N

N
N

HAL

open science

Elliptic Curve point multiplication on GPUs

Samuel Antao, Jean-Claude Bajard, Leonel Sousa

» To cite this version:

Samuel Antdo, Jean-Claude Bajard, Leonel Sousa.
ASAP 2010 — 21st IEEE International Conference on Application-specific Systems, Architectures and
Processors, Jul 2010, Rennes, France. pp.192 -

199, 10.1109/ASAP.2010.5541000 . hal-01099281

HAL Id: hal-01099281
https://hal.sorbonne-universite.fr /hal-01099281
Submitted on 29 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Elliptic Curve point multiplication on GPUs.

https://hal.sorbonne-universite.fr/hal-01099281
https://hal.archives-ouvertes.fr

Elliptic Curve Point Multiplication on GPUs

Samuel Ando Jean-Claude Bajard Leonel Sousa
Instituto Superior €cnico/INESC-ID Laboratoire d'Informatique de Paris 6 Instituto Superior €cnico/INESC-ID
Technical University of Lisbon Universié Pierre et Marie Curie Technical University of Lisbon
Lisbon, Portugal Paris, France Lisbon, Portugal
Email: sfan@sips.inesc-id.pt Email: jean-claude.bajard@lip6.fr Email: las@sips.inesc-id.pt
Abstract—Acceleration of cryptographic applications on « High computation over small input/output data, reduc-
Graphical Processing Units (GPUs) platforms is a research ing the impact of the communication delays in the
topic with practical interest, because these platforms provide overall performance.

huge computational power for this type of applications. In
this paper, we propose parallel algorithms for Elliptic Curve

(EC) point multiplication in order to compute EC cryptography A . . .
on GPUs. The porposed approach relies in using the Residue Considering the above properties, despite the different ap

Number System (RNS) to extract parallelism on high precision ~Plication fields, implementations supported on GPUs have
integer arithmetic. For the best of our knowledge, this is the Similar challenges that consist in designing/redesigrihkg
first implementation proposed for computing the EC point gorithms to use extensive parallel processing control flows

multiplication on GPUs supported on RNS. Results suggest g independent and small data sets.
a maximum throughput of 9990 EC multiplications per second

and minimum latency od 24.3 ms for a 224-bit underlying In this paper we get through the GPU implementation

field, for an Nvidia 285 GTX GPU. We present performances f . h lioti
up to an order of magnitude better in latency and 54 % in of asymmetric cryptography supported on Elliptic Curve

throughput regarding other approaches reported in the related ~ (EC). EC cryptography arose as a promising competitor to
art. the widely used Rivest-Shamir-Adleman (RSA), due to the

reduced key size required to provide the same security. The
algorithms used in EC cryptography do not meet all the
|. INTRODUCTION requirements for a direct and efficient implementation on

Recently, Graphical Processing Units (GPUs) have beeffPUs- In particular, the EC point multiplication with a swal
increasingly used in several applications as a powerful aclPrivate key), which is the most demanding operation in
celerator for high computational demanding applicatidis [EC cryptography, is constructed on several successive step
The huge computational power of a single GPU allied withwhere the scalar is browsed, and there are data dependencies

its low cost regarding other dedicated accelerator safatio Petween all the successive steps. On the other hand, EC

mainly because of mass production for the gaming marketPOim multiplication represents a demanding computation

is the main reason for the interest of using GPUs for GenerafUPPorted on small input data sets (private and public key
Purpose applications (GPGPU) [1]. are usually represented with up to three 521-bit integers),

Applications that take advantage of the GPU computingWhiCh is an interesting property for the EC computation.

power can be found in different fields, namely physics, |, order to overcome the inefficiency due to the data
biology and cryptography [2], etc... These different appli gependencies, we propose in this paper to use the Residue
cations may have _dlfferent prqpertles that turn them MOr§yumber System (RNS) approach [3]. RNS is an alternative
or less s.wtable for |mpIemgntat|ons on GPUs. The f°"0W'“9representation that splits the traditional integer inteesal
summarizes these properties. smaller residues for a established basis. With the operands
« Low data dependencies, allowing for easier parallelizasharing a common RNS representation, the computation
tion of the algorithm, by computing parallel instances can be performed in parallel on the correspondent residues.
over independent data sets. Hence, RNS representation is an attractive approach to
« Regular description, allowing for the identification of enhance the parallelization of algorithms. We combine the
different single computation flows among the algo- RNS representation with the Montgomery ladder algorithm
rithm, enhancing the parallelization and scalability for for EC point multiplication in order to obtain a high perfor-
data sets with different sizes. mance accelerator for EC cryptography supported on GPUs.
o Low memory accesses, taking advantage of the hug€or the best of our knowledge, the presented work is the
GPU processing power reducing stalling effects waitingfirst presenting a solution supported on GPUs and RNS to
for data from memory. accelerate EC cryptography.

Algorithm 1 Montgomery Ladder Algorithm coordinate, the following correspondence holds: X/Z.

Require: EC pointG € E(a,b,p), k-bit scalars. The projective versions of point addition and doubling to
Ensure: P = sG € E(a,b,p). support Algorithm 1 are the following (fas; = 0) [4]:

1. P=G,

2 Q =2G; Xprq=—40ZpZq(XpZq + XoZp))

3 for i =k — 2 down to0 do +(XpXq — aZpZg)?,

g if ‘jgi }Dtieg_ Zpig =16(XpZg — XoZp)%;

6 Q = 20: ’ Xop = (X3 —aZ%)? —8bXpZ3,

7. else Zop = 4Zp(X3} +aXpZb +bZ3).

8: Q=P+Q;]

o P =2p: For s; = 1, the formula used to doublé, is used to
100 end if double@ instead. As it can be concluded from Algorithm 1,
11: end for each iteration of the cycle has data dependencies from the

previous iteration, which is an extra difficulty towards the
design of a parallel algorithm. Moreover, the sizes of the
prime p for standardized EC are 192, 224, 256, 384, and
521 bits [5]. Thus, the operations over the coordinates gvoul
This section provides the background on EC and RNSequire a datapath of the same size. In order to adapt
arithmetic, as well as the application of both for EC pointthe coordinates size to the GPU processing datapath, we

II. EC AND RNSBACKGROUND

multiplication. propose use an RNS representation of the field elements.
A EC h OF This representation allows to parallelize the field opersti
- EC cryptography oveF'(p) on the GPU, providing the required degree of parallelizatio

An EC E(a,b,p) over GF(p), with p a prime, is a towards an efficient implementation.
set composed by a point at infinit) and the points
P, = (z;,y;) € GF(p) x GF(p) that comply the following B. RNS Overview

equation: The RNS has its fundamentals in the Chinese Remainder

y? = a3 +ax; +b, a,b € GF(p). (1) Theorem (CRT), which states that for a given basls
consisting ofn coprime integergms,ms, ..., m,) there is
In o(l)l:debr to O(Ze% szgz?;;]r;fzs codr1d|t|I<3)ns ttheblpiramﬁefs a unique representation for the integér< M in the form
andb obey a® + mod p. By establishing the
addition and doubling operation over the EC points, and by j = X modmj, with 1 < j < n and M = H m; the
applying it recursively, it is possible to obtain the muigp- ~ dynamic range of the basis,,. Having two IntegersX' and
tion of a pointP by a scalas asQQ = P+P+...+P = sP Y in RNS representation, an operatigh= X @ Y mod M
(Elliptic Curve Discrete Logarithm Problem). is equivalent toz; = x; ® y; mod m;, where® represents
The EC point addition and doubling are performed withaddition, subtraction, or multiplication. In general, osng
operations over the underlying field F(p) applied to the & basisB,, such thatX ® Y’ < M, the RNS representation
points’ coordinates. It is known that it is possible to obtai can be used to perform any of the aforementioned opera-
the zr coordinate of a point additio® = P + Q knowing tions in the traditional representation system. As suggest
the = coordinates ofP, @, and P — Q. This observation above, the advantage of using the RNS representation is
motivated the proposal of a double and add algorithm thathe possibility of split the computation in parallel flows
does not require thg coordinate, known as the Montgomery (now onwards called channels), each one operating modulo
Ladder for EC [4]. The Algorithm 1 details the Montgomery a differentm;. The conversion from binary to the RNS
Ladder algorithm behavior for obtaining = sG, wheresis representation of an integeX can be accomplished by
a scalar with sizé (the most significant bit of, s,_; = 1). computing the residues; directly and in parallel. For the
opposite conversion, there are two equivalent methods that
The operations over the coordinates, used to obtain thean be used: CRT and Mixed Radix System (MRS).
EC point operations, require modular inversions, which is a Due to the recursive nature of MRS based conversion,
computationally demanding operation over a finite field. Init is not suitable for efficient GPU implementations [2].
order to avoid a large number of inversions, the traditionalThe alternative method relies on the CRT definition for
(affine) representation of the coordinates is replaced bygomputing the binary representation:
a projective representation. The projective represantati n
introduces an extra coordinatd. To commute between X — Z& M; mod M, ¢ =
standard projectiveX) and affine representation:) of a P

X
M;

; 3

m;

where M; = M/m; and||,, denotes an operation modulo

m;. In order to avoid a reduction modulo a large number

M, the expression in (3) can be rewritten as:

X =Y &M;—aM, a<n. (4)
=1

In (4) the operation moduld/ is replaced by the subtraction
of a multiple of M dependent ofv. Two main methods have
been used to compute the constantAn extra modulim,
can be established and all the operations performed not on
on the basisB,,, but also on this extra moduli (Shenoy et.
al. [6]). Hence, the RNS representation of the integér
is (x1,22,...,Z,,). Applying the reduction modulen,

to (4), it is obtained:

Te = ZszZ —|O[M|mc. (5)
i=1 me
Rewriting (5),« can be obtained as:
al,,, = > &M —a.| |M7Y . (6)
i=1 me

Sincea < n, choosingm,. > n results ina = |af,, .
Other possible method to computénvolves a successive
fixed point approximation approach (Kawamura et. al. [7]).

In this method, (4) is rewritten as:

n

S _o0 X
D =at (7)
=1
and observe that knowing < M then % <1
B n é
a{;W. (8)

Since (8) requires costly divisions by, an approximation
(&) to this expression is suggested:

(9)

where r is such that2"=! < m; < 27, and trung¢;)
sets theq — r least significant bits of¢; to zero, with
g < r. The parametep is a corrective term that should be
carefully chosen such that = &. The authors state a set of
inequalities that allow to chose good values foisupported
on the maximum initial approximation errors, respectively

r

27‘

%

m)’ézma)g(&_t:nm). (10)

If a value of 3 is chosen such thdt < n(e+4J) < g <1
and0 < X < (1 - pB)M, thena = é.

e:ma)g-(

[1l. RNS MONTGOMERY MULTIPLICATION

In order to perform EC arithmetic with RNS, we should
not only provide a method for add and multiply, but also
to reduce. The Montgomery Modular Multiplication is an
efficient method that allows replacing the reduction modulo
an integer N (usually a prime) by a reduction modulo
R = 2%, which can be very easily accomplished operating
on the binary representation of an integer [8]. This method
employs a different domain for a field elemend, as
§ = XR mod N and computesZ = XY R~! mod N.

The rational of the Montgomery modular multiplication
algorithm can also be applied to an RNS version, but using
the RNS representation it is no longer easy to reduce modulo
a power of two. Instead, defining a bad¥; with dynamic
rangeM such that > N andgcd(M,N) =1, itis easy to
reduce an element represented with the bBsisnodulo the
dynamic rangée\/. It only requires to reduce modula; in
each one of the RNS channels. Hence, the RNS Montgomery
Multiplication version computéZ = XY M ~! mod N. One
of the drawbacks of the RNS version is that it is not possible
to representM ~! in B,. Thus it required to set another
basis B,, with dynamic rangeM such thatM > M and
ged(M, M) = 1.

With the modified Montgomery modular multiplication
algorithm we need to computé = (7 +QN)M ~*, where
T = XY. ltis easy to see that if we guarant&e+ QN =
0 mod M thenU = XYM~ mod N. To ensure this, we
need to compute in the RNS channdbr the basisB,,:

0=t; +q;n; mod m; < q; _tz(nz);llt mod m;. (11)

After computing the value of) we can use one of the
methods referred in Section 1I-B to convert the value(bf
to the basisB,,. In this basis, for each RNS channeive
compute:

Afterwards, we convert the result from basisB,, to basis

B, (note thatU < 2N, sinceT < MN, QN < MN,

and N < M). However, when computing the algorithms
based on the Montgomery multiplication, we need the inter-
mediary results to be bounded but not perfectly reduced.
Thus, consideringZ = U and applyingZ as input in
further multiplications we will always hav&/ < 2N and

the multiplication result will be correct modulé/, since

M > 4N.

In the RNS version of the Montgomery multiplication
algorithm, the most costly steps are the conversion between
basis, base extension, since all the other steps correspond
to independent operations in each RNS channel. Addressing
this problem, an offset during the conversion(@ffrom B,,
to B, can be allowed [3]. As (4) suggests, the conversion
from an RNS basis implies the computation of a constant
that multiplied by the dynamic rang&! correct an offset

in the conversion to maintain the result bounded ky threads are organized in a higher level parallelism ab#brac
In [3] it is suggested to use the CRT conversion without theunit called block. Different blocks are independent and
correction term introduced by during the first conversion can run in parallel by using the several multiprocessor
(B, to B,). With this approach, after the conversion we cores. A group of blocks that is executed in parallel in
obtain a value ofQ) = Q + aM that contains an offset. the existent multiprocessor cores is called a grid. The way
With this offset, the value ot/ is given by: a sequential algorithm can be parallelized in threads and
. A . . blocks depends on the multiprocessor local resourcesgqg@har
U=T+QN)M™ =(T+QN)M"" +aN. (13 memory, cache, registers availability) and on the proogssi
Sincea < n, U < (n+ 2)N. In order to feed this result dependencies.
in subsequent multiplications we must chase such that In each multiprocessor there is a 16 Kbytes shared mem-
M > (n + 2)2N, since this condition complemented with OrY, and a 8 Kbytes symbols cache that can be used for read
the conditionXY = T < NM ensuresl < (n 4 2)N. only data (constants). Despite possible conflicts between
In summary, with this method, we are able to avoid thedifferent threads, the memory inside a multiprocessor can
Computation ofa during one conversion while keeping the be accessed in the same amount a regiSter can. There is also
multiplication result bounded by an acceptable value (notét global memory, where the initialization data is written by

thatn << N). the GPU host. The global memory has a higher accessing
latency (40 to 60 times higher than the shared memory
IV. EC PARALLEL ALGORITHM FORGPU latency [10]), thus its utilization and accessing patterns

The Algorithm 1 to multiply a pointG' by the scalars, should be judiciously set to avoid long stall periods by a
can be split into two sections, the initialization sectiand multiprocessor.
the loop controlled by the scalar. The initialization corngsu Each scalar processor has pipelined floating point adders
P = G and @ = 2G, which can be performed computing: and multipliers, which can be used for integer arithmetic.
With CUDA a 24-bit multiplication is performed in the same

Xp =g, (14) " time than other 32-bit integer operations, such as addition

Zp =1; A 32-bit integer multiplication is 4 times slower. Moreoyer

Xo = (% +3)? — 8bag, it is not possible to obtain the 16 most significant bits of

70— A a 24-bit multiplication, only the 32 least significant bitea
available.

Each iteration of the main loop computes the operation in (2
an appropriate scheduling of the operations presented.in (2
The schedule in Table | can be adopted to perform the EC Let us assume that the GPU inputs and outputs are in RNS
point multiplication; this schedule is only for; = 0. The format, and that input data is already in the Montgomery
loop schedule fos; = 1 can be obtained by commutating domain. These assumptions are supported on the fact that
P and @Q in the loop section of Table I. The schedul- the computational demanding core of the algorithm is in the
ing is divided in multiplications and additions sets. Eachloop for computing the resulting coordinate. A general
multiplication set is composed of several independent field=C standardized by NIST is considered for a prime number
multiplication operations, and each addition set is corados Wwith 224 bits, wherex = —3 [5].

. Parallel Algorithms, type | and type Il

by field additions/subtractions and multiplications withal Regarding the proposed schedule, for each EC point
constants. multiplication 11 variables are required to store interiag

] data. To perform modular operations among the RNS chan-
A. General Purpose Processing on GPUs nels, the complete precision of a multiplication has to be

Tesla is a typical architecture of a GPU which consistsavailable in order to perform reduction. Hence, since we
of several general purpose scalar processors grouped @an only obtain a 32-bit result from a multiplication we
multiprocessor cores that allows for general purpose promust use input operands of 16-bits. Thus, each RNS channel
cessing [9]. Furthermore, NVIDIA Compute Unified Device can compute 16-bit arithmetic modulo a basis element of
Architecture (CUDA) allows programmers to easily programthe form 2* — ¢, with £ = 16 and ¢ > 0. The required
NVIDIA GPUs for general purpose processing. number on RNS channels depends on the range to represent

In order to exploit the parallel computation capabilitids o a field element. The number of EC point multiplications
GPUs, CUDA provides different units of parallelism. The performed in parallel in each multiprocessor depends on the
smallest unit is the thread, each multiprocessor core is ablavailable memory required to efficiently store intermesliat
to run up to 32 simultaneous threads, which have their owmlata and constants. Several variables have to be loaded and
register file. A group of threads that run simultaneouslystored in each EC point multiplication steps for each RNS
in a multiprocessor core is called warp, and the way thechannel. Thus, with this extensive memory transactions,
threads in a warp are executed obeys a SIMD flow. Thelobal memory should only be used to store the input data

Table |
OPERATIONS SCHEDULING(FOR s; = 0).

mult. 1 A=zZ A=XpZg D:DéXQ D=bD
B=bzg B=XoZp Xg=C Zo=xZg
add. C=A+3 C=XpXg Zg=72, B=XpB
C=C? mult. 1 | D=ZpZg mult. 2 A=A2 mult. 3 | Zp=ZpE
i R B=X?2, B=FH
Init. Xqo=C -8B Loop F=Z2 E=EXp
Zq=4(A — 3xc +b) H=bZp F=XpF
add. 2 Zg=A—B E=E + B—3F XQ:Z(Q—4D
Xo=A+B Xp=A—8B
add. 1 g‘:C+3D add. 2 add-3 | "7
A=E + 3F

and the final results. Hence, the number of multiplicationsresult mod/N. With these new terms the maximum value of
handled by each multiprocessor is constrained by the siza projective coordinate is:
of the shared memory.

In the following subsections we propose two types of

5 4
algorithms. The type | algorithm is supported on a dynamic [(XP+@lmax < 8u5 + 16u~, (16)
range that allows for the computation of a complete loop in [ZP+qlmax < 4u”;

Table | prior to the reduction. The dynamic range considered [X2p]max < 8u® + 16u?,
in type Il algorithm only supports the computation of a set]
of multiplications and a set of additions in Table I, prior to
a reduction. In both algorithms, we store the projective co-
ordinates of the input point in global memory, and considerTherefore, the dynamic range has to complyM > 8u’ +
the scalar a constant stored in constant memory. 16u*. We define a moduli set composed Df elements of
1) Type | Parallel Algorithm: Algorithm Type | obtains the form2'6 —¢;, with ¢; an odd number; < ¢; for i < j,
the resulting projective coordinatesp, Zp, X¢q, and Zp andcy = 1; an elemeng!® —¢; is added to the set once it is
of the complete loop in Table | that are then multiplied by relative prime with all the other elemer$® — ¢; with 0 <
the unity M mod N in the Montgomery domain, using the ¢ < j. The basisB,, is obtained by selecting the elements
method introduced in Section Il, in order to obtain the @édrti 26 —¢; with eveni, and the basig,, with the elements with
reduced values. We allow an offset in the base extensiondd i. With this we assuré// < M. The required number
from B, to B, [3]. Considering the results in [2] that of elements in order to comply/ > 8u® + 16u* in each
compare the Shenoy et. al. and Kawamura et. al. methodsase was found to be = 73. The extra element used to
on a GPU to perform the base extension frdp to B,, compute (6) is2* such that2* > n; note than any number
we follow the former one (based on (6)) because it achieveg” is relative prime toB,, and B,,.
better performance. Since we are also interested in low latency, an EC
Let us find the required dynamic range to compute (2)yoint multiplication is accomplished in a single block of
without having to reduce intermediary results mbfl A tnreads, which runs in a single multiprocessor. The block ha
explained in Section Ill, the maximum value of an output, 53ssociated; threads, and each thread has one correspondent
in the base extension method, is smaller thaa (n+2)N, element ofB,, (m;) and B, (). There is one thread that
wheren is the number of channels and = p, with p the s agsociated with an element, = 2%, being the thread
prime that defines the underlying fieF(p). In order to responsible for computing (6) and the required operations
avoid obtaining negative values that would require reducti 1,04 me. Each thread performs arithmetic mod an element
mod M (in (2) there are subtractions), new terms are addegf e bases3,, and B3,,. Algorithm Type | presents the flow
to (2): of the computation held by each thread in a block, where
Xpig = Sud — WZpZo(XpZg + XoZp) (15) elementV r%presentslany]?f the projelcti;/e coordinalés, .
2 Zp, X, andZg resulting from a single loop iteration, an
+ (XpXq + 3ZPQZQ) ') W = JS[mod Z\Cfg. The computation presented in Algorithm
Zprq = x6(XpZq +u” — XoZp)™; Type | uses the following precomputed constants:

Xop = (X% +32%)% +8u® — 8bXpZ3, 3
o = (Xp ; P) 5) P P3 e« M mod B,; N mod [B,,m.,B,]; N~! mod B,;
Zop = 4Zp(Xp + 3u” = 3XpZp + bZp). e M; mod B,,; M; mod B,,; M~ mod [m.,B,];

Note that the inclusion of such constants do not change the « M~! modm,.; W = (M mod N) mod [B,,,me,By].

[Zop)max < 4u® + 16u™.

Algorithm 2 Type | (main loop computation fon = 73). Algorithm 3 Alternative reduction algorithm

Threads involved Computation for thread Require: 2’ = 2,2 4+ 2], m, c.
lton Table | scheduling (moan;) and (mod;) Ensure: z = 2’ mod m.
. 1 !/
1ton v = _wvvz(nq);& ‘Mi|71 modmi 1: Wh'le z' > 2m — 1 dO

m;

— 2 2 =c2y+ 2y,
Synch:onlzatlon 2 end while
lton b = (STuiMj| @y +77i11~1i> ‘M‘;“i 4 2z =min(z', 2" —m);
j=1 oy ' 5. return z
1ton a; =0 | M|
1 Table | scheduling (modr.)
n Yu.
1 Ve = (;1 viMj| e +”8“’6> M, By usingu = (n +2)N (see Section Il (13), where is the
Lo number of RNS channels, we get that > 4(u + 4N)
1 aw = (S 55 M; — v ‘ML: for n > 1. Since a minimumn = 14 is required to
j=1 e © represent a field element in 16-bit channels, the precision i
Synchronization bounded by9u. Considering that the multiplication inputs

are bounded byu, settingM > (9(n + 2))2N will bound
the multiplication output (addition input) to = (n + 2)N,
which is the bound from where we depart. The condition
M > (9(n +2))2N results inn = 15.

The reduction operation over the RNS channels using the
C '%’ operation is known to be very demanding in the GPU

The latency value for the Type | Algorithm would not platforms; evaluation of a simple program that performs
be practical in real applications (latencyls), as observed several logical operations mod a basis element using '%’
from Table Il. The main drawbacks of the Type | Algorithm in the GPU shows that 73% of the time is consumed
are related with the number of synchronizations, the numbecomputing the reduction. Since a basis element has the form
and size of the divergent code sections (sections computed in = 2'6 — ¢, when we compute an operation we get a result
series), and with the complexity of computing the reguit 2/ = 20,2164 2) and we want to obtaia = 2’ modm. This

M; mod;, M; modm;, M; modm,., M; modm, operation can be accomplished recurring to Algorithm 3.
every time they are needed. Synchronization barriers anbjote that the step 4 of Algorithm 3 return the correct
divergence cannot be removed once (6) has to be Computeﬂa,sult since we are ConSidering UnSigned arithmetic. The
which is a dependency for the next steps. The computatiomaximum number of iterations in the loop is constrained by
of ;1 exhibits quadratic complexity, thus trading the requiredthe maximum value of. In the adopted basis, for computing
dynamic range (RNS Channe|s) by the number of timeém—1)2 Only up to 2 iterations are required. This bounds the
the base extension algorithm is called may improve théequired number of iterations to reduce after a multipiarat
performance_ Rep|acing this Computation by table |00k-upg\/hiCh avoids the evaluation of |00p conditions. FOIIOWing

lton v; =

C. Type Il Parallel Algorithm

will not be efficient since we would requiren(n + 1) the same idea, for an addition = (z + y) mod m
entries, (for 16-bit entries, 21,608 bytes are requiredcwh W€ can compute only = min(z + y,z +y —m) and
exceeds the shared memory Capacity) for a subtractionz = (L — y) mod m we can compute

In Algorithm Type Il only a multiplication and addition ? = min(z—y, x—y+m). The computation of the minimum
set of the schedule presented in Table | is are computed iforresponds to only one GPU instruction, and allows to
each base extension. Since the multiplications in the set a@void conditions that can potentially create divergent sec
independent they can be computed simultaneously, and tHons of the program, thus serialization of the computation
resultx is computed only once and shared by the different Considering Algorithm Type I, there are steps that apply
running multiplications threads. different constants that can be more efficiently applied if

Since we are interested in supporting also an additiofn€rged into only one. These changes allow to save memory
in one base extension, performing an analysis like the on@nd computation resources. The following summarizes the
suggested in (15) for Table I, with the smallest multiple constants replacement:
of N higher than an addition input, the following range has « New constant; = |niMi|;1;
to be achieved: ~ |72

M;
o for Zy, in the initialization step, add. 2, result is i | 7,
bounded byi(u + 4N);
« for Xp, in the loop step, add. 4, result is bounded by

« New constant; = ‘fli

« New constant; = ’M@ ‘Mi

m;

: - Table Il
Algorithm 4 Type Il, ver. 2, loopk computation ¢ = 15). DIFFERENTVERSIOZ:IS(T_ATENCY SUMMARY.

Threads involved Computation for thread
lton % = —zagir; modm; Type \ Description \ Latency[ms]
Synchronization ! ‘ - ‘ 1800.2
n constant mem. 263.4
lton £, = S 4M si+ €y, | i shared mem. 264.8
j=1 g " w look-up computing (shared mem.) 97.7
n 1 look-up precomputing (const. mem.) 112.0
1 ze= | |>0 M| netaeye | M) optimized reduction method (Version S) 24.3
J=1 me uses Kawamura et. al. method (Version K) 28.4
n
- - =1
1 s = (S &, M —ze> |M|m
J:1 Me ‘ . B .
1 Compute set addc operations modn. ~We get rid of th_e computation over the extra basis, _
Synchronization S|gn!f|cantly reducing the size of the divergent computatio
n section.
lton =|> & Mj—a: M
Jj=1 mg V. EXPERIMENTAL EVALUATION
lton Compute set addk operations modrf; /1]

In this subsection we discuss the implementation and
summarize the results for the different Algorithm types.

Relative assessment is also presented by consideringdelat
andIM\m ;art.

« Remove constants;|,.", | M|}

. The operands% in the basisB are stored ag, =

- Note that the resuits of this basis are not Table Il presents a summary for the obtained latency

needed 'to retrieve the final results, thus the algorithmesylts. The Algorithm Type Il without look-up tables for
output remains in the same format. the resulty suggests a latency of 263.4 ms for the complete
The Kawamura et. al method for computingin (4) can point multiplication regardingless the data transfers.al¥®
be used instead of the Shenoy et. al method by computing (3xploited the effect of getting the required constants from
as explained in Section II-B. In this paper we have to choosghared memory, copying them at a first moment, from the
r = 16. We have to compute the lower bound férfrom constant memory, since shared memory allows up to 16
the approximation error given b = n(e+J), wheren is simultaneous accesses while constant memory only allows

A. Implementation and Experimental Results

the number of channels and: 1. However, the results of this modification did not showed
or _ [or—q _ 1 fruitful, since the latency was 0.5% higher (264.8 ms) as
€= max(o) 0= max(A) (A7) Taple Il suggests.

. A table look-up for the resultg: is possible for the
with k£ any element ofB,, or B,,, andg the number of bits Algorithm type 1, since forn = 15 only 960 bytes
that we truncate in the approximation. Then we choose &re required. We evaluated the look-up solution with the
value 3 such thatA < § < 1 and we must assur& < |gok-up table stored in shared memory, computed at the
(1 —)M, where X is the multiplication result bounded peginning, and a pre-computed table loaded in constant
by X < (n+2)N, as previously pointed. In order to have memory. The obtained latency is 97.7 ms for the shared
as small as possible dynamic ranges we are interested Pﬂemory look-up approach, and 112.0 ms (15% higher) for
small 3. Choosingg = 9, we getA = 0.063, and we can the constant memory look-up as Table Il suggests. These
choose = A. Since(1 —) > 1/2 and we already set yegylts suggest that the look-up is a good option, and also
M > (9(n+2))N, the conditionX < (1—3)M hold. We that the memory conflicts accessing constant memory begin

can define a constasdt = [2"3] and we can compute: to have a significant impact while the latency is decreasing.
n Introducing the optimized reduction method and con-

I'= ZUU”C(&) + @, (18) stants, the proposed Algorithm Type Il provides a latency

i=1 of 24.3 ms as shown in Table Il. The Kawamura et. al

After computingl’ we can obtaimy = I'/2", which corre- method [7] (version K) did not result in the latency figure
spond to a 16-bit right shift. With this method we avoid the improvement, since one EC point multiplication takes 28.4
computations over the basis. and « is obtained as: ms to perform, approximately 17% higher than the version
n supported in the Shenoy et. al. method [6] (version S) (see

- <Z &+ <I>> /216, (19) Table ll). The fact that the insertion of the Kawamura et. al.

, method do not result in lower latency is not an expected

Latency vs # Multiplications, for 1 Block Latency vs # Blocks - Shenoy et. al.
r 100

—&— Shenoy et. al.
—<%— Kawamura et. al.

~
=]

—©&— 1 Mult/Block
—%— 3 Mult/Block |

6 Mult/Block
901 —+— 12 Muly/Block

)
o

=)
=3
T

80

o
o
T

70

@
=)
T
Latency [ms]
@
3
T

Latency [ms]
»
&
T

IS
S
T

50

@
o
T

401

)
S
T

N
o
T

.) 20 . L ! . .)
2 4 6 8 10 12 14 16 18 20 0 10 20 30 40 50 60
Multiplications Blocks

20
0

Figure 1. Latency for a different number of multiplications jéock. Figure 2. Version S latency vs. the number of blocks.

result, since the computation in the divergent part wagf blocks, for different number of EC point multiplications
substantially reduced without affecting the other partsisT Per block. From Figure 2 we observe the development of a
result should be related with conflicts assessing the sharedfP at the 30 block reference while increasing the number of
memory banks. threads per block. The number of multiprocessors is 30, thus
Another important metric for the EC point multiplication this gap is related with the ability of the compiler to assign
is the throughput_ For an EC point mu|tip|icati0n we are diﬁerent blOCkS to be Computed Simultaneously in the same
using 15 threads corresponding to the 15 RNS channelgnultiprocessor. While the number of multiplications per
The CUDA framework allows for up to 512 threads per blockincreases, the multiprocessors start being loadéuawi
multiprocessor, thus we can perform more than one EC poirlirger amount of computation demands, hence the compiler
multip”cation per b|0ck’ as |Ong we have enough share(ﬁtarts Spllttlng different blocks in sets of 30, Computed in
memory. The different multiplications performed withireth ~ series by the 30 multiprocessors, and the gap increases.
block can share the same constants, including the look-up Figure 3 shows the version K latency and the throughput
tables. Regarding the shared memory constraint, we are abRehavior for different combinations in the number of blocks
to run up to 20 EC point mu|tip|icati0n within the same and mUltiplicationS per block. From Figure 3 we can confirm
block, which corresponds to 300 threads. Figure 1 depictéhe existence of the gap at the 30 blocks mark in version K.
the latency behavior while the number of multiplications pe Another result of Figure 3 is that it is not worthwhile to use
block is increased. We compare the Version S (Shenoy et. amore than 30 blocks to achieve higher throughputs, spgciall
method) and Version K (Kawamura et. al. method) methoddor a large number of multiplications per block. The obtaine
since they present very close latency values for only onéesults suggest a maximum throughput of 8730 opl/s for the
EC point multiplication. As explained in Section IV-C, we Vversion S, and 9990 op/s for the version K. Version K can
would expect a better performance for version K, which didcompute 600 EC point multiplications in 60.3 ms.
not occur for only one EC point multiplication. However, as All these results do not consider data transfers since the
Figure 1 suggests, the version K performance is better foflata transfer latency is negligible in the overall latency
more than 7 simultaneous EC point mu|tip|icati0ns_ Thismeasures. In our measurements the data transfer delay is
result suggest that, despite the version K is not able t@t most 0.19% of the computation latency.
provide lower latency than version S, it can provide higher
throughput. The reason for the version K optimizations to
pay off for a number of EC point multiplications bigger = The comparison with the related art, namely the exper-
than 7 can be related with simultaneous computation of thémental results, is not straightforward since differentUGP
divergent section of the code by the different EC point mul-platforms are employed, each one with different architettu
tiplications. Thus, for more multiplications, more advage and performance characteristics.
can be taken from the shortened divergent section. In [2] different approaches are proposed and compared
We can expand our throughput also by taking advantagéo compute asymmetric cryptography, namely RSA and EC
of the 30 existent multiprocessors in the employed GPUcryptography on a Nvidia 8800GTS GPU. For EC point
In other words, we can use more than 1 block. Figure 2multiplication, the authors only present results for a rodth
shows the version S latency while expanding the numbebased on schoolbook-type multiplication with reduction

B. Related Art Comparison

Latency for different ions of blocks and

o per block - Kawamura et. al.

Throughput for different per block - K; et.al

ions of Blocks and ipli

10000~

M 8000~ - 2 X
= ,, S\ 2 i
40 — ML i \:&:\\\\\t\\\};\}\\\\»&\\%\\\\\\\\\ﬁg\\\\\\

30

multiplication per block #blocks # multiplication per block #blocks

(a) Latency

(b) Throughput

Figure 3. Version K latency and throughput vs. different corations of blocks and multiplications per block.

: Table 11l
modulo a Mersenne number. Due to the lack of inherentge arep art comparISON FOR224-81T EC POINT MULTIPLICATION.

parallelism in this method, an EC point multiplication is

performed in only one thread, and the number of threads per Ref | Platform | Lat.[ms] | T.put [op/s] Observations
block is limited to 36, due to shared memory restrictions._[2] | 8800 GTS| 305 1412.6
The authors implementation suggest a latency of 305 ms and[11] | 8800 GTS - 3019 ECM results
a throughput of 1412.6 operations/s. [10] | 9800 GTX - 1972
. L Ours | 8800 GTS| 30.3 3138 tp. 11, 12 mul./block
In [11] EC point multiplication is evaluated on a GPU —5 5T %85 GTx 243 9990 tp. 11, 20 mul/block

for integer factorization. In this work, the authors use Mon
gomery representation for integers and set a multiprocesso

as an 8-way array capable of simultaneously computing o petter performance both in latency and throughput.
field operations. Then they divide the EC point multipli- |\ . qor to compare to the 9800 GTX implementation, we

cation ba_sed on Non-Adjacent Form_scalar recoding in 3,3ve to bear in mind that this GPU has more computational
different instructions sets corresponding to double-t®ub <0 rces than the 8800 GTS one.

double-add, and add-double operations using mixed (pro-
JeCt'Ve; affine) colord;]natg representatX)n.hThen, thecrslmth q of magnitude the latency figures of the related art. We were
map these §ets n t € o-way array. .Ut ors_extrapo ated o able to achieve similar gains in the throughput metric.
throughpqt figure that is about 2.14 times higher than thq-|owever, we were able to provide 37% more throughput
proposal in [2]. The_ author_s _do not present results for thEfhan [10] with our 8800 GTS implementation. We provide
latency of an EC point multiplication. 3% more throughput than the extrapolation described in [11]
In [10] is evaluated a C++ library (PACE) to support and 54% more throughput than [2].
modular arithmetic on an Nvidia 9800GX2 GPU. Using
this library, the authors present results for an EC point

multiplication. The Montgomery representation of integer | this paper we have proposed parallel algorithms for EC
is used to perform multi-precision arithmetic using the noint multiplication on a GPU device by adopting a new
Finely Integrated Operand Scanning (FIOS) [8]. For 192-bitgNs approach. This RNS approach achieves higher level of
precision, results suggest a throughput of 1972 operdfions nparallelism, thus higher performance in the massive perall
Table Ill summarizes the related art performance figuresrchitecture of the GPU. We tested different implementatio
compared with the work herein proposed. We also presentersions, that required different methods for the modular
results for our best implementation running on a 8800GTS3nultiplication based on RNS base extension and different
GPU, in order to perform a fair comparison with the otherRNS precisions.
related art figures. Although, due to register restrictioms Experimental results suggest a maximum throughput of
were not able to compute the optimized implementation tha®990 EC point multiplication per second and minimum
run on the 285 GTX platform. For the 8800 GTS test welatency of 24.3 ms, using an Nvidia 285 GTX GPU. We
were only able to test an implementation that run up torun our implementation in a lower end GPU for related
12 multiplications per block. For this platform, version K art comparison, obtaining up to an order of magnitude

With our implementation, we were able to beat in an order

VI. CONCLUSIONS

reduction in latency and up to 54% throughput improvement.
The gains of the proposed implementation result from the
higher utilization of the multiprocessor cores, by running

to 20 simultaneous EC point multiplications in each GPU
multiprocessor.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

REFERENCES

J. Owens, M. Houston, D. Luebke, S. Green, J. Stone,
and J. Phillips, “Gpu computingProceedings of the IEEE
vol. 96, no. 5, pp. 879-899, May 2008.

R. Szerwinski and T. Guneysu, “Exploiting the Power of
GPUs for Asymmetric CryptographyProc. Workshop on
Cryptographic Hardware and Embedded Systems CHpS
79-99, Aug. 2008.

J. Bajard, L. Didier, and P. Kornerup, “Modular Multiplication
and Base Extension in Residue Number Systefgit. 15th
IEEE Symposium on Computer Arithmetic, ARITH 1ip.
59-65, 2001.

J. Bajard, S. Duguenne, and N. Meloni, “Combining Mont-
gomery Ladder for Elliptic Curves Defined Over Fp and RNS
Representation,Research Report LIRMMol. 6041, 2006.

N. I. of Standards and Technology, “Federal Information
Processing Standards Publication 186-3: Digital Signature
Standard,” June 2009.

A. Shenoy and R. Kumaresan, “Fast Base Extension using a
Redundant Modulus in RNSJEEE Transactions on Com-
puters vol. 38, no. 2, pp. 292-297, February 1989.

S. Kawamura, M. Koike, F. Sano, and A. Shimbo, “Cox-
Rower Architecture for Fast Parallel Montgomery Multipli-
cation,”LNCS - Advances in Cryptology EUROCRYPT'2000
pp. 523-538, January 2000.

C. Kaya Koc, T. Acar, and J. Kaliski, B.S., “Analyzing
and comparing montgomery multiplication algorithm&EE
Micro, vol. 16, no. 3, pp. 26—33, June 1996.

E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym,
“Nvidia tesla: A unified graphics and computing architecture,”
Micro, IEEE, vol. 28, no. 2, pp. 39-55, March-April 2008.

P. Giorgi, T. Izard, and A. Tisserand, “Comparison of Modular
Arithmetic Algorithms on GPUs,Proc. International Con-
ference on Parallel Computing - ParCo’0®ctober 2009.

D. J. Bernstein, T.-R. Chen, C.-M. Cheng, T. Lange, and B.-
Y. Yang, “ECM on Graphics Cards'NCS - Advances in
Cryptology - EUROCRYPT'200%p. 483-501, April 2009.

