2)2 . (2)

The First BE proposed in this work, Algorithm 10 in Fig. 5, is based on the approach by Bajard et al.

(BBE1) and includes the operations of Algorithm 9 as well as the operations of Algorithm 3 steps 3, 5,

6, and 7.

In BBE1, the multiplication of Algorithm 9 step 1, is merged to the multiplication by −N−1 of

Algorithm 3 step 3; hence, instead of B−1
i , −N−1B−1

i is pre-computed. It can be easily demonstrated

that the result of this operation is the same of the corresponding operation in Algorithm 9.

In step 2 of BBE1, the summation is initialized with the multiplication of Algorithm 3 step 7 merged

with the multiplication by Aj , used to correct the A−2
j factor. Therefore, AjB

−1
A must be pre-computed.

The multiplications in the summation are merged to the multiplication by N in Algorithm 3 step 5, by

B−1
A in Algorithm 3 step 7, and by A−1

j in the second BE. Instead of Bi mod aj , BiNB−1
A A−1

j mod aj

is pre-computed. It can be easily proved that the result of this operation is the same of the respective

operation in Algorithm 5.

The approximation correction is only performed after the second BE, and it requires an additional RNS

base element ar, such that gcd(ar, A) = 1 and gcd(ar, B) = 1 (where ar is a power of 2). All the values

in A are also calculated in ar, according to [10].

The second BE employed in [9], Algorithm 11, requires a correction in order to avoid the approximation.

Step 2 calculates the difference between the correct value of x in ar and the result of the approximate

BE on ar, which correspond to:

tr = x mod ar − (x + λA) mod ar = λA mod ar. (3)

The second proposed BE based on the approach by Bajard et al.(BBE2), Algorithm 12 in Fig. 6,

corresponds to Algorithm 11 without step 1; this step can be avoided since the input of the BE is already

multiplied by A−1
j .
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TABLE III

NUMBER OF MODULAR MULTIPLICATIONS REQUIRED BY THE CONSIDERED RNS MM ALGORITHMS

[6] [9] Proposed (with KBE) Proposed (with BBE)

Step 1, 3, and 4 of MM 5k 5k 2k 2k
First BE without correction k2 + k k2 + k k2 + 2k k2 + 2k
First BE correction k 0 k 0
Second BE without correction k2 + k k2 + k k2 k2

Second BE correction k k k k
Total without BE correction 2k2 + 7k 2k2 + 7k 2k2 + 4k 2k2 + 4k
Total 2k2 + 9k 2k2 + 8k 2k2 + 6k 2k2 + 5k

TABLE IV

CLASSIFICATION OF THE MULTIPLICATION STEPS OF THE MM ALGORITHM (WITHOUT BE CORRECTION)
Multiplication Operation Base Characteristics Number of Number of Proposed [6], [9]

ID multiplications execution steps
1 s = xy B Full k p • •
2 s = xy A

S

ar Full parallelizable k b 1
p+M−1

c • •
3 u = s(−N−1) B Full k p • •
4 q = uB−1

i B Full k p © •
5 ŵ = ŝB−1

A Aj A
S

ar Full parallelizable k b 1
p+M−1

c • ©
6. . . k+5 qiBj A

S

ar Parallelizable k2 d k
M

e − 1 + p • •
k+6 t = uN A

S

ar Full k p © •
k+7 w = vB−1

A A
S

ar Full k p © •
k+8 q = wA−1

j A Full k p © •
k+9. . . 2k+8 qjAj B

S

ar Parallelizable k2 d k
M

e − 1 + p • •
© The multiplication is executed by the algorithm • The multiplication is not executed

III. ALGORITHM ANALYSIS

In this section, the proposed approach is evaluated and compared with the state-of-the-art algorithms.

The analysis is focused on the MM, which requires the majority of the total computational time. In

particular, Section III-A performs an analysis taking into account the number of modular multiplications,

as in previous works [6], [11]. Section III-B analyzes the characteristics of the operations performed by

the algorithms, evaluating their weight. Finally, Section III-C summarizes the conclusions of the analysis.

A. Number of modular multiplications

Both the approaches in [6] and [11] have been evaluated by the respective authors according to the

number of modular multiplications required. Table III reports the comparison of the proposed RNS MM

algorithm with the previous ones. It can be easily seen that the algorithm presented in [11] achieves

a reduction of k modular multiplications with respect to [6], whereas the proposed algorithm allows a

further saving of 3k modular multiplications.



13

B. Analysis and classification of the required multiplications

As shown in Table III, the described algorithms require 2k2 and between 5k to 9k modular multipli-

cations. All the necessary multiplications (not considering the BE correction) are listed and classified in

Table IV. It can be observed that 2k2 modular multiplications correspond to 2k multiplications required

for the BEs (IDs from 6 to k + 5 and from k + 9 to 2k + 8) performed on k base elements. Moreover, 8k

modular multiplications correspond to 6 multiplications (ID 3, 4, 5, k + 6, k + 7, and k + 8) performed

on k base elements, and to 1 multiplication (ID 1 and 2), performed on 2k base elements.

Since each operation is performed on k base elements and only one multiplication is performed on a

larger base, up to k cells can perform in parallel the required operations. Thus, considering that k cells

can work in parallel, the multiplications shown in Table IV are organized in 2k + 8 multiplication steps,

composed by k parallel multiplications. The multiplication steps are classified according to the opportuniy

of parallelization and pipelining. These aspects are of paramount importance, since different multiplication

steps can require a different number of execution steps. The identified types of multiplication steps are:

• full, where the beginning of the operation must wait for the completion of the previous operation

that calculates an input value; the number of required execution steps is p, where p corresponds to

the number of pipeline stages;

• parallelizable, where a group of operations can be executed in parallel, or the first operation can be

executed as full, and the subsequent ones can be pipelined;

• fullparallelizable, where an operation can be executed in parallel to the previous and/or to the

subsequent one; when the operation is executed by a parallel or pipelined cell the number of required

execution steps is 0.

C. Remarks

Considering that k cells can perform k modular multiplications in one multiplication step, by analyzing

Table IV it can be observed that, without considering the BE correction, the RNS MM involves: 6 full

multiplication steps (IDs 1, 3, 4, k+6, k+7, and k+8), two groups of k parallelizable multiplication steps

(IDs from 6 to k+5 and from k+9 to 2k+8), and 2 fully parallelizable multiplication steps (IDs 2 and 5).

When the RNS MM algorithm used in the previous approaches is analyzed, by considering M as the

number of parallel multipliers per cell, it can be observed that the fully parallelizable step does not need

the result of the previous operation. Hence, it can be fully parallelized by any pipelined architecture and
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it does not affects the overall delay. This step requires b 1
p+M−1

c execution steps.

When executed by an architecture with M ≤ k, the two groups of consecutive parallelizable multipli-

cations require p execution steps for the first multiplication step, and 1/M execution steps for each other

multiplication step, corresponding to 2d k
M
e − 2 + 2p execution steps.

Each full multiplication step requires p execution steps, which correspond to 6p execution steps.

Considering an architecture with k cells, the number of execution steps required by the RNS MM used

in [6], [11], without the BE correction, is 2d k
M
e − 2 + b 1

p+M−1
c+ 8p.

As shown in Table IV, the proposed algorithm allows achieving a reduction of 4p steps (IDs 4, k+6,

k+7, and k+8), and requires b 1
p+M−1

c additional steps (ID 5). Therefore, the improvement due to the

proposed modification is directly matched to the number of pipeline stages and of parallel multipliers.

Considering p = 3, M = 1 and k = 33 as in [6], without the error correction a delay reduction of 13.63%

is obtained. With a higher degree of pipelining a larger reduction is achieved, e.g. 16.66% with p = 4

and M = 1, 19.23% with p = 5 and M = 1, 25% with p = 4 and M = 2, etc.

The proposed exponentiation algorithm requires 2p + 1 additional multiplication steps, but their impact

on the total delay is negligible since it is equal to (2p + 1)/(iteration× (2d k
M
e − 2 + b 1

p+M−1
c + 8p)),

e.g. < 0.01% with p = 3, M = 1, and iteration > 1024.

IV. IMPLEMENTATION AND RESULTS

In this section the state-of-the-art architectures exploited in [6] and [11] are described and analyzed.

Kawamura et al. presented some details about their architecture in [7]. This implementation is composed

by a set of identical cells, where each is matched to one base element for each RNS base, or to a set of

elements for each base. The cells are made up of a Modular Multiplier and Accumulator Unit (MMAU)

with three stages of pipeline, a Cox Unit (CU) for the correction of the BE, and some memory. The

details regarding the implementation based on the algorithm in [9] have not been presented, so in this

section a new architecture tailored to this particular case is proposed. Except for the correction unit, the

architecture adopted by Kawamura et al. is also suitable for the approach proposed by Bajard et al., which

nonetheless requires a separate cell for the redundant base element, instead of the Cox correction unit.

In order to reach an efficient implementation, the multiplications are performed through reduction trees

of Carry Save Adders (CSAs), whereas the addition is achieved by means of Carry Look Ahead Adders.
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A. Modular reduction

In the following, the operations used by the cells to perform the modular reduction are shown. The

approach is the same used in [7].

In [15], the authors showed that the modulo reduction of x < 22r requires two multiplications and three

additions, where ai = 2r − ci, with ci < 2h and h < r−1
2

. The partial modular reduction y ≡ x (mod ai)

can be calculated by:

y = x mod 2r + (x << r) · ci, (4)

where x < 2z, z > r, and ci < 2h. Thus, it is y < max (2r+1, 2z−r+h+1) and each iteration of this method

can reach a reduction of r−h−1 bits. In order to reach a larger reduction per step with 22r < x < 24r−2h−1,

it is possible to calculate:

y = x mod 2r + ((x << r) mod 2r) · ci + (x << 2r) · c2
i , (5)

where x < 2z, z > 2r, and ci < 2h. Hence, it is y < max (2r+h+1, 2z−2r+2h+1). Each iteration of this

equation can therefore reach a reduction of 2r − 2h− 1 bits.

B. Cell architecture without BE correction

Without the error correction, a cell basically corresponds to a MMAU opportunely controlled. The

starting point for the design is represented by the architecture proposed in [7], that is shown in Fig. 7

(p = 3 and M = 1). The MMAU is divided in three pipelined units:

• Multiplier Adder Unit (MAU), which performs the multiplications and the additions;

• First Modular Reduction Unit (FMRU), which performs the partial modular reduction (5);

• Second Modular Reduction Unit (SMRU), which calculates the final result of the modular reduction

performing (4) and an addition.

C. Analysis of the Cell without BE Correction

In order to evaluate the area and delay of the analyzed architecture, the number of gates that compose

the arithmetic cells, and that represent the critical path, have been counted. In order to present a more

clear comparison, the delay and area cost of each logic gate have been also converted in the equivalent
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TABLE V

BASIC LOGIC LIBRARY IN CMOS TECHNOLOGY (MODEL FROM [16])

Gate Area (transistors) Delay (Inverter)
Inverter 2 1
NAND 4 1.4
NOR 4 1.4

XNOR 12 3.2
NAND3 8 1.8
NAND4 10 2.2

REGISTER 15 4.8
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TABLE VI

AREA COST FOR THE CONSIDERED UNITS WITH r = 32, k = 33, h = 11

Unit Input Reduction tree Adder Output Reg. Tot. (transistors)
MAU 1254NAND+

1414NOT
960FA +
32HA

140XNOR+69NAND4+92NAND3+
369NAND + 70NOR + 370NOT

0 70 57248

FMRU 484NAND +
630NOT

431FA +
31{29}HA

86XNOR+42NAND4+56NAND3+
225NAND + 43NOR + 226NOT

0 44 26708 97692

SMRU 132NAND +
165NOT

131FA +
20HA

128XNOR+60NAND4+80NAND3+
324NAND + 64NOR + 328NOT

192NAND+
41NOT

64 13736

The values between curly brackets are obtained using merged reduction trees

TABLE VII

DELAY OF THE CONSIDERED UNITS WITH r = 32, k = 33, h = 11

Unit Input Red. tree Adder Output Reg. StepI MM (inverters)
(inverters) [6], [9] Prop.

MAU 3NAND + 3NOT 14XNOR XNOR + 4NAND4 +
12NAND + NOT

0 1 86.6

FMRU NAND + 3NOT 12XNOR XNOR + 4NAND4 +
8NAND + NOT

0 1 71.8 7620 7101

SMRU NAND + 2NOT 10XNOR 2XNOR + XNOR +
4NAND4 + 6NAND + 2NOT

3NOT +
4NAND

1 77.6

I Bold numbers represent the longest delay, which is equivalent to critical path of the cell

inverter delay, and in the equivalent number of transistors, respectively. For the conversion, the metric in

[16], which is summarized in Table V, was selected.

Table VI and VII show the area and delay characteristics of the described cells considering r = 32, k =

33, and h = 11, as in [7], [11]. In order to evaluate the delay of the described architecture, the time

requested by the longest critical path must be multiplied by the number of steps required. According to

the theoretical analysis, the considered architecture needs to execute 2k + 22 steps.

By contrast, the proposed RNS MM algorithm requires only 2k + 10 steps. Considering k = 33, with

the described cell the proposed algorithm reaches a time saving of 13.63% compared with the previous

ones, due to the smaller number of steps. These data confirm the results of the analysis in Section III-C.

D. Error correction with the approach by Kawamura et al.

The error correction significantly affects the architecture of the cells, and it represents the main

architectural difference between the approaches by Kawamura et al. and by Bajard et al.

TABLE VIII

AREA COST AND DELAY OF THE CONSIDERED UNITS WITH THE COX SUBUNIT

Unit Delay Area (inverters)
MAU 93

FMRU 62.2 99100
SMRU 68
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Fig. 8. Cox Unit (a) and Redundant Cell Matched to ar (b)

The algorithm proposed in [6] can be implemented by adding to each cell a Cox Unit. This unit, which

is illustrated in Fig. 8, is composed by an adder, a register and a set of AND gates. The delay of this unit

corresponds to an adder and one AND gate. According to [7], a suitable value for %, which represents the

size of the adder in the Cox Unit, is 9, with r = 32, h = 11, and k = 33; in this case, the delay required

by the unit can be estimated in 22.6 inverters. Kawamura et al. use an architecture similar to Fig. 8, and

they place the Cox Unit in parallel to the reduction tree. The area of the reduction three is r FA larger.

The area and the delay of the units with the additional input line are reported in Table VIII.

E. Error correction with the approach by Bajard et al.

The algorithm employed in [11] can be implemented by using the architectures previously described,

but it requires an additional cell matched to a redundant base element. The aim of this cell is to calculate

the BE correction, which is used by the other cells as a standard input value. Therefore, from the point

of view of the cells matched to the base elements, the only difference is the sequence of operations.

The architecture of the redundant cell is shown in Fig. 8. It is composed by the Multiplier Unit (MU)
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TABLE IX

AREA AND DELAY COMPARISON WITH k = 33, r = 32, h = 11, M = 1, p = 3

Algorithm Correction # steps Step delay MM delay (Inverter) Area (Transistor)
[6], [9] Kawamura et al. [6] 88 93 8184(100%) 99873 × 33

Proposed Kawamura et al. [6] 76 93 7068(86.4%) 99873 × 33
[6], [9] Bajard et al. [9] 89 86.6 7707(94.2%) 99840 × 33

Proposed Bajard et al. [9] 77 86.6 6669(81.5%) 99840 × 33

and by the Adder Unit (AU). The number of represented bits is shorter than in other cells, according to

the requirements, so two multiplications can be processed in parallel and added in a step. Moreover, ar

can be a power of 2, so no reduction is required. The area overhead is similar to the approach proposed

in [6]. The BE correction requires an additional step. However, as suggested in [11], it is possible to avoid

a multiplication using tables, but the result from the table should be summed by adding an input line.

F. Overall comparison and concluding remarks

Table IX summarizes the results of the comparison among the considered approaches. It is possible

to observe that the BE correction does not affect noticeably the area required by the cell. The BE

correction proposed by Bajard et al. requires an additional step (unless tables are used for the correction

multiplication), but the Kawamura et al. correction increases the delay of the MAU, which represents the

critical path of the cell. Therefore, the approach proposed by Bajard et al. provides a 5.8% time saving.

The proposed algorithm provides a delay reduction linked to the BE correction algorithm, and it does

not affect the area. With the Kawamura et al. correction, the delay reduction is 13.6%, while with the

Bajard et al. correction it is 13.4%.

The most efficient cell is obtained by mixing the BE approach used in [11] with the proposed algorithm,

since it does not require additional area and it provides a 18.5% delay reduction.

V. CONCLUSION

In this paper a novel RNS Montgomery exponentiation algorithm is proposed. The algorithm is presented

in two versions, targeted to the BE approaches adopted in [6] and in [11], respectively. The architecture

proposed in [7], that is compliant with the approach in [6], has been used as a reference point for the

design of a new architecture suitable for the method adopted in [11].

An algorithmic analysis has shown that the proposed approach is capable of providing a reduction

of 4p − b1/(p + M − 1)c steps over the 2dk/Me − 2 + b1/(p + M − 1)c + 8p required by each RNS

MM (without considering the BE correction). Then, an architectural analysis has shown that, with the
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BE proposed in [6], the total number of steps and the reduction are the same, whereas with the BE

approach used in [11], the reduction is the same but the MM requires one additional step. According to

the algorithmic characteristics described in [6], [11], and to the architectural features described in [7], the

delay reduction is equal to 13.6% or 13.4% depending on whether the BE adopted in [6] or in [11] is

used, respectively.
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