
HAL Id: hal-01099281
https://hal.sorbonne-universite.fr/hal-01099281

Submitted on 29 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Elliptic Curve point multiplication on GPUs
Samuel Antão, Jean-Claude Bajard, Leonel Sousa

To cite this version:
Samuel Antão, Jean-Claude Bajard, Leonel Sousa. Elliptic Curve point multiplication on GPUs.
ASAP 2010 — 21st IEEE International Conference on Application-specific Systems, Architectures and
Processors, Jul 2010, Rennes, France. pp.192 - 199, �10.1109/ASAP.2010.5541000�. �hal-01099281�

https://hal.sorbonne-universite.fr/hal-01099281
https://hal.archives-ouvertes.fr

Elliptic Curve Point Multiplication on GPUs

Samuel Ant̃ao
Instituto Superior T́ecnico/INESC-ID

Technical University of Lisbon
Lisbon, Portugal

Email: sfan@sips.inesc-id.pt

Jean-Claude Bajard
Laboratoire d’Informatique de Paris 6

Universit́e Pierre et Marie Curie
Paris, France

Email: jean-claude.bajard@lip6.fr

Leonel Sousa
Instituto Superior T́ecnico/INESC-ID

Technical University of Lisbon
Lisbon, Portugal

Email: las@sips.inesc-id.pt

Abstract—Acceleration of cryptographic applications on
Graphical Processing Units (GPUs) platforms is a research
topic with practical interest, because these platforms provide
huge computational power for this type of applications. In
this paper, we propose parallel algorithms for Elliptic Curve
(EC) point multiplication in order to compute EC cryptography
on GPUs. The porposed approach relies in using the Residue
Number System (RNS) to extract parallelism on high precision
integer arithmetic. For the best of our knowledge, this is the
first implementation proposed for computing the EC point
multiplication on GPUs supported on RNS. Results suggest
a maximum throughput of 9990 EC multiplications per second
and minimum latency od 24.3 ms for a 224-bit underlying
field, for an Nvidia 285 GTX GPU. We present performances
up to an order of magnitude better in latency and 54 % in
throughput regarding other approaches reported in the related
art.

I. I NTRODUCTION

Recently, Graphical Processing Units (GPUs) have been
increasingly used in several applications as a powerful ac-
celerator for high computational demanding applications [1].
The huge computational power of a single GPU allied with
its low cost regarding other dedicated accelerator solutions,
mainly because of mass production for the gaming market,
is the main reason for the interest of using GPUs for General
Purpose applications (GPGPU) [1].

Applications that take advantage of the GPU computing
power can be found in different fields, namely physics,
biology and cryptography [2], etc... These different appli-
cations may have different properties that turn them more
or less suitable for implementations on GPUs. The following
summarizes these properties.

• Low data dependencies, allowing for easier paralleliza-
tion of the algorithm, by computing parallel instances
over independent data sets.

• Regular description, allowing for the identification of
different single computation flows among the algo-
rithm, enhancing the parallelization and scalability for
data sets with different sizes.

• Low memory accesses, taking advantage of the huge
GPU processing power reducing stalling effects waiting
for data from memory.

• High computation over small input/output data, reduc-
ing the impact of the communication delays in the
overall performance.

Considering the above properties, despite the different ap-
plication fields, implementations supported on GPUs have
similar challenges that consist in designing/redesigningal-
gorithms to use extensive parallel processing control flows
on independent and small data sets.

In this paper we get through the GPU implementation
of asymmetric cryptography supported on Elliptic Curve
(EC). EC cryptography arose as a promising competitor to
the widely used Rivest-Shamir-Adleman (RSA), due to the
reduced key size required to provide the same security. The
algorithms used in EC cryptography do not meet all the
requirements for a direct and efficient implementation on
GPUs. In particular, the EC point multiplication with a scalar
(private key), which is the most demanding operation in
EC cryptography, is constructed on several successive steps
where the scalar is browsed, and there are data dependencies
between all the successive steps. On the other hand, EC
point multiplication represents a demanding computation
supported on small input data sets (private and public key
are usually represented with up to three 521-bit integers),
which is an interesting property for the EC computation.

In order to overcome the inefficiency due to the data
dependencies, we propose in this paper to use the Residue
Number System (RNS) approach [3]. RNS is an alternative
representation that splits the traditional integer into several
smaller residues for a established basis. With the operands
sharing a common RNS representation, the computation
can be performed in parallel on the correspondent residues.
Hence, RNS representation is an attractive approach to
enhance the parallelization of algorithms. We combine the
RNS representation with the Montgomery ladder algorithm
for EC point multiplication in order to obtain a high perfor-
mance accelerator for EC cryptography supported on GPUs.
For the best of our knowledge, the presented work is the
first presenting a solution supported on GPUs and RNS to
accelerate EC cryptography.

Algorithm 1 Montgomery Ladder Algorithm

Require: EC pointG ∈ E(a, b, p), k-bit scalars.
Ensure: P = sG ∈ E(a, b, p).

1: P = G;
2: Q = 2G;
3: for i = k − 2 down to0 do
4: if si = 1 then
5: P = P + Q;
6: Q = 2Q;
7: else
8: Q = P + Q;
9: P = 2P ;

10: end if
11: end for

II. EC AND RNS BACKGROUND

This section provides the background on EC and RNS
arithmetic, as well as the application of both for EC point
multiplication.

A. EC cryptography overGF (p)

An EC E(a, b, p) over GF (p), with p a prime, is a
set composed by a point at infinityO and the points
Pi = (xi, yi) ∈ GF (p) × GF (p) that comply the following
equation:

y2
i = x3

i + axi + b, a, b ∈ GF (p). (1)

In order to obey smoothness conditions the parametersa
andb obey−

(

4a3 + 27b2
)

6= 0 mod p. By establishing the
addition and doubling operation over the EC points, and by
applying it recursively, it is possible to obtain the multiplica-
tion of a pointP by a scalars asQ = P +P +. . .+P = sP
(Elliptic Curve Discrete Logarithm Problem).

The EC point addition and doubling are performed with
operations over the underlying fieldGF (p) applied to the
points’ coordinates. It is known that it is possible to obtain
the xR coordinate of a point additionR = P + Q knowing
the x coordinates ofP , Q, and P − Q. This observation
motivated the proposal of a double and add algorithm that
does not require they coordinate, known as the Montgomery
Ladder for EC [4]. The Algorithm 1 details the Montgomery
Ladder algorithm behavior for obtainingP = sG, wheres is
a scalar with sizek (the most significant bit ofs, sk−1 = 1).

The operations over the coordinates, used to obtain the
EC point operations, require modular inversions, which is a
computationally demanding operation over a finite field. In
order to avoid a large number of inversions, the traditional
(affine) representation of the coordinates is replaced by
a projective representation. The projective representation
introduces an extra coordinateZ. To commute between
standard projective (X) and affine representation (x) of a

coordinate, the following correspondence holds:x ⇔ X/Z.
The projective versions of point addition and doubling to
support Algorithm 1 are the following (forsi = 0) [4]:

XP+Q = −4bZP ZQ(XP ZQ + XQZP) (2)

+ (XP XQ − aZP ZQ)2,

ZP+Q = xG(XP ZQ − XQZP)2;

X2P = (X2
P − aZ2

P)2 − 8bXP Z3
P ,

Z2P = 4ZP (X3
P + aXP Z2

P + bZ3
P).

For si = 1, the formula used to doubleP , is used to
doubleQ instead. As it can be concluded from Algorithm 1,
each iteration of the cycle has data dependencies from the
previous iteration, which is an extra difficulty towards the
design of a parallel algorithm. Moreover, the sizes of the
prime p for standardized EC are 192, 224, 256, 384, and
521 bits [5]. Thus, the operations over the coordinates would
require a datapath of the same size. In order to adapt
the coordinates size to the GPU processing datapath, we
propose use an RNS representation of the field elements.
This representation allows to parallelize the field operations
on the GPU, providing the required degree of parallelization
towards an efficient implementation.

B. RNS Overview

The RNS has its fundamentals in the Chinese Remainder
Theorem (CRT), which states that for a given basisBn

consisting ofn coprime integers(m1,m2, ...,mn) there is
a unique representation for the integerX < M in the form

xj = X mod mj , with 1 < j < n and M =
n
∏

i=1

mi the

dynamic range of the basisBn. Having two integersX and
Y in RNS representation, an operationZ = X ⊗Y modM
is equivalent tozj = xj ⊗ yj mod mj , where⊗ represents
addition, subtraction, or multiplication. In general, choosing
a basisBn such thatX ⊗ Y < M , the RNS representation
can be used to perform any of the aforementioned opera-
tions in the traditional representation system. As suggested
above, the advantage of using the RNS representation is
the possibility of split the computation inn parallel flows
(now onwards called channels), each one operating modulo
a different mi. The conversion from binary to the RNS
representation of an integerX can be accomplished by
computing the residuesxj directly and in parallel. For the
opposite conversion, there are two equivalent methods that
can be used: CRT and Mixed Radix System (MRS).

Due to the recursive nature of MRS based conversion,
it is not suitable for efficient GPU implementations [2].
The alternative method relies on the CRT definition for
computing the binary representation:

X =

n
∑

i=1

ξiMi mod M, ξi =

∣

∣

∣

∣

xi

Mi

∣

∣

∣

∣

mi

, (3)

whereMi = M/mi and |·|mi
denotes an operation modulo

mi. In order to avoid a reduction modulo a large number
M , the expression in (3) can be rewritten as:

X =

n
∑

i=1

ξiMi − αM, α < n. (4)

In (4) the operation moduloM is replaced by the subtraction
of a multiple ofM dependent ofα. Two main methods have
been used to compute the constantα. An extra modulime

can be established and all the operations performed not only
on the basisBn, but also on this extra moduli (Shenoy et.
al. [6]). Hence, the RNS representation of the integerX
is (x1, x2, . . . , xn, xe). Applying the reduction modulome

to (4), it is obtained:

xe =

∣

∣

∣

∣

∣

n
∑

i=1

ξiMi

∣

∣

∣

∣

∣

me

− |αM |me
. (5)

Rewriting (5),α can be obtained as:

|α|me
=

∣

∣

∣

∣

∣

n
∑

i=1

ξiMi − xe

∣

∣

∣

∣

∣

me

∣

∣M−1
∣

∣

me
. (6)

Sinceα < n, choosingme ≥ n results inα = |α|me
.

Other possible method to computeα involves a successive
fixed point approximation approach (Kawamura et. al. [7]).
In this method, (4) is rewritten as:

n
∑

i=1

ξi

mi

= α +
X

M
, (7)

and observe that knowingX < M then X
M

< 1:

α =

⌊

n
∑

i=1

ξi

mi

⌋

. (8)

Since (8) requires costly divisions bymi, an approximation
(α̂) to this expression is suggested:

α̂ =

⌊

n
∑

i=1

trunc(ξi)

2r
+ β

⌋

, (9)

where r is such that2r−1 < mi ≤ 2r, and trunc(ξi)
sets theq − r least significant bits ofξi to zero, with
q < r. The parameterβ is a corrective term that should be
carefully chosen such thatα = α̂. The authors state a set of
inequalities that allow to chose good values forβ, supported
on the maximum initial approximation errors, respectively:

ǫ = maxi

(

2r − mi

2r

)

, δ = maxi

(

ξi − trunc(ξi)

mi

)

. (10)

If a value of β is chosen such that0 ≤ n(ǫ + δ) ≤ β < 1
and0 ≤ X < (1 − β)M , thenα = α̂.

III. RNS MONTGOMERY MULTIPLICATION

In order to perform EC arithmetic with RNS, we should
not only provide a method for add and multiply, but also
to reduce. The Montgomery Modular Multiplication is an
efficient method that allows replacing the reduction modulo
an integerN (usually a prime) by a reduction modulo
R = 2k, which can be very easily accomplished operating
on the binary representation of an integer [8]. This method
employs a different domain for a field elementX, as
X̄ = XR mod N and computes̄Z = X̄Ȳ R−1 mod N .

The rational of the Montgomery modular multiplication
algorithm can also be applied to an RNS version, but using
the RNS representation it is no longer easy to reduce modulo
a power of two. Instead, defining a basisBn with dynamic
rangeM such thatM > N andgcd(M,N) = 1, it is easy to
reduce an element represented with the basisBn modulo the
dynamic rangeM . It only requires to reduce modulomi in
each one of the RNS channels. Hence, the RNS Montgomery
Multiplication version computēZ = X̄Ȳ M−1 modN . One
of the drawbacks of the RNS version is that it is not possible
to representM−1 in Bn. Thus it required to set another
basisB̃n with dynamic rangeM̃ such thatM̃ > M and
gcd(M̃,M) = 1.

With the modified Montgomery modular multiplication
algorithm we need to computeU = (T + QN)M−1, where
T = X̄Ȳ . It is easy to see that if we guaranteeT + QN ≡
0 mod M then U ≡ X̄Ȳ M−1 mod N . To ensure this, we
need to compute in the RNS channeli for the basisBn:

0 = ti + qini mod mi ⇔ qi = −ti(ni)
−1
mi

mod mi. (11)

After computing the value ofQ we can use one of the
methods referred in Section II-B to convert the value ofQ
to the basisB̃n. In this basis, for each RNS channeli we
compute:

ũi = (t̃i + q̃iñi)(M)−1

m̃i
mod m̃i. (12)

Afterwards, we convert the resultU from basisB̃n to basis
Bn (note thatU < 2N , since T < MN , QN < MN ,
and N < M). However, when computing the algorithms
based on the Montgomery multiplication, we need the inter-
mediary results to be bounded but not perfectly reduced.
Thus, consideringZ = U and applyingZ as input in
further multiplications we will always haveU < 2N and
the multiplication result will be correct moduloN , since
M > 4N .

In the RNS version of the Montgomery multiplication
algorithm, the most costly steps are the conversion between
basis, base extension, since all the other steps correspond
to independent operations in each RNS channel. Addressing
this problem, an offset during the conversion ofQ from Bn

to B̃n can be allowed [3]. As (4) suggests, the conversion
from an RNS basis implies the computation of a constantα
that multiplied by the dynamic rangeM correct an offset

in the conversion to maintain the result bounded byM .
In [3] it is suggested to use the CRT conversion without the
correction term introduced byα during the first conversion
(Bn to B̃n). With this approach, after the conversion we
obtain a value ofQ̂ = Q + αM that contains an offset.
With this offset, the value ofU is given by:

Û = (T + Q̂N)M−1 = (T + QN)M−1 + αN. (13)

Sinceα < n, Û < (n + 2)N . In order to feed this result
in subsequent multiplications we must choseM such that
M > (n + 2)2N , since this condition complemented with
the conditionX̄Ȳ = T < NM ensuresÛ < (n + 2)N .
In summary, with this method, we are able to avoid the
computation ofα during one conversion while keeping the
multiplication result bounded by an acceptable value (note
that n << N).

IV. EC PARALLEL ALGORITHM FOR GPU

The Algorithm 1 to multiply a pointG by the scalars,
can be split into two sections, the initialization section,and
the loop controlled by the scalar. The initialization computes
P = G andQ = 2G, which can be performed computing:

XP = xG, (14)

ZP = 1;

XQ = (x2
G + 3)2 − 8bxG,

ZQ = 4(x3
G − 3xG + b).

Each iteration of the main loop computes the operation in (2)
an appropriate scheduling of the operations presented in (2).
The schedule in Table I can be adopted to perform the EC
point multiplication; this schedule is only forsi = 0. The
loop schedule forsi = 1 can be obtained by commutating
P and Q in the loop section of Table I. The schedul-
ing is divided in multiplications and additions sets. Each
multiplication set is composed of several independent field
multiplication operations, and each addition set is composed
by field additions/subtractions and multiplications with small
constants.

A. General Purpose Processing on GPUs

Tesla is a typical architecture of a GPU which consists
of several general purpose scalar processors grouped in
multiprocessor cores that allows for general purpose pro-
cessing [9]. Furthermore, NVIDIA Compute Unified Device
Architecture (CUDA) allows programmers to easily program
NVIDIA GPUs for general purpose processing.

In order to exploit the parallel computation capabilities of
GPUs, CUDA provides different units of parallelism. The
smallest unit is the thread, each multiprocessor core is able
to run up to 32 simultaneous threads, which have their own
register file. A group of threads that run simultaneously
in a multiprocessor core is called warp, and the way the
threads in a warp are executed obeys a SIMD flow. The

threads are organized in a higher level parallelism abstraction
unit called block. Different blocks are independent and
can run in parallel by using the several multiprocessor
cores. A group of blocks that is executed in parallel in
the existent multiprocessor cores is called a grid. The way
a sequential algorithm can be parallelized in threads and
blocks depends on the multiprocessor local resources (shared
memory, cache, registers availability) and on the processing
dependencies.

In each multiprocessor there is a 16 Kbytes shared mem-
ory, and a 8 Kbytes symbols cache that can be used for read
only data (constants). Despite possible conflicts between
different threads, the memory inside a multiprocessor can
be accessed in the same amount a register can. There is also
a global memory, where the initialization data is written by
the GPU host. The global memory has a higher accessing
latency (40 to 60 times higher than the shared memory
latency [10]), thus its utilization and accessing patterns
should be judiciously set to avoid long stall periods by a
multiprocessor.

Each scalar processor has pipelined floating point adders
and multipliers, which can be used for integer arithmetic.
With CUDA a 24-bit multiplication is performed in the same
time than other 32-bit integer operations, such as addition.
A 32-bit integer multiplication is 4 times slower. Moreover,
it is not possible to obtain the 16 most significant bits of
a 24-bit multiplication, only the 32 least significant bits are
available.

B. Parallel Algorithms, type I and type II

Let us assume that the GPU inputs and outputs are in RNS
format, and that input data is already in the Montgomery
domain. These assumptions are supported on the fact that
the computational demanding core of the algorithm is in the
loop for computing the resultingx coordinate. A general
EC standardized by NIST is considered for a prime number
with 224 bits, wherea = −3 [5].

Regarding the proposed schedule, for each EC point
multiplication 11 variables are required to store intermediate
data. To perform modular operations among the RNS chan-
nels, the complete precision of a multiplication has to be
available in order to perform reduction. Hence, since we
can only obtain a 32-bit result from a multiplication we
must use input operands of 16-bits. Thus, each RNS channel
can compute 16-bit arithmetic modulo a basis element of
the form 2k − c, with k = 16 and c ≥ 0. The required
number on RNS channels depends on the range to represent
a field element. The number of EC point multiplications
performed in parallel in each multiprocessor depends on the
available memory required to efficiently store intermediate
data and constants. Several variables have to be loaded and
stored in each EC point multiplication steps for each RNS
channel. Thus, with this extensive memory transactions,
global memory should only be used to store the input data

Table I
OPERATIONS SCHEDULING(FOR si = 0).

Init.

mult. 1
A=x2

G

Loop

mult. 1

A=XP ZQ

mult. 2

D=DXQ

mult. 3

D=bD

B=bxG B=XQZP XQ=C2 ZQ=xZQ

add. C=A + 3 C=XP XQ ZQ=Z2

Q
B=XP B

mult. 2
C=C2 D=ZP ZQ A=A2 ZP =ZP E

A=xGA E=X2

P
B=FH

add. 2

XQ=C − 8B F=Z2

P
E=EXP

ZQ=4(A − 3xG + b) H=bZP F=XP F

add. 1

ZQ=A − B

add. 2

E=E + B − 3F

add. 3

XQ=XQ − 4D

XQ=A + B XP =A − 8B

C=C + 3D ZP =4ZP

A=E + 3F

and the final results. Hence, the number of multiplications
handled by each multiprocessor is constrained by the size
of the shared memory.

In the following subsections we propose two types of
algorithms. The type I algorithm is supported on a dynamic
range that allows for the computation of a complete loop in
Table I prior to the reduction. The dynamic range considered
in type II algorithm only supports the computation of a set
of multiplications and a set of additions in Table I, prior to
a reduction. In both algorithms, we store the projective co-
ordinates of the input point in global memory, and consider
the scalar a constant stored in constant memory.

1) Type I Parallel Algorithm:Algorithm Type I obtains
the resulting projective coordinatesXP , ZP , XQ, andZP

of the complete loop in Table I that are then multiplied by
the unityM mod N in the Montgomery domain, using the
method introduced in Section II, in order to obtain the partial
reduced values. We allow an offset in the base extension
from Bn to B̃n [3]. Considering the results in [2] that
compare the Shenoy et. al. and Kawamura et. al. methods
on a GPU to perform the base extension from̃Bn to Bn,
we follow the former one (based on (6)) because it achieves
better performance.

Let us find the required dynamic range to compute (2)
without having to reduce intermediary results modM . As
explained in Section III, the maximum value of an output,
in the base extension method, is smaller thanu = (n+2)N ,
wheren is the number of channels andN = p, with p the
prime that defines the underlying fieldGF (p). In order to
avoid obtaining negative values that would require reduction
modM (in (2) there are subtractions), new terms are added
to (2):

XP+Q = 8u5 − 4bZP ZQ(XP ZQ + XQZP) (15)

+ (XP XQ + 3ZP ZQ)2,

ZP+Q = xG(XP ZQ + u2 − XQZP)2;

X2P = (X2
P + 3Z2

P)2 + 8u5 − 8bXP Z3
P ,

Z2P = 4ZP (X3
P + 3u3 − 3XP Z2

P + bZ3
P).

Note that the inclusion of such constants do not change the

result modN . With these new terms the maximum value of
a projective coordinate is:

[XP+Q]max < 8u5 + 16u4, (16)

[ZP+Q]max < 4u5;

[X2P]max < 8u5 + 16u4,

[Z2P]max < 4u5 + 16u4.

Therefore, the dynamic rangeM has to complyM ≥ 8u5 +
16u4. We define a moduli set composed of2n elements of
the form216− ci, with ci an odd number,ci < cj for i < j,
andc0 = 1; an element216−cj is added to the set once it is
relative prime with all the other elements216 − ci with 0 <
i < j. The basisBn is obtained by selecting the elements
216−ci with eveni, and the basis̃Bn with the elements with
odd i. With this we assureM < M̃ . The required number
of elements in order to complyM ≥ 8u5 + 16u4 in each
base was found to ben = 73. The extra element used to
compute (6) is2k such that2k > n; note than any number
2k is relative prime toBn and B̃n.

Since we are also interested in low latency, an EC
point multiplication is accomplished in a single block of
threads, which runs in a single multiprocessor. The block has
associatedn threads, and each thread has one correspondent
element ofBn (mi) and B̃n (m̃i). There is one thread that
is associated with an elementme = 2k, being the thread
responsible for computing (6) and the required operations
mod me. Each thread performs arithmetic mod an element
of the basesBn andB̃n. Algorithm Type I presents the flow
of the computation held by each thread in a block, where
elementV represents any of the projective coordinatesXP ,
ZP , XQ, andZQ resulting from a single loop iteration, and
W = M mod N . The computation presented in Algorithm
Type I uses the following precomputed constants:

• M mod Bn; N mod [Bn,me,B̃n]; N−1 mod Bn;
• Mi mod Bn; M̃i mod B̃n; M−1 mod [me,B̃n];
• M̃−1 mod me; W = (M mod N) mod [Bn,me,B̃n].

Algorithm 2 Type I (main loop computation forn = 73).

Threads involved Computation for threadi

1 to n Table I scheduling (modmi) and (modm̃i)

1 to n vi = −wivi(ni)
−1
mi

|Mi|
−1

mi
mod mi

Synchronization

1 to n ṽi =

(

∣

∣

∣

∣

n
∑

j=1

vjMj

∣

∣

∣

∣

m̃i

ñi + ṽiw̃i

)

|M |−1

m̃i

1 to n ãi = ṽi

∣

∣M̃i

∣

∣

−1

m̃i

1 Table I scheduling (modme)

1 ve =

(

∣

∣

∣

∣

n
∑

j=1

vjMj

∣

∣

∣

∣

me

ne + vewe

)

|M |−1

me

1 αW =

(

∣

∣

∣

∣

n
∑

j=1

ṽjM̃j

∣

∣

∣

∣

me

− ve

)

∣

∣M̃
∣

∣

−1

me

Synchronization

1 to n vi =

∣

∣

∣

∣

n
∑

j=1

ṽjM̃j − αW M̃

∣

∣

∣

∣

mi

C. Type II Parallel Algorithm

The latency value for the Type I Algorithm would not
be practical in real applications (latency> 1s), as observed
from Table II. The main drawbacks of the Type I Algorithm
are related with the number of synchronizations, the number
and size of the divergent code sections (sections computed in
series), and with the complexity of computing the resultµ =
{

Mi mod m̃i, M̃i mod mi, Mi mod me, M̃i mod me

}

every time they are needed. Synchronization barriers and
divergence cannot be removed once (6) has to be computed,
which is a dependency for the next steps. The computation
of µ exhibits quadratic complexity, thus trading the required
dynamic range (RNS channels) by the number of times
the base extension algorithm is called may improve the
performance. Replacing this computation by table look-ups
will not be efficient since we would require2n(n + 1)
entries, (for 16-bit entries, 21,608 bytes are required, which
exceeds the shared memory capacity)

In Algorithm Type II only a multiplication and addition
set of the schedule presented in Table I is are computed in
each base extension. Since the multiplications in the set are
independent they can be computed simultaneously, and the
resultµ is computed only once and shared by the different
running multiplications threads.

Since we are interested in supporting also an addition
in one base extension, performing an analysis like the one
suggested in (15) for Table I, withu the smallest multiple
of N higher than an addition input, the following range has
to be achieved:

• for ZQ, in the initialization step, add. 2, result is
bounded by4(u + 4N);

• for XP , in the loop step, add. 4, result is bounded by

Algorithm 3 Alternative reduction algorithm

Require: z′ = z′H216 + z′L , m, c.
Ensure: z = z′ mod m.

1: while z′ > 2m − 1 do
2: z′ = cz′H + z′L;
3: end while
4: z = min(z′, z′ − m);
5: return z

9u.

By usingu = (n+2)N (see Section II (13), wheren is the
number of RNS channels, we get that9u > 4(u + 4N)
for n > 1. Since a minimumn = 14 is required to
represent a field element in 16-bit channels, the precision is
bounded by9u. Considering that the multiplication inputs
are bounded by9u, settingM > (9(n + 2))2N will bound
the multiplication output (addition input) tou = (n + 2)N ,
which is the bound from where we depart. The condition
M > (9(n + 2))2N results inn = 15.

The reduction operation over the RNS channels using the
C ’%’ operation is known to be very demanding in the GPU
platforms; evaluation of a simple program that performs
several logical operations mod a basis element using ’%’
in the GPU shows that 73% of the time is consumed
computing the reduction. Since a basis element has the form
m = 216−c, when we compute an operation we get a result
z′ = z′H216+z′L, and we want to obtainz = z′ modm. This
operation can be accomplished recurring to Algorithm 3.
Note that the step 4 of Algorithm 3 return the correct
result since we are considering unsigned arithmetic. The
maximum number of iterations in the loop is constrained by
the maximum value ofc. In the adopted basis, for computing
(m−1)2 only up to 2 iterations are required. This bounds the
required number of iterations to reduce after a multiplication,
which avoids the evaluation of loop conditions. Following
the same idea, for an additionz = (x + y) mod m
we can compute onlyz = min(x + y, x + y − m) and
for a subtractionz = (x − y) mod m we can compute
z = min(x−y, x−y+m). The computation of the minimum
corresponds to only one GPU instruction, and allows to
avoid conditions that can potentially create divergent sec-
tions of the program, thus serialization of the computation.

Considering Algorithm Type I, there are steps that apply
different constants that can be more efficiently applied if
merged into only one. These changes allow to save memory
and computation resources. The following summarizes the
constants replacement:

• New constantri = |niMi|
−1

mi
;

• New constantsi =

∣

∣

∣

∣

ñi

∣

∣

∣
M̃i

∣

∣

∣

−2

m̃i

∣

∣

∣

∣

m̃i

;

• New constantti =

∣

∣

∣

∣

|M |
−1

m̃i

∣

∣

∣
M̃i

∣

∣

∣

m̃i

∣

∣

∣

∣

m̃i

;

Algorithm 4 Type II, ver. 2, loopk computation (n = 15).

Threads involved Computation for threadi

1 to n zi = −xiyiri mod mi

Synchronization

1 to n ξ̃zi
=

(

∣

∣

∣

∣

n
∑

j=1

zjMj

∣

∣

∣

∣

m̃i

si + ξ̃xi
ξ̃yi

)

ti

1 ze =

(

∣

∣

∣

∣

n
∑

j=1

zjMj

∣

∣

∣

∣

me

ne + xeye

)

|M |−1

me

1 αz =

(

∣

∣

∣

∣

n
∑

j=1

ξ̃zj
M̃j

∣

∣

∣

∣

me

− ze

)

∣

∣M̃
∣

∣

−1

me

1 Compute set add.k operations modme

Synchronization

1 to n zi =

∣

∣

∣

∣

n
∑

j=1

ξ̃zj
M̃j − αzM̃

∣

∣

∣

∣

mi

1 to n Compute set add.k operations mod [mi/m̃i]

• Remove constants|ni|
−1

mi
, |Mi|

−1

mi
,
∣

∣

∣
M̃i

∣

∣

∣

−1

m̃i

, and|M |
−1

m̃i
;

• The operands̃x in the basisB̃n are stored as̃ξx =

x̃
∣

∣

∣
M̃i

∣

∣

∣

−1

m̃i

. Note that the results of this basis are not

needed to retrieve the final results, thus the algorithm
output remains in the same format.

The Kawamura et. al method for computingα in (4) can
be used instead of the Shenoy et. al method by computing (9)
as explained in Section II-B. In this paper we have to choose
r = 16. We have to compute the lower bound forβ from
the approximation error given by∆ = n(ǫ + δ), wheren is
the number of channels and:

ǫ = max

(

2r − k

2r

)

, δ = max

(

2r−q − 1

k

)

. (17)

with k any element ofBn or B̃n, andq the number of bits
that we truncate in the approximation. Then we choose a
value β such that∆ ≤ β < 1 and we must assureX <
(1 − β)M̃ , where X is the multiplication result bounded
by X < (n + 2)N , as previously pointed. In order to have
as small as possible dynamic ranges we are interested in
small β. Choosingq = 9, we get∆ = 0.063, and we can
chooseβ = ∆. Since (1 − β) > 1/2 and we already set
M > (9(n+2))2N , the conditionX < (1−β)M̃ hold. We
can define a constantΦ = ⌈2rβ⌉ and we can compute:

Γ =

n
∑

i=1

trunc(ξi) + Φ, (18)

After computingΓ we can obtainα = Γ/2r, which corre-
spond to a 16-bit right shift. With this method we avoid the
computations over the basisme andα is obtained as:

αz =

(

n
∑

i=1

ξ̃zi
+ Φ

)

/216. (19)

Table II
DIFFERENTVERSIONS’ L ATENCY SUMMARY.

Type Description Latency[ms]

I - 1800.2

II

constant mem. 263.4
shared mem. 264.8

µ look-up computing (shared mem.) 97.7
µ look-up precomputing (const. mem.) 112.0
optimized reduction method (Version S) 24.3

uses Kawamura et. al. method (Version K) 28.4

We get rid of the computation over the extra basisme,
significantly reducing the size of the divergent computation
section.

V. EXPERIMENTAL EVALUATION

In this subsection we discuss the implementation and
summarize the results for the different Algorithm types.
Relative assessment is also presented by considering related
art.

A. Implementation and Experimental Results

Table II presents a summary for the obtained latency
results. The Algorithm Type II without look-up tables for
the resultµ suggests a latency of 263.4 ms for the complete
point multiplication regardingless the data transfers. Wealso
exploited the effect of getting the required constants from
shared memory, copying them at a first moment, from the
constant memory, since shared memory allows up to 16
simultaneous accesses while constant memory only allows
1. However, the results of this modification did not showed
fruitful, since the latency was 0.5% higher (264.8 ms) as
Table II suggests.

A table look-up for the resultsµ is possible for the
Algorithm type II, since for n = 15 only 960 bytes
are required. We evaluated the look-up solution with the
look-up table stored in shared memory, computed at the
beginning, and a pre-computed table loaded in constant
memory. The obtained latency is 97.7 ms for the shared
memory look-up approach, and 112.0 ms (15% higher) for
the constant memory look-up as Table II suggests. These
results suggest that the look-up is a good option, and also
that the memory conflicts accessing constant memory begin
to have a significant impact while the latency is decreasing.

Introducing the optimized reduction method and con-
stants, the proposed Algorithm Type II provides a latency
of 24.3 ms as shown in Table II. The Kawamura et. al
method [7] (version K) did not result in the latency figure
improvement, since one EC point multiplication takes 28.4
ms to perform, approximately 17% higher than the version
supported in the Shenoy et. al. method [6] (version S) (see
Table II). The fact that the insertion of the Kawamura et. al.
method do not result in lower latency is not an expected

0 2 4 6 8 10 12 14 16 18 20
20

25

30

35

40

45

50

55

60

65

70
Latency vs # Multiplications, for 1 Block

Multiplications

L
a
te

n
c
y
 [
m

s
]

Shenoy et. al.

Kawamura et. al.

Figure 1. Latency for a different number of multiplications per block.

result, since the computation in the divergent part was
substantially reduced without affecting the other parts. This
result should be related with conflicts assessing the shared
memory banks.

Another important metric for the EC point multiplication
is the throughput. For an EC point multiplication we are
using 15 threads corresponding to the 15 RNS channels.
The CUDA framework allows for up to 512 threads per
multiprocessor, thus we can perform more than one EC point
multiplication per block, as long we have enough shared
memory. The different multiplications performed within the
block can share the same constants, including the look-up
tables. Regarding the shared memory constraint, we are able
to run up to 20 EC point multiplication within the same
block, which corresponds to 300 threads. Figure 1 depicts
the latency behavior while the number of multiplications per
block is increased. We compare the Version S (Shenoy et. al.
method) and Version K (Kawamura et. al. method) methods
since they present very close latency values for only one
EC point multiplication. As explained in Section IV-C, we
would expect a better performance for version K, which did
not occur for only one EC point multiplication. However, as
Figure 1 suggests, the version K performance is better for
more than 7 simultaneous EC point multiplications. This
result suggest that, despite the version K is not able to
provide lower latency than version S, it can provide higher
throughput. The reason for the version K optimizations to
pay off for a number of EC point multiplications bigger
than 7 can be related with simultaneous computation of the
divergent section of the code by the different EC point mul-
tiplications. Thus, for more multiplications, more advantage
can be taken from the shortened divergent section.

We can expand our throughput also by taking advantage
of the 30 existent multiprocessors in the employed GPU.
In other words, we can use more than 1 block. Figure 2
shows the version S latency while expanding the number

0 10 20 30 40 50 60
20

30

40

50

60

70

80

90

100

Blocks

L
a
te

n
c
y
 [
m

s
]

Latency vs # Blocks - Shenoy et. al.

1 Mult/Block
3 Mult/Block
6 Mult/Block
12 Mult/Block

Figure 2. Version S latency vs. the number of blocks.

of blocks, for different number of EC point multiplications
per block. From Figure 2 we observe the development of a
gap at the 30 block reference while increasing the number of
threads per block. The number of multiprocessors is 30, thus
this gap is related with the ability of the compiler to assign
different blocks to be computed simultaneously in the same
multiprocessor. While the number of multiplications per
block increases, the multiprocessors start being loaded with a
larger amount of computation demands, hence the compiler
starts splitting different blocks in sets of 30, computed in
series by the 30 multiprocessors, and the gap increases.

Figure 3 shows the version K latency and the throughput
behavior for different combinations in the number of blocks
and multiplications per block. From Figure 3 we can confirm
the existence of the gap at the 30 blocks mark in version K.
Another result of Figure 3 is that it is not worthwhile to use
more than 30 blocks to achieve higher throughputs, specially
for a large number of multiplications per block. The obtained
results suggest a maximum throughput of 8730 op/s for the
version S, and 9990 op/s for the version K. Version K can
compute 600 EC point multiplications in 60.3 ms.

All these results do not consider data transfers since the
data transfer latency is negligible in the overall latency
measures. In our measurements the data transfer delay is
at most 0.19% of the computation latency.

B. Related Art Comparison

The comparison with the related art, namely the exper-
imental results, is not straightforward since different GPU
platforms are employed, each one with different architectural
and performance characteristics.

In [2] different approaches are proposed and compared
to compute asymmetric cryptography, namely RSA and EC
cryptography on a Nvidia 8800GTS GPU. For EC point
multiplication, the authors only present results for a method
based on schoolbook-type multiplication with reduction

(a) Latency (b) Throughput

Figure 3. Version K latency and throughput vs. different combinations of blocks and multiplications per block.

modulo a Mersenne number. Due to the lack of inherent
parallelism in this method, an EC point multiplication is
performed in only one thread, and the number of threads per
block is limited to 36, due to shared memory restrictions.
The authors implementation suggest a latency of 305 ms and
a throughput of 1412.6 operations/s.

In [11] EC point multiplication is evaluated on a GPU
for integer factorization. In this work, the authors use Mont-
gomery representation for integers and set a multiprocessor
as an 8-way array capable of simultaneously computing 8
field operations. Then they divide the EC point multipli-
cation based on Non-Adjacent Form scalar recoding in 3
different instructions sets corresponding to double-double,
double-add, and add-double operations using mixed (pro-
jective+affine) coordinate representation. Then, the authors
map these sets in the 8-way array. Authors extrapolated a
throughput figure that is about 2.14 times higher than the
proposal in [2]. The authors do not present results for the
latency of an EC point multiplication.

In [10] is evaluated a C++ library (PACE) to support
modular arithmetic on an Nvidia 9800GX2 GPU. Using
this library, the authors present results for an EC point
multiplication. The Montgomery representation of integers
is used to perform multi-precision arithmetic using the
Finely Integrated Operand Scanning (FIOS) [8]. For 192-bit
precision, results suggest a throughput of 1972 operations/s.

Table III summarizes the related art performance figures
compared with the work herein proposed. We also present
results for our best implementation running on a 8800GTS
GPU, in order to perform a fair comparison with the other
related art figures. Although, due to register restrictions, we
were not able to compute the optimized implementation that
run on the 285 GTX platform. For the 8800 GTS test we
were only able to test an implementation that run up to
12 multiplications per block. For this platform, version K

Table III
RELATED ART COMPARISON FOR224-BIT EC POINT MULTIPLICATION .

Ref Platform Lat.[ms] T.put [op/s] Observations

[2] 8800 GTS 305 1412.6

[11] 8800 GTS - 3019 ECM results

[10] 9800 GTX - 1972

Ours 8800 GTS 30.3 3138 tp. II, 12 mul./block

Ours 285 GTX 24.3 9990 tp. II, 20 mul./block

offers better performance both in latency and throughput.
In order to compare to the 9800 GTX implementation, we
have to bear in mind that this GPU has more computational
resources than the 8800 GTS one.

With our implementation, we were able to beat in an order
of magnitude the latency figures of the related art. We were
not able to achieve similar gains in the throughput metric.
However, we were able to provide 37% more throughput
than [10] with our 8800 GTS implementation. We provide
3% more throughput than the extrapolation described in [11]
and 54% more throughput than [2].

VI. CONCLUSIONS

In this paper we have proposed parallel algorithms for EC
point multiplication on a GPU device by adopting a new
RNS approach. This RNS approach achieves higher level of
parallelism, thus higher performance in the massive parallel
architecture of the GPU. We tested different implementation
versions, that required different methods for the modular
multiplication based on RNS base extension and different
RNS precisions.

Experimental results suggest a maximum throughput of
9990 EC point multiplication per second and minimum
latency of 24.3 ms, using an Nvidia 285 GTX GPU. We
run our implementation in a lower end GPU for related
art comparison, obtaining up to an order of magnitude

reduction in latency and up to 54% throughput improvement.
The gains of the proposed implementation result from the
higher utilization of the multiprocessor cores, by runningup
to 20 simultaneous EC point multiplications in each GPU
multiprocessor.

REFERENCES

[1] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone,
and J. Phillips, “Gpu computing,”Proceedings of the IEEE,
vol. 96, no. 5, pp. 879–899, May 2008.

[2] R. Szerwinski and T. Guneysu, “Exploiting the Power of
GPUs for Asymmetric Cryptography,”Proc. Workshop on
Cryptographic Hardware and Embedded Systems CHES, pp.
79–99, Aug. 2008.

[3] J. Bajard, L. Didier, and P. Kornerup, “Modular Multiplication
and Base Extension in Residue Number Systems,”Proc. 15th
IEEE Symposium on Computer Arithmetic, ARITH’15, pp.
59–65, 2001.

[4] J. Bajard, S. Duquenne, and N. Meloni, “Combining Mont-
gomery Ladder for Elliptic Curves Defined Over Fp and RNS
Representation,”Research Report LIRMM, vol. 6041, 2006.

[5] N. I. of Standards and Technology, “Federal Information
Processing Standards Publication 186-3: Digital Signature
Standard,” June 2009.

[6] A. Shenoy and R. Kumaresan, “Fast Base Extension using a
Redundant Modulus in RNS,”IEEE Transactions on Com-
puters, vol. 38, no. 2, pp. 292–297, February 1989.

[7] S. Kawamura, M. Koike, F. Sano, and A. Shimbo, “Cox-
Rower Architecture for Fast Parallel Montgomery Multipli-
cation,”LNCS - Advances in Cryptology EUROCRYPT’2000,
pp. 523–538, January 2000.

[8] C. Kaya Koc, T. Acar, and J. Kaliski, B.S., “Analyzing
and comparing montgomery multiplication algorithms,”IEEE
Micro, vol. 16, no. 3, pp. 26–33, June 1996.

[9] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym,
“Nvidia tesla: A unified graphics and computing architecture,”
Micro, IEEE, vol. 28, no. 2, pp. 39–55, March-April 2008.

[10] P. Giorgi, T. Izard, and A. Tisserand, “Comparison of Modular
Arithmetic Algorithms on GPUs,”Proc. International Con-
ference on Parallel Computing - ParCo’09, October 2009.

[11] D. J. Bernstein, T.-R. Chen, C.-M. Cheng, T. Lange, and B.-
Y. Yang, “ECM on Graphics Cards,”LNCS - Advances in
Cryptology - EUROCRYPT’2009, pp. 483–501, April 2009.

