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Abstract

The Canetti–Krawczyk (CK) and extended Canetti–Krawczyk (eCK) security mod-
els, are widely used to provide security arguments for key agreement protocols. We dis-
cuss security shades in the (e)CK models, which make some practical attacks unconsi-
dered in security arguments. We propose a strong security model which encompasses
the eCK one. We also propose a new protocol, called Strengthened MQV (SMQV),
which in addition to provide the same efficiency as the (H)MQV protocols, is particu-
larly suited for distributed implementations wherein a tamper–proof device is used to
store long–lived keys, while session keys are used on an untrusted host machine. The
SMQV protocol meets our security definition under the Gap Diffie–Hellman assump-
tion and the Random Oracle model.

Keywords: authenticated key agreement, practical vulnerability, strengthened eCK
model, SMQV.

1 Introduction

Much of recent research on key agreement deals with provably secure key exchange. Since
this approach was pioneered by Bellare and Rogaway [1], different models was proposed [3,
5, 30, 7, 13, 16]. Among these models, the Canetti–Krawczyk (CK) [7] and extended
Canetti–Krawczyk (eCK) [16] models are considered as “advanced” approaches to capture
security of key agreement protocols; and security arguments for recent protocols are usually
provided in the (e)CK models.

Broadly, a security model specifies, among other things, what constitutes a security
failure, and what adversarial behaviors are being protected against. The aim is that a
protocol shown secure, in the model, confines to the minimum the effects of the considered
adversarial behaviors. In the CK and eCK models, session specific information leakages
are respectively captured using reveal queries on session states and ephemeral keys, which
stores session specific information; the adversary is supposed to interact with parties, and
to try to distinguish a session key from a randomly chosen value. A protocol is secure
if an adversary controlling communications between parties, cannot distinguish a session
key from a random value (unless it makes queries which overtly reveal the session key.)

Unfortunately, adversaries do not always behave as expected. When leakages on session
intermediate results are considered, (e)CK–secure protocols often fail in authentication;
and the widely accepted principle that an attacker should not be able to impersonate a
party, unless it knows the party’s static key is not achieved. This makes clearly desirable a
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security model, which captures intermediate results leakages resilience, in addition to the
security attributes considered in the (e)CK models.

From [29], we have a hybrid security definition, which considers leakages on interme-
diate results; however the model cannot be shown to encompass the CK or eCK models.
In addition, the security definition from [29] considers intermediate results and ephemeral
key leakages in separate settings. In this paper, we propose a strong security definition,
the strengthened eCK (seCK) model, which encompasses the eCK model, and consid-
ers intermediate results leakages. We also propose a new protocol called strengthened
MQV (SMQV). The SMQV protocol provides the same efficiency as the (H)MQV proto-
cols [17, 13]. In addition, because of its resilience to intermediate results leakages, SMQV
is particularly suited for implementations using a tamper–resistant device, to store the
static keys, together with a host machine on which sessions keys are used. In such SMQV
implementations, the non–idle time computational effort of the device can be securely
reduced to few non–costly operations.

This paper is organized as follows. In section 2 we discuss security shades in the
(e)CK models. The protocol P [23] is described as an example of protocol that is formally
CK–secure, but practically insecure, unless session identifiers are added with further re-
strictions. We also discuss the vulnerability of the NAXOS type protocols to ephemeral
Diffie–Hellman (DH) exponent leakages. In section 3 we present the strengthened eCK
(seCK) model. In section 4, we describe the SMQV protocol (which meets the seCK
security definition) and its building blocks. We conclude in section 5. The full security
analysis of SMQV is performed in the appendix.

The following notations are used in this paper: G denotes a multiplicatively written
cyclic group of prime order q generated by G, |q| is the bit length of q; G∗ is the set of
non–identity elements in G. For X ∈ G, the lowercase x denotes the discrete logarithm
of X in base G. The identity of a party with public key A is denoted Â (Â is supposed
to contain A.) If Â 6= B̂, we suppose that no substring of Â equals B̂. H is a λ–bit
hash function, where λ is the length of session keys, and H̄ is a l–bit hash function, where
l = (⌊log2 q⌋ + 1)/2. The symbol ∈R stands for “chosen uniformly at random in.” The
Computational Diffie–Hellman (CDH) assumption is supposed to hold in G; namely, given
U = Gu and V = Gv with U, V ∈R G∗, computing CDH(U, V ) = Guv is infeasible.

2 Practical Limitations in the (e)CK Models

In this section, we discuss security shades in the (e)CK models, and the related unconsid-
ered attacks. (Please, refer to [10, 33] for outlines and comparisons of the CK and eCK
models, or [7, 16] for details.)

Practical Inadequacy of the CK Matching Sessions Definition. In the CK model,
two sessions with activation parameters (P̂i, P̂j , s, role) and (P̂j , P̂s, s

′, role′) are said to be
matching if they have the same identifiers (s = s′.) The requirement about the identifiers
(id) used at a party is that “the session id’s of no two KE sessions in which the party
participates are identical” [7]. Session identifiers may, for instance, be nonces generated
by session initiators and provided to the peers through the first message in the protocol.
In this case, when each party stores the previously used identifiers and verifies at session
activation that the session identifier was not used before, the requirement that a party
never uses the same identifier twice is achieved.

Unfortunately, when a party, say B̂, has no mean to be aware of the sessions initiated at
the other parties, and intended to it, apart from receiving the initiator’s message, the CK
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Protocol 1 The protocol P

I) At session activation with parameters (Â, B̂, s), Â does the following:
(a) Create a session with identifier (Â, B̂, s, I).
(b) Choose x ∈R [1, q − 1].
(c) Compute X = Gx and tA = H2(Ba, I, s, Â, B̂,X).
(d) Send (B̂, Â, s,X, tA) to B̂.

II) At receipt of (B̂, Â, s,X, tA), B̂ does the following:
(a) Verify that X ∈ G∗.
(b) Create a session with identifier (B̂, Â, s,R).
(c) Compute σ = Ab and verify that tA = H2(σ, I, s, Â, B̂,X).
(d) Choose y ∈R [1, q − 1].
(e) Compute Y = Gy, tB = H2(σ,R, s, B̂, Â, Y ), and K = H(Xy, X, Y ).
(f) Destroy y and σ, and send (Â, B̂, s, I, Y, tB) to Â.
(g) Complete (B̂, Â, s,R) by accepting K as the session key.

III) At receipt of (Â, B̂, s, I, Y, tB), Â does the following:
(a) Verify the existence of an active session with identifier (Â, B̂, s, I).
(b) Verify that Y ∈ G∗.
(c) Verify that tB = H2(Ba,R, s, B̂, Â, Y ).
(d) Compute K = H(Y x, X, Y ).
(e) Destroy x, and complete (Â, B̂, s, I), by accepting K as the session key.

model insufficiently captures impersonations attacks. Consider, for instance, Protocol 1
(wherein H and H2 are digest functions); it is from [23], and is CK–secure under the Gap
Diffie–Hellman assumption [20] and the Random Oracle (RO) model [2]. As the session
state is defined to be the ephemeral DH exponent1, while the protocol P is (formally)
CK–secure, its practical security is unsatisfactory, unless session identifiers are added with
further restrictions. If session identifiers are nonces generated by initiators, the protocol P
practically fails in authentication. As an illustration, consider Attack 1, wherein the
attacker impersonates Â, exploiting a knowledge of an ephemeral DH exponent used at Â.

Attack 1 Impersonation Attack against P using ephemeral DH exponent leakage

I) At the activation of a session (Â, B̂, s, I), the attacker A does the following:
(a) Intercept Â’s message to B̂ (B̂, Â, s,X, tA).
(b) Perform a session SesssionStateReveal query on (Â, B̂, s, I) (to obtain x.)
(c) Send (Â, B̂, s, I, 1̄, 0|q|) to Â, where 1̄ is the identity element in G and 0|q| is the

string consisting of |q| zero bits (as 1̄ 6∈ G∗, Â aborts the session (Â, B̂, s, I).)
II) When A decides later to impersonate Â to B̂, it does the following:

(a) Send (B̂, Â, s,X, tA) to B̂.
(b) Intercept B̂’s message to Â (Â, B̂, s, I, Y, tB).
(c) Compute K = H(Y x, X, Y ).
(d) Use K to communicate with B̂ on behalf of Â.

The attacker makes B̂ run a session and derive a key with the belief that its peer is Â; in
addition, the attacker is able to compute the session key that B̂ derives; in practice, this

1[23] does not specify the information contained in a session state. But, since the adversary controls
communications between parties, we do not see another non–superfluous definition of a session state, with
which Protocol P can be shown CK–secure; as the protocol is insecure if the session state is defined to
be σ = Ab.
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makes the protocol fail in authentication.
The capture of impersonation attacks based on ephemeral DH leakages is insufficient in

the CK–model, unless the matching sessions definition is added with further restrictions.
The reason is that (in a formal analysis) an attackerA cannot use the session at B̂ (in
which it impersonates Â) as a test session, since the matching session is exposed, while
there is no guarantee that (in practice) B̂ would not run and complete such a session. If
matching sessions are defined using matching conversations, it becomes clear that Protocol
P is (formally and practically) insecure. Indeed, in this case, a leakage of an ephemeral
DH exponent in a session allows an attacker to impersonate indefinitely the session owner
to its peer in the exposed session.

On the NAXOS Transformation. In the eCK model [16], the ephemeral key of a ses-
sion is required to contain all session specific information; and all computations performed
to derive a session key have to deterministically depend on the ephemeral key, static key,
and communication received from the peer.

The design and security arguments of many eCK secure protocols, among which
CMQV [32], NAXOS(+, –C) [19, 23, 16], and NETS [18], use the NAXOS transforma-
tion [16], which consists in defining the ephemeral DH exponent as the digest of a randomly
chosen value and the static private key (of the session owner), and (unnaturally) destroy-
ing it after each use. The ephemeral key is then defined to be the random value. However,
from a practical perspective, it seems difficult to see how the NAXOS transformation pre-
vents leakages on the ephemeral DH exponents. And, in any environment, which does
not guarantee that leakages on DH exponents cannot occur, the NAXOS type protocols
security is at best unspecified.

Consider, for instance, Protocol 2, it is from an earlier version2 of [10]. If the ephemeral
keys are defined to be rA and rB (as in the NAXOS security arguments [16]) and the
signature scheme is secure against chosen message attacks, Protocol 2 can be shown eCK–
secure.

Protocol 2 Signed Diffie–Hellman using NAXOS transformation

I) The initiator Â does the following:
(a) Choose rA ∈R [1, q − 1], compute X = GH1(rA,a), and destroy H1(rA, a).
(b) Compute σA = Sig

Â
(B̂,X).

(c) Send (B̂,X, σA) to B̂.
II) B̂ does the following:

(a) Verify that X ∈ G∗.
(b) Verify that σA is valid with respect to Â’s public key and the message (B̂,X).
(c) Choose rB ∈R [1, q − 1], compute Y = GH1(rB ,b), and destroy H1(rB, b).
(d) Compute σB = Sig

B̂
(Y, Â,X).

(e) Send (Y, Â,X, σB) to Â.
(f) Compute K = H2(XH1(rB ,b)).

III) Â does the following:
(a) Verify that Y ∈ G∗.
(b) Verify that σB is valid with respect to B̂’s public key and the message (Y, Â,X).
(c) Compute K = H2(Y H1(rA,a)).

IV) The shared session key is K.

2http://eprint.iacr.org/cgi-bin/versions.pl?entry=2009/253, version 20090625.
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The protocol is however insecure if the ephemeral keys are defined to contain the
ephemeral DH exponents. As an adversary which (partially3) learns H1(rA, a) in a session
initiated at Â with peer B̂, can indefinitely impersonate Â to B̂. For this purpose, the
attacker replays to B̂ Â’s message in the session in which H1(rA, a) leakage happened
(namely (B̂,X, σA)), and computes the session key that B̂ derives, using H1(rA, a) and
the ephemeral public key Y from B̂.

3 Stronger Security

In this section, we describe the strengthened eCK model, which encompasses the eCK
model [16], provides stronger reveal queries to the attacker, and aims to an exhaustive
capture of session specific information leakages.

A common setting wherein (two–party) DH protocols are often implemented is that
of a server used together with a (computationally limited) tamper–resistant device, which
stores the long–lived secrets. In such a setting, safely reducing the non–idle time com-
putational effort of the device, is usually crucial for implementation efficiency. To reduce
the device’s non–idle time computational effort, ephemeral keys can be computed on the
device in idle–time or on the host machine (when the implemented protocol is ephemeral
DH exponent leakage resilient.)

In many DH protocols, the intermediate results computation is more costly than that
of the ephemeral public key; for these protocols ((C, FH, H)MQV [17, 32, 28, 13, 14]
or NAXOS(+, –C) [19, 23, 16], for instance) implementations efficiency is significantly
enhanced, when the ephemeral keys are computed on the device, while the intermediate
results and session keys are computed on the host machine. Unfortunately the security
of the (e)CK–secure protocols, when leakages on the intermediate results are considered
is at best unspecified. A security definition which captures attacks based on intermediate
result leakages is clearly desirable. The model we propose captures such attacks, together
with the attacks captured in the (e)CK models.

Session. We suppose n 6 L(|q|) (for some polynomial L) parties P̂i=1,··· ,n (supposed
to be probabilistic polynomial time machines) and a certification authority (CA) trusted
by all parties. The CA is only required to verify that public keys are valid ones (i.e.,
public keys are only tested for membership in G∗; no proof of possession of corresponding
private keys is required.) Each party has a certificate binding its identity to its public
key. A session is an instance of the considered protocol, run at a party. A session at Â
(with peer B̂) can be created with parameter (Â, B̂) or (B̂, Â, in), where in is a incoming
message; Â is the initiator if the creation parameter is (Â, B̂), otherwise the responder.
At session activation, a session state is created to contain the information specific to the
session.

For the two–party DH protocols, each session is denoted with an identifier (Â, B̂,X, ⋆, ς),
where Â is the session holder, B̂ is the peer, X is the outgoing message, ς indicates the
role of Â in the session (initiator (I) or responder (R)), and ⋆ is the incoming message Y
if it exists, otherwise a special symbol meaning that an incoming message is not received
yet; in that case, when Â receives the public key Y, the session identifier is updated to
(Â, B̂,X, Y, ς). Two sessions with identifiers (Â, B̂,X, Y, I) and (B̂, Â, Y,X,R) are said

3If an adversary partially learns H1(rA, a), it recovers the remaining part, using Shanks’ baby step
giant step algorithm [31] or Pollard’s rho algorithm [31], if the bits it learns are the most significant ones,
or tools from [11] if the leakage is on middle–part bits; recovering H1(rA, a) form partial leakage requires
some extra computational effort.
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to be matching. Notice that the session matching (B̂, Â, Y,X,R) can be any session
(Â, B̂,X, ⋆, I); as X,Y ∈R G∗, a session cannot have (except with negligible probability)
more than one matching session.

Adversary and Security. The adversary A, is a probabilistic polynomial time machine;
outgoing messages are submitted to A for delivery (A decides about messages delivery).
A is also supposed to control session activations at each party via the Send(P̂i, P̂j) and
Send(P̂j , P̂i, Y ) queries, which make P̂i initiate a session with peer P̂j , or respond to the
(supposed) session (P̂j , P̂i, Y, ⋆, I). We suppose that the considered protocol is imple-
mented at a party following one of the approaches hereunder. We suppose also that at
each party an untrusted host machine is used together with a device. Basing our model on
these implementation approaches does not make it specific; rather, this reduces the gap
that often exists between formal models and practical security (fault injection attacks, for
instance, are unconsidered in the (e, se)CK models.) Such modeling techniques, which
take into account hardware devices and communication flows between components, was
previously used in [6].
Approach 1. In this approach, the static keys are stored on the device (a smart–card, for

instance) the ephemeral keys are computed on the host machine, passed to the smart–
card together with the incoming public keys; the device computes the session key, and
provides it to the host machine (application) for use. The information flow between the
device and the host machine is depicted in Figure (1a). This implementation approach
is safe for eCK–secure protocols, when ephemeral keys are defined to be ephemeral
DH exponents, as a leakage on an ephemeral DH exponent does not compromise the
session in which it is used. In addition, when an attacker learns a session key, it gains
no useful information about the other session keys.

Approach 2. Another approach, which has received less attention in the formal treat-
ment of DH protocols, is when the ephemeral keys, and top level intermediate results
are computed on the device, and the host machine is provided with some intermedi-
ate results IR with which it computes the session key. As the computation of the
intermediate results is often more costly than that of the ephemeral public keys, im-
plementation efficiency is often significantly enhanced using this approach. Naturally,
this comes with the requirement that leakages on the intermediate results should not
compromise any unexposed session.

Host Machine

Card Reader Smart–Card

x,X, Y, B̂

x,X, Y, B̂ a, Â

· · ·
K

K

(a) Implementation Approach 1

Host Machine

Card Reader Smart–Card

Y, B̂

Y, B̂ x,X, a, Â

· · ·
IR

IR

(b) Implementation Approach 2

Figure 1: Implementation Approaches

We define two sets of queries, modeling leakages that may occur on either implementation
approaches. We consider leakages on ephemeral and static private keys, and also on
any intermediate (secret) value which evaluation requires a secret information. As the
adversary can compute any information which evaluation requires only public information,
considering leakages on such data is superfluous.

6



In Set 1, which models leakages in the first implementation approach, the following queries
are allowed.
• EphemeralKeyReveal(session): this query models leakages on ephemeral DH exponents.
• CorruptSC(party): this query models an attacker which (bypasses the eventual tamper

protection mechanisms on the device, and) gains read access to the device’s private
memory; it provides the attacker with the device owner’s static private key.

• SessionKeyReveal(session): when the attacker issues this query on an already com-
pleted session, it is provided with the session key.

• EstablishParty(party): with this query, the adversary registers a static key on behalf of
a party; (as the adversary controls communications) from there, the party is supposed
totally controlled by A. A party against which this query is not issued is said to be
honest.

In Set 2, which models leakages on the second implementation approach, the following
queries are allowed; the definitions remain unchanged for queries belonging also to Set 1.
• For any node in the intermediate results, which computation requires a secret value,

a reveal query is defined to allow leakage on the information computed in this node.
These queries models leakages that may occur on intermediate results.

• SessionKeyReveal(session).
• EstablishParty(party).
• CorruptSC(party).

Before defining the seCK security, we define the session freshness notion. Test queries can
only be performed on fresh sessions.

Definition 1 (Session Freshness). Let Π be a protocol, and Â and B̂ two honest parties,
sid the identifier of a completed session at Â with peer B̂, and sid′ the matching session’s
identifier. The session sid is said to be locally exposed if one of the following holds.
• A issues a SessionKeyReveal query on sid.
• The implementation at Â follows the first approach and A issues an EphemeralKeyRe-

veal query on sid and a CorruptSC query on Â.
• The implementation at Â follows the second approach and A issues an intermediate

result query on sid.
The session sid is said to be exposed if (i) it is locally exposed, or (ii) its matching session
sid′ exists and is locally exposed, or (iii) sid′ does not exist and A issues a CorruptSC

query on B̂. An unexposed session is said to be fresh.

Our session freshness conditions match exactly the intuition of the sessions one may
hope to protect. In particular, it lowers (more than in the eCK model) the necessary
adversary restrictions for any reasonable security definition. Notice that only the queries
corresponding to the implementation approach followed by a party can be issued on it.

Definition 2 (Strengthened eCK Security). Let Π be a protocol, such that if two hon-
est parties complete matching sessions, then they both compute the same session key.
The protocol Π is said to be seCK–secure, if no polynomially bounded adversary can dis-
tinguish a fresh session key from a random value, chosen under the distribution of session
keys, with probability significantly greater than 1/2.

Forward Secrecy. As shown in [13], no two–pass key exchange protocol can achieve for-
ward secrecy4. Indeed, our security definition captures weak forward secrecy, which (loosely

4Some authors, [13] for instance, use the term ‘perfect forward secrecy’, but we prefer ‘forward secrecy’
to avoid a confusion with (Shannon’s) ‘perfect secrecy’.

7



speaking) is: any session established without an active involvement of the attacker remains
secure, even when the implicated parties static keys are disclosed. To capture forward se-
crecy, we have to modify the last item in the exposed session definition (Definition 1) to
“sid′ does not exist and A issue a CorruptSC query on B̂ before the completion of sid.”
Although if the protocol we propose can be added with a third message, and yield a pro-
tocol which (provably) provides forward secrecy, in the continuation, we work with the
security definition without forward secrecy, and focus on two–pass DH protocols.

Relations between the seCK and eCK models. The seCK model is a strengthening
of the eCK model. The eCK and seCK session identifiers and matching sessions definitions
are the same. When the adversary issues the CorruptSC query at a party, it is provided
with the party’s static key; the CorruptSC query is the same as the eCK StaticKeyReveal
query. For a session between two parties, say Â and B̂, following the first implementation
approach, the seCK session freshness definition reduces to the eCK freshness. By assuming
that all parties follow the first implementation approach, the seCK–security definition
reduces to the eCK one; the seCK model encompasses the eCK one.

Proposition 1. Any seCK–secure protocol is also an eCK–secure one.

The seCK model also separates clearly from the eCK model. The eCK model does
not consider leakages on intermediate results; and this makes many of the eCK secure
protocols insecure in the seCK model. For instance, in the CMQV protocol (shown eCK–
secure), an attacker which learns an ephemeral secret exponent in a session, can indefinitely
impersonate the session owner; the same holds for the (H)MQV protocols [28, 29]. It is
not difficult to see that NAXOS cannot meet the seCK security definition. The protocols 1
and 2 from [12, pp. 6, 12] (shown eCK–secure) fail in authentication when leakages one
the intermediate results are considered. Indeed an attacker, which learns the ephemeral
secret exponents s1 = x+a1 and s2 = x+a2 in a session at Â, can indefinitely impersonate
Â to any party. Notice that the attacker cannot compute Â’s static key from s1 and s2,
while it is not difficult to see that leakages on s1 (or s2) and the ephemeral key, in the
same session imply Â’s static key disclosure.

The seCK model is practically stronger than the CK model [7]. Key Compromise Im-
personation resilience, for instance, is captured in the seCK model while not in CK model.
As shown in [9], and illustrated in section 2 with Protocol P, the CK model is enhanced
when matching sessions are defined using matching conversations. In addition, the seCK
reveal query definitions go beyond the usual CK session state definition (ephemeral DH
exponents.) Compared to the CKHMQV model5 [13], the reveal query definitions are en-
hanced in the seCK model to capture attacks based on intermediate result leakages. In the
HMQV security arguments [13, subsection 7.4], the session state is defined to contain the
ephemeral DH exponent6; the HMQV protocol does not meet the seCK–security [28, 29].

5CKHMQV is the variant of the CK model in which the HMQV security arguments are provided; however,
it seems that the aim of [13] was not to propose a new model, as it refers to [7] for details [13, p. 9], and
considers its session identifiers and matching sessions definition (which make the CK and CKHMQV models
incomparable) as consistent with the CK model [13, p. 10]. See [10] for a comparison between the CKHMQV

and (e)CK models.
6In [13, subsection 5.1], the session state is defined to contain the ephemeral public keys, but this

definition is superfluous, as the adversary controls communications between parties.
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4 The Strengthened MQV Protocol

In this section, we present the strengthened MQV protocol, and its building blocks, to show
that the seCK security definition is useful, and not limiting; as seCK–secure protocols can
be built with usual building blocks. We start with the following variants of the FXCR and
FDCR signature schemes [28]. The security of the FXCR–1 and FDCR–1 schemes can be
shown with arguments similar to that of the FXCR and FDCR schemes [28, 29].

Definition 3 (FXCR–1 Signature). Let B̂ be a party with public key B ∈ G∗, and Â
a verifier; B̂’s signature on a message m and challenge X provided by Â (x ∈R [1, q − 1]
is chosen and kept secret by Â) is Sig

B̂
(m,X) = (Y,XsB ), where Y = Gy, y ∈R [1, q − 1]

is chosen by B̂, and sB = ye+ b, where e = H̄(Y,X,m). And, Â accepts the pair (Y, σB)
as a valid signature if Y ∈ G∗ and (Y eB)x = σB.

Proposition 2 (FXCR–1 Security). Under the CDH assumption in G and the RO model,
there is no adaptive probabilistic polynomial time attacker, which given a public key B,
a challenge X0 (B,X0 ∈R G∗), together with hashing and signing oracles, outputs with
non–negligible success probability a triple (m0, Y0, σ0) such that:
(1) (Y0, σ0) is a valid signature with respect to the public key B, and the message–challenge

pair (m0, X0); and
(2) (Y0, σ0) was not obtained from the signing oracle with a query on (m0, X0).

Definition 4 (FDCR–1 Scheme). Let Â and B̂ be two parties with public keys A,B ∈ G∗,
and m1,m2 two messages. The dual signature of Â and B̂ on the messages m1,m2 is
DSig

Â,B̂
(m1,m2, X, Y ) = (XdA)ye+b = (Y eB)xd+a, where X = Gx and Y = Gy are

chosen respectively by Â and B̂, d = H̄(X,Y, m1,m2), and e = H̄(Y,X,m1,m2).

Proposition 3 (FDCR–1 Security). Let A = Ga, B,X0 ∈R G∗ (A 6= B.) Under the RO
model, and the CDH assumption in G, given a,A,B,X0, a message m10

, a hashing oracle,
together with a signing oracle (simulating B̂’s role), no adaptive probabilistic polynomial
time attacker can output, with non–negligible success probability a triple (m20

, Y0, σ0) such
that:
(1) DSig

Â,B̂
(m10

,m20
, X0, Y0) = σ0; and

(2) (Y0, σ0) was not obtained from the signing oracle with a query on some (m′
1, X

′) such
that X0 = X ′ and (m′

1,m
′
2) = (m10

,m20
), where m′

2 is a message returned at signature
query on (m′

1, X
′); (m10

,m20
) denotes the concatenation of m10

and m20
.

The strengthened MQV protocol follows from the FDCR–1 scheme; a run of SMQV is
as in Protocol 3. The execution aborts if any verification fails. The shared secret
σ is the FDCR–1 signature of Â and B̂, on challenges X,Y and messages Â, B̂ (the
representation of Â and B̂’s identities.) The parties identities and ephemeral keys are used
in the final digest computation to make the key replication resilience security attribute
immediate (and also to avoid unknown key share attacks.) A run of SMQV requires
2.5 times a single exponentiation (2.17 times a single exponentiation when the multiple
exponentiation technique [21, Algorithm 14.88] is used); this efficiency equals that of the
remarkable (H, FH)MQV protocols. SMQV provides all the security attributes of the (C,
H)MQV protocols, added with ephemeral secret exponent leakage resilience.

Moreover, suppose an implementation of SMQV or (C, H)MQV using an untrusted7

host machine together with a device; and suppose that the session keys are used by some
applications running on the host machine, and that that the ephemeral keys are computed

7There are many reasons for not trusting the host machine: bogus or trojan software, viruses, etc.
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Protocol 3 The Strengthened MQV Protocol

I) The initiator Â does the following:
(a) Choose x ∈R [1, q − 1] and compute X = Gx.
(b) Send (Â, B̂,X) to the peer B̂.

II) At receipt of (Â, B̂,X), B̂ does the following:
(a) Verify that X ∈ G∗.
(b) Choose y ∈R [1, q − 1] and compute Y = Gy.
(c) Send (B̂, Â, Y ) to Â.
(d) Compute d = H̄(X,Y, Â, B̂) and e = H̄(Y,X, Â, B̂).
(e) Compute sB = ye+ b mod q and σ = (XdA)

sB .
(f) Compute K = H(σ, Â, B̂,X, Y ).

III) At receipt of (B̂, Â, Y ), Â does the following:
(a) Verify that Y ∈ G∗.
(b) Compute d = H̄(X,Y, Â, B̂) and e = H̄(Y,X, Â, B̂).
(c) Compute sA = xd+ a mod q, and σ = (Y eB)sA .
(d) Compute K = H(σ, Â, B̂,X, Y ).

IV) The shared session key is K.

on the device in idle–time. This idle–time pre–computation seems common in practice [27]
(and possible in both the (C, H)MQV and SMQV protocols.) But, as (C, H)MQV is
not ephemeral secret exponent leakage resilient [28, 29], the ephemeral secret exponents
(sA = x + da or sB = y + eb) cannot be used on the untrusted host machine. The
exponentiation σ = (Y Be)sA = (XAd)sB has to be performed on the device in non idle–
time. In contrast, for SMQV, σ = (Y eB)sA = (XdA)sB can be computed on the host
machine, after the ephemeral secret exponent is computed on the device. Because the
session key is used on the host machine, and a leakage of only the ephemeral secret
exponent, in a SMQV session, does not compromise any other session; there is no need to
protect the ephemeral secret exponent more than the session key. In SMQV, the non–idle
time computational effort of the device reduces to few non–costly operations (one integer
addition, one integer multiplication, and one digest computation), while for (C, H)MQV
at least one exponentiation has to be performed on the device in non idle–time.

Table 1: Security and Efficiency Comparison between SMQV and other DH protocols.

Protocol Security Assumptions NC NICE 1 NICE 2

CMQV [32] eCK GDH 3E 1E 1E
FHMQV [29] CKFHMQV GDH 2.5E 1E 1D + 1A + 1M
HMQV [13] CKHMQV GDH, KEA1 2.5E 1E 1E
MQV [17] – – 2.5E 1E 1E
NAXOS [16] eCK GDH 4E 3E 3E
NAXOS–C [23] ceCK GDH 4E 3E 3E
SMQV seCK GDH 2.5E 1E 1D + 1A + 1M

Table 1 summarizes the comparisons between SMQV and some other DH protocols.
All the security reductions are performed using the Random Oracle model [2]; incom-
ing ephemeral keys are validated8. KEA1 stands for “Knowledge of Exponent Assump-

8Ephemeral key validation is voluntarily omitted in the HMQV design [13], but the HMQV protocol is
known to be insecure if ephemeral keys are not validated [22]
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tion” [4], CDH and GDH stand respectively for “Computational DH” and “Gap DH” as-
sumptions [25]. The ‘A’, ‘D’, ‘E’, and ‘M’ stand respectively for integer addition, digest
computation, exponentiation, and integer multiplication. The NC column indicates the
efficiency naive count (i.e., without optimizations from [21, Algorithm 14.88] and [24]);
NICE 1 and NICE 2 indicate the non–idle time computational effort of the device in the
two approaches (when ephemeral keys are computed in idle–time.)

The MQV protocol has no security reduction9. The FHMQV security arguments are
provided in a model which considers intermediate results and ephemeral key leakages in
two separate settings; the model implicitly assumes that all parties follow the same im-
plementation approach, and cannot be shown to encompass the CK or eCK models. In
contrast, the seCK model considers also the security of sessions between parties following
different implementation approaches, and its matching sessions definition makes it encom-
pass the eCK model. The CMQV and NAXOS protocols are shown eCK–secure, they
both use the NAXOS transformation.

The NAXOS–C security arguments are provided in a variant of the eCK model, called
combined eCK model (ceCK) [23], geared to the post–specified peer model. In the post10

model, the identity of a peer may be unknown at session activation (it is learned during the
protocol execution.) It is worthwhile to mention that, the separation between the pre and
post models security is unclear. The protocol P claimed secure in the pre model, and not
executable in the post model (unless “modified in a fundamental way”) [23, section 3.1], is
insecure in the pre model, if the considered security model is strong enough. The HMQV
protocol is executable in the post model, but claimed insecure (in the post– model.) In
fact, the proposed attack [23, section 3.2] cannot be performed in practice; not because it
requires an important on–line computational effort (260 operations, when the order of G is a
160–bit prime), but since the step (2.c) of the attack cannot be performed without changing
the M̂ found at the step (2.b). In practice, M̂ (is a certificate, and) is defined to contain
M (which is provided to the certification authority at certificate issuance), and when M
is changed, so is M̂ (notice also that changing M requires another certificate issuance);
and then, after the step (2.c) of the attack, the claimed equality between H̄(X, M̂) and
H̄(X, B̂) does not hold. For the Σ0 protocol, secure in the post model, while insecure in
the pre one [23, section 3.3], the model in which it is shown secure in the post model [8]
is not strong enough. It is not difficult to see, for instance, that the Σ0 protocol is both
eCK and ceCK insecure.

The SMQV protocol provides more security attributes than the NAXOS(+, –C), (C,
H)MVQ protocols, in addition to allow particularly efficient implementations, in environ-
ments wherein a tamper proof device is used to store private keys.

Proposition 4. Under the GDH assumption in G and the RO model, the SMQV protocol
is seCK–secure.

5 Concluding Remarks

We discussed security shades in the (e)CK moddels. We illustrated the limitations of the
CK matching sessions definition; and the insecurity of the NAXOS type protocols when
leakages on ephemeral DH exponents are considered. We proposed a new security model,

9We are aware of [15], which shows that (under the RO model and the CDH assumption) the MQV
variant wherein d and e are computed as H̄(X) and H̄(Y ), is secure in a model of their own design. Notice
that, for this variant, an attacker which finds x0 ∈ [1, q − 1] such that H̄(Gx0 ) = 0, can impersonate any

party to any other party. Finding such an x0 requires O(2l) digest computations.
10The terms ‘pre–specified peer’ and ‘post–specified peer’ are respectively shortened to ‘pre’ and ‘post’.
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the strengthened eCK model, which encompasses the eCK one, and practically captures
the security attributes considered in the CK model. We proposed the Strengthened MQV
protocol, which in addition to provide the same efficiency as the (H)MQV protocols,
is particularly suited for distributed implementation environments using an untrusted
host machine and a tamper–resistant device; in such an environment, the non–idle time
computational effort of the device, in a SMQV implementation, reduces to few non–costly
operations.

In a forthcoming stage, we will be interested in the enhancement of existing protocols
to meet the seCK security definition, and the extension of the strengthened eCK model
to consider a wider class of attacks.
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A Security Analysis of the SMQV Protocol

In accordance with our security model, the following session activation queries are allowed.
• Send(Â, B̂), which makes Â perform the step I) of Protocol 3, and create a session

with identifier (Â, B̂,X, ⋆, I).
• Send(Â, B̂,X), which makes B̂ perform the step II) of Protocol 3, and create a session

with identifier (B̂, Â, Y,X,R).
• Send(Â, B̂,X, Y ), which makes Â update the session identifier (Â, B̂,X, ⋆, I) (if any)

to (Â, B̂, X, Y, I) and perform the step III) of SMQV.
The queries in Set 1 are the following: EphemeralKeyReveal, CorruptSC, SessionKeyRe-

veal, and EstablishParty. In Set 2, the allowed queries are: (i) CorruptSC, to obtain the
static private key of a party; (ii) SessionKeyReveal, to obtain a session key; (iii) SecretEx-
ponentReveal, to obtain a secret exponent s = xd+a or ye+b; (iv) SessionSignatureReveal,
to obtain a session signature σ; (v) EstablishParty(party) to register a static public key on
behalf of a party.

Recall that an algorithm is said to be a Decisional Diffie–Hellman Oracle (DDHO) if
on input G,X = Gx, Y = Gy, and Z ∈R G, it outputs 1 if and only if Z = Gxy. And
the Gap DH (GDH) assumption [25] is said to hold in G∗ if given a DDHO, there is no
polynomially bounded algorithm, which solves the CDH problem in G, with non–negligible
success probability.

A.1 Proof of Proposition 4.

It is immediate from the definition of SMQV that if two honest parties complete matching
sessions, they compute the same session key. Suppose that A succeeds with probability
significantly greater than 1/2 in distinguishing a fresh session key from a random value.
Distinguishing a fresh session key from a random value can be performed only in one of
the following ways.
Guessing attack: A guesses correctly the test session key.
Key replication attack: A succeeds in making two non–matching sessions yield the

same session key, it then issues a session key reveal query on one of the sessions, and
uses the other as test session.

Forging attack: A computes the session signature σ, and issues a digest query to get
the session key.

Under the RO model, guessing and key replications attacks cannot succeed, except with
negligible probability. We thus suppose that A succeeds with non–negligible probability in
forging attack. Let E be the event “A succeeds in forging the signature of some fresh session
(that we designate by sid0 = (Â, B̂,X0, Y0, ς)).” The event E divides in E.1: “A succeeds
in forging the signature of a fresh with matching session,” and E.2: “A succeeds in forging
the signature of a fresh without matching session.” It suffices to show that neither E.1 nor
E.2 can happen with non–negligible11 probability.

Analysis of E.1

Suppose that E.1 occurs with non–negligible probability; at least one of the following
events occurs with non–negligible probability.
E.1.1: “E.1 ∧ both Â and B̂ follow the first implementation approach”;

11A function F with parameter ξ is said to be negligible, if for every polynomial L, and every sufficiently
large ξ, F(ξ) < (|L(ξ)|)−1; otherwise F is said to be non–negligible.
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E.1.2: “E.1 ∧ both Â and B̂ follow the second implementation approach”;
E.1.3: “E.1 ∧ Â and B̂ follow different implementation approaches.”
We have to show that none of E.1.1, E.1.2 and E.1.3 can happen, except with negligible
probability.

Analysis of E.1.1. Since the test session is required to be fresh, the strongest queries
that A can perform on Â, B̂, the test session, and its matching session are (i) CorruptSC

queries on both Â and B̂; (ii) EphemeralKeyReveal queries on both sid0 and sid′
0; (iii) a

CorruptSC query on Â and an EphemeralKeyReveal query on sid′
0; (iv) an Epheme-

ralKeyReveal query on sid0 and a CorruptSC query on B̂. It thus suffices to show that
none of the following events can happen with non–negligible probability (since from any
polynomial time machine, which succeeds in E.1.1 and performs weaker queries, one can
build a polynomial time machine which succeeds with the same probability, and performs
one the strongest allowed queries.)
E.1.1.1: “E.1.1 ∧ A issues CorruptSC queries on both Â and B̂”;
E.1.1.2: “E.1.1 ∧ A issues EphemeralKeyReveal queries on both sid0 and sid′

0”;
E.1.1.3: “E.1.1 ∧ A issues a CorruptSC query on Â and an EphemeralKeyReveal query

on sid′
0”;

E.1.1.4: “E.1.1 ∧ A issues an EphemeralKeyReveal query on sid0 and a CorruptSC query
on B̂.”

Event E.1.1.1. Suppose that E.1.1.1 occurs with non–negligible probability, using A we
build a polynomial time CDH solver S, which succeeds with non–negligible probability.
The solver interacts with A as follows.
(1) S simulates A’s environment, with n parties P̂1, . . . , P̂n, and assigns to each P̂k a

random static key pair (pk, Pk = Gpk), together with an implementation approach
indication. We only suppose that the number of parties following the first implemen-
tation approach is n1 > 2. S starts with two empty digest records H1 and H2. Since
A is polynomial (in |q|), we suppose that each party is activated at most m times
(m,n 6 L(|q|) for some polynomial L.) S chooses i, j ∈R {k | P̂k follows the first
implementation approach}, and t ∈R [1,m] (with these choices, S is guessing the test
session.) We refer to P̂i as Â and P̂j as B̂.

(2) At H̄ digest query on some ̺ = (X,Y, P̂l, P̂m), S answers as follows: if there exists
some d such that (̺, d) already belongs to H1, S returns d; else, S provides A with
d ∈R {0, 1}l, and appends (̺, d) to H1.

(3) At H digest query on some ψ = (σ, P̂l, P̂m, X, Y ), S responds as follows: if (ψ, κ)
already belongs to H2, for some κ, S returns κ; else, S chooses κ ∈R {0, 1}λ, provides
A with κ, and appends (ψ, κ) to H2.

(4) At Send(P̂l, P̂m) query, S chooses x ∈R [1, q − 1], creates a session with identifier
(P̂l, P̂m, X, ⋆, I), and provides A with the message (P̂l, P̂m, X).

(5) At Send(P̂m, P̂l, Y ) query, S chooses x ∈R [1, q − 1], creates a session with identifier
(P̂l, P̂m, X, Y,R), provides A with the message (P̂l, P̂m, X), and completes the session
(P̂l, P̂m, X, Y,R) (S also updates H1 and H2 in this step.)

(6) At Send(P̂l, P̂m, X, Y ) query, S updates the identifier (P̂l, P̂m, X, ⋆, I) (if any) to sid =
(P̂l, P̂m, X, Y, I). If the sid′ session exists and is already completed, S sets the sid
session key to that of sid′. Else, if a digest query was previously issued on some
ψ = (σ, P̂l, P̂m, X, Y ), and if σ is the sid session signature (S can compute the session
signature), S sets the session key to H(ψ). Else, S chooses κ ∈R {0, 1}λ, sets the
session key to κ, and updates H2.
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(7) If A issues a CorruptSC , an EphemeralKeyReveal, a SessionKeyReveal, or an Estab-
lishParty query at a party following the first implementation approach, S answers
faithfully.

(8) If A issues a CorruptSC , a SessionKeyReveal, a SecretExponentReveal, a SessionSigna-
tureReveal, or an EstablishParty query at a party following the second implementation
approach, S answers faithfully.

(9) At the activation of the t–th session at Â, if the peer is not B̂, S aborts; else, S
provides A with (Â, B̂,X0) (recall that S takes as input X0 and Y0 ∈R G∗.)

(10) At the activation of the session matching the t–th session at Â, S provides A with
(B̂, Â, Y0).

(11) In any of the following situations, S aborts.
• A halts with a test session different from the t–th session at Â.
• A issues a SessionKeyReveal or an EphemeralKeyReveal query on the t–th session

at Â or its matching session.
• A issues an EstablishParty query on Â or B̂.

(12) If A provides a guess σ0 of the test session signature, S outputs

(

σ0(Xd0

0 A)−bY −ae0

0

)(d0e0)−1

=
(

(Xd0

0 A)y0e0Y −ae0

0

)(d0e0)−1

=
(

(Y e0

0 )x0d0+aY −ae0

0

)(d0e0)−1

as a guess for CDH(X0, Y0). Otherwise S aborts.

The simulated environment is perfect except with negligible probability; and if A is poly-
nomial, so is S. When A activates the test session and its matching session, the ephemeral
keys X0 and Y0 it is provided with are chosen uniformly at random in G∗; their distribution
is the same as that of the real X and Y. The probability of guessing correctly the test
session is (n2

1m)
−1

; and if S guesses correctly the test session and E.1.1.1 occurs, S does

not abort. Thus S succeeds with probability (n2
1m)

−1
Pr(E.1.1.1) which is non–negligible,

unless Pr(E.1.1.1) is negligible. This shows that under the CDH assumption and RO
model, E.1.1.1 cannot occur, except with negligible probability.

Event E.1.1.2. If E.1.1.2 occurs with non–negligible probability, using A, we build a poly-
nomial time CDH solver, which succeeds with non–negligible probability. For this purpose,
we modify the simulation in the analysis of E.1.1.1 as follows.
• S takes as input A,B ∈R G∗.
• Â and B̂’s public keys are set to A and B; the corresponding private keys are unknown.

(S also keeps a list of the completed session identifiers together with the session keys.)
• At Send(P̂m, P̂l, Y ) query, with P̂l = Â or B̂, S responds as follows.

– S chooses x ∈R [1, q − 1], computes X = Gx, creates a session with identifier
sid′ = (P̂l, P̂m, X, Y,R), and provides A with the message (P̂l, P̂m, X).

– S chooses κ ∈R {0, 1}λ, d, e ∈R {0, 1}l and sets H̄(X,Y, P̂m, P̂l) = d, H̄(Y,X, P̂m,
P̂l) = e, and the sid′ session key to κ.

• At Send(P̂l, P̂m, X, Y ) query, with P̂l = Â or B̂, S does the following.
– S updates the session identifier (P̂l, P̂m, X, ⋆, I) (if any) to sid = (P̂l, P̂m, X, Y, I).
– And, (i) if a value is already assigned to the sid′ session key, S sets the sid session

key to that of sid′. (ii) Else, if a digest query was previously issued on some
ψ = (σ, P̂l, P̂m, X, Y ), and if σ = CDH(XdPl, Y

ePm) (in this case, d and e are
already defined, and the verification is performed using the DDHO), S sets the
sid session key to H(ψ). (iii) Else, S chooses κ ∈R {0, 1}λ, and sets the sid
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session key to κ; if no value was previously assigned to h1 = H̄(X,Y, P̂l, P̂m) (resp.
h2 = H̄(Y,X, P̂l, P̂m)), S chooses d ∈R {0, 1}l and sets h1 = d (resp. h2 = d.)

• At A’s digest query on ψ = (σ, P̂l, P̂m, X, Y ), with P̂l = Â or B̂, or P̂m = Â or B̂,
S responds as follows.
– If there is some κ such that (ψ, κ) already belongs to H2, S returns κ.
– Else, (i) if there is an already completed session with identifier sid = (P̂l, P̂m, X, Y, I)

or sid′, and if σ = CDH(XdPl, Y
ePm), then S returns the completed session’s key.

(ii) Else, S chooses κ ∈R {0, 1}λ, sets H(ψ) = κ, and provides A with κ; if no value
was previously assigned to h1 = H̄(X,Y, P̂l, P̂m) (resp. h2 = H̄(Y,X, P̂l, P̂m)),
S chooses d ∈R {0, 1}l and sets h1 = d (resp. h2 = d.)

• When A activates the t–th session at Â, if the peer is not B̂, S aborts; else S chooses
x0 ∈R [1, q − 1], and provides A with the message (Â, B̂,X0 = Gx0).

• When A activates the session matching the t–th session at Â, S chooses y0,∈R [1, q−1],
and provides A with (B̂, Â, Y0 = Gy0).

• If A issues an EphemeralKeyReveal query on the t–th session at Â or its matching
session, S answers faithfully.

• S aborts in any of the following situations:
– A halts with a test session different from the t–th session at Â;
– A issues a SessionKeyReveal query on the t–th session at Â or its matching session;
– A issues a CorruptSC or an EstablishParty query on Â or B̂;

• If A halts with a guess σ0 fo the test session signature, S outputs a guess of CDH(A,B)
from σ0, x0, y0, d0, and e0.

Under the RO model, the simulation remains perfect, except with negligible probabil-
ity. And, if E.1.1.2 occurs with non–negligible probability, A succeeds with non–negligible
probability under this simulation. If A succeeds and S guesses correctly the test session
(this happens with probability (n2

1m)−1 Pr(E.1.1.2)), S outputs CDH(A,B). Under the
GDH assumption and the RO model, E.1.1.2 cannot occur, unless with negligible proba-
bility.

Events E.1.1.3 and E.1.1.4. The roles of Â and B̂ in E.1.1.3 and E.1.1.4 are symmetrical;
it then suffices to discuss E.1.1.3. If E.1.1.3 occurs with non–negligible probability, using
A, we build a polynomial time CDH solver which succeeds with non–negligible probability.
We modify the simulation in the analysis if E.1.1.1 as follows.
• S takes as input X0, B ∈R G∗.
• B̂’s public key is set to B (the corresponding private key is unknown), and Â’s key

pair is (a = pi, G
a), pi ∈R [1, q − 1].

• At Send(P̂m, B̂,X) query, S responds as follows. (i) S chooses y ∈R [1, q−1], computes
Y = Gy, creates a session with identifier sid′ = (B̂, P̂m, Y,X,R), and provides A with
the message (B̂, P̂m, Y ). (ii) S chooses κ ∈R {0, 1}λ, d, e ∈R {0, 1}l, sets the sid′

session key to κ, H̄(X,Y, P̂m, B̂) = d, and H̄(Y,X, P̂m, B̂) = e.
• At Send(B̂, P̂m, Y,X) query:

– S updates the session identifier (B̂, P̂m, Y, ⋆, I) (if any) to sid = (B̂, P̂m, Y,X, I).
– And, (i) if a value is already assigned to the sid′ session key, S sets the sid session

key to that of sid′. (ii) Else, if a digest query was previously issued on some ψ =
(σ, B̂, P̂m, Y,X) (in this case, d and e are defined) and if σ = CDH(XdPm, Y

eB),
S sets the sid session key to H(ψ). (iii) Else, S chooses κ ∈R {0, 1}λ and sets the
sid session key to κ; if no value was previously assigned to h1 = H̄(Y,X, B̂, P̂m)
(resp. h2 = H̄(X,Y, B̂, P̂m)), S chooses d ∈R {0, 1}l and sets h1 = d (resp. h2 = d.)
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• At A’s digest query on some ψ = (σ, P̂l, P̂m, X, Y ), with P̂l = B̂ or P̂m = B̂, S responds
as follows. (i) If the same query was previously issued, S returns the previously
returned value. (ii) Else, if there is an already completed session with identifier sid =
(P̂l, P̂m, X, Y, I) or sid′, and if σ = CDH(XdPl, Y

ePm), S returns the completed
session’s key. (iii) Else, S chooses κ ∈R {0, 1}λ, sets H(ψ) = κ, and provides A
with κ. If no value was previously assigned to h1 = H̄(X,Y, P̂l, P̂m) (resp. h2 =
H̄(Y,X, P̂l, P̂m)), S chooses d ∈R {0, 1}λ and sets h1 = d (resp. h2 = d.)

• When A activates the t–th session at Â, if the peer is not B̂, S aborts; otherwise,
S provides A with (Â, B̂,X0) (recall the solver takes as input X0 and B.)

• When A activates the session matching the t–th session at Â, S chooses y0 ∈R [1, q−1],
and provides A with (B̂, Â, Y0).

• If A issues an EphemeralKeyReveal query on the session matching the t–th session
at Â, S answers faithfully.

• In any of the following situations, S aborts.
– A halts with a test session different from the t–th session at Â.
– A issues a CorruptSC query on B̂ or an EstablishParty query on Â or B̂.
– A issues an EphemeralKeyReveal query on the t–th session at Â.

• If A halts with a guess σ0, S produces
(

σ0(Xd0

0 A)
−y0e0

B−a
)e−1

0
as a guess for CDH(X0, B).

The simulation remains perfect, except with negligible probability; the solver S guesses
correctly the test session with probability (n2

1m)−1. If A succeeds under this simula-
tion, and S guesses correctly the test session, S outputs CDH(X0, B). Hence if A suc-
ceeds with non–negligible probability in E.1.1.3, S outputs with non–negligible probability
CDH(X0, B), contradicting the GDH assumption.

None of the events E.1.1.1, E.1.1.2, E.1.1.3 or E.1.1.4 can occur with non–negligible
probability; E.1.1 cannot occur, unless with negligible probability.

Analysis of E.1.2. Suppose that E.1.2 occurs with non–negligible probability, we derive
from A a polynomial time CDH solver which succeeds with non–negligible probability.
The strongest queries that S can issue on Â, B̂, the test session and its matching session
are CorruptSC queries on both Â and B̂. (Recall that both Â and B̂ follow the second
approach.) We modify the simulation in the analysis of E.1.1.1 as follows.
• S takes X0, Y0 ∈R G∗ as input.
• A’s environment, is simulated in the same way as in the analysis of E.1.1.1, except

that i and j are chosen in {k | P̂k follows the second implementation approach} (we
suppose here that n− n1 > 2, and still refer to P̂i as Â and P̂j as B̂.)

• S aborts in the following situations.
– A issues an EstablishParty query on Â or B̂.
– A halts with a test session different from the t–th session at Â.
– A issues a SessionKeyReveal, a SecretExponentReveal, or a SessionSignatureReveal

query on the test session or its matching session.

The simulation remains prefect, and if A is polynomial, so is S. In addition, S guesses
correctly the test session with probability ((n− n1)2m)

−1
; and if A succeeds and S guesses

correctly the test session, it outputs CDH(X0, Y0) (from A’s forgery a, b, d0 and e0.) S suc-

ceeds with probability ((n− n1)2m)
−1

Pr(E.1.2) which is non–negligible, unless Pr(E.1.2)
is negligible. Under the GDH assumption and the RO model, E.1.2 cannot occur with
non–negligible probability.
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Analysis of E.1.3. In E.1.3 (Â and B̂ follow different implementation approaches), ei-
ther Â or B̂ follows the first implementation approach; we suppose that Â follows the
first implementation approach. (As the test session’s matching session exists, from any
polynomial time machine which succeeds in E.1.3 when Â follows the first approach, one
can derive a polynomial time machine which succeeds with the same probability when Â
follows the second approach.) The strongest queries that A can perform on Â, B̂, the
test session, and its matching session are (i) CorruptSC queries on both Â and B̂, (ii) an
EphemeralKeyReveal query on the test session and a CorruptSC query on B̂. And, since
from any polynomial time machine which succeeds in E.1.3, and issues weaker queries,
one can build a polynomial time machine which succeeds with the same probability and
performs one of the above strongest queries, it suffices to consider the following events.
E.1.3.1: “E.1.3 ∧ A issues CorruptSC queries on both Â and B̂”;
E.1.3.2: “E.1.3 ∧ A issues an EphemeralKeyReveal query on the test session and a CorruptSC

query on B̂.”
To show that E.1.3.1 cannot occur with non–negligible probability, we use the simulation
in the analysis of E.1.1.1, modified as follows.
• The environment remains the same except that i ∈R {k | P̂k follows the first imple-

mentation approach}, and j ∈R {k | P̂k follows the second implementation approach}.
• S aborts in any of the following situations.

– A halts with a test session different from the t–th session at Â.
– A issues a SessionKeyReveal query on the t–th session at Â or its matching session.
– A issues a SecretExponentReveal, or a SessionSignatureReveal query on the session

matching the test session, or an EphemeralKeyReveal query on the test session.
– A issues an EstablishParty query on Â or B̂.

Using the same arguments, as in the analysis of E.1.1.1, S is a polynomial time CDH solver
which succeeds with probability (n1(n−n1)m)−1 Pr(E.1.3.1). Under the GDH assumption
and the RO model, Pr(E.1.3.1) is negligible.

Making S take as input X0, B ∈R G∗ (the arguments are similar to that used in the
analysis of the event E.1.1.3), one can show also that E.1.3.2 cannot occur, unless with
negligible probability.

Analysis of E.2

Suppose that E.2 (A succeeds in forging the signature of some fresh session without match-
ing session) occurs with non negligible probability. As E.2 divides in
E.2.1: “E.2 ∧ both Â and B̂ follow the first implementation approach”;
E.2.2: “E.2 ∧ both Â and B̂ follow the second implementation approach”;
E.2.3: “E.2 ∧ Â and B̂ follow different implementation approaches”;
at least one of the events E.2.1, E.2.2, or E.2.3 occurs with non–negligible probability.

Event E.2.1. The strongest queries that A can perform in E.2.1 are either an Ephemer-
alKeyReveal query on the test session, or a CorruptSC query on Â. It then suffices to
discuss E.2.1.1: “E.2.1 ∧ A performs a CorruptSC query on Â,” and E.2.1.2: “E.2.1 ∧ A
performs an EphemeralKeyReveal query on the test session.”
E.2.1.1. To show that E.2.1.1 cannot happen with non–negligible probability, we modify
the simulation in the analysis of E.1.1.3 to take as input a ∈R [1, q − 1] and X0, B ∈R G∗

(Â’s key pair is set to (a,Ga), and B̂’s public key to B); S aborts if A activates a session
matching the t–th session at Â. The simulation remains perfect, except with negligible
probability. And if S guesses correctly the test session, and A succeeds with a forgery σ0,
S outputs σ0 as a FDCR–1 forgery, on messages Â and B̂ with respect to the public
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keys A and B. S succeeds with probability ((n − n1)2m)−1 Pr(E.2.1.1), and contradicts
Proposition 3, unless Pr(E.2.1.1) is negligible.
E.2.1.2. We modify here the simulation in the analysis of E.1.1.2 to abort if A activates
a session matching the t–th session at Â. The simulated environment remains perfect,
except with negligible probability. And from any valid forgery σ0, and a correct guess
of the test session, S outputs Ay0e0+b (from σ0, x0, d0, and e0.) S is polynomial; and if
E.2.1.2 occurs with non–negligible probability, on input A,B ∈R G∗, S outputs Y0 and
Ay0e0+b with non–negligible probability. Hence, using the “oracle replay technique” [26],
S yields a polynomial time CHD solver, which succeeds with non–negligible probability;
contradicting the GDH assumption.

Event E.2.2. Suppose that E.2.2 occurs with non–negligible probability, using A, we build a
polynomial time FXCR–1 signature forger, which succeeds with non–negligible probability.
For this purpose, we modify the simulation in the analysis of E.1.1.1 as follows. (Notice
that A’s CorruptSC queries on Â can be answered faithfully.)
• S takes as input X0, B ∈R G∗.
• Both i, j ∈R {k | P̂k follows the second implementation approach}; Â’s key pair is set

to (a = pi, G
pi), pi ∈R [1, q − 1] and B̂’s public key to B; the corresponding private

key is unknown (we suppose that Â 6= B̂.)
• At Send(P̂l, B̂,X) query, S answers as follows.

– S chooses sB ∈R [1, q − 1], d ∈R {0, 1}l, and sets Y = (GsBB−1)d−1

. If there is
some d′ such that ((X,Y, P̂l, B̂), d′) already belongs to H1, S aborts; else, S appends
((X,Y, P̂l, B̂), d) to H1.

– S creates a session with identifier sid′ = (B̂, P̂l, Y,X,R), completes the sid′ session,
and provides A with the message (B̂, P̂l, Y ). (Notice that S can compute the session
signature.)

• At A’s Send(B̂, P̂l) query, S responds as follows.
– S chooses sB ∈R [1, q − 1], e ∈R {0, 1}l, and sets12 Y = (GsBB−1)e−1

. If there
exists some X and e′ such that ((Y,X, B̂, P̂l, ), e

′) already belongs to H1, S aborts.
– S creates a session with identifier (B̂, P̂l, Y, ⋆, I), and provides A with (B̂, P̂l, Y ).

• When A activates the t–th session at Â, if the peer is not B̂, S aborts; else, S provides
A with (Â, B̂,X0).

• S aborts in any of the following situations.
– A activates at B̂ a session matching the t–th session at Â.
– A halts with a test session different from the t–th session at Â.
– A issues a CorruptSC query on B̂, or an EstablishParty query on Â or B̂.
– A issues a SecretExponentReveal, a SessionSignatureReveal, or a SessionKeyReveal

query on the t–th session at Â.

• If A halts with a guess σ0 of the test session signature, S outputs (σ0(Y e0

0 B)−a)
d−1

0

= Xy0e0+b
0 as a guess for a FXCR–1 forgery on challenge X0 and message (Â, B̂)

(the concatenation of Â and B̂) with respect to the public key B.

Under the RO model, the simulation of A’s environment is perfect, except with negligible
probability. The deviation happens when the same Y is chosen twice as outgoing ephemeral
key in sessions at B̂, with the same peer P̂l, this happens with probability less than
m/q (which is negligible.) Hence, under this simulation E.2.2 occurs with non–negligible

12To simulate consistently the intermediate values leakage in sessions at B̂, S has to assign values
to H̄ query with a partially unknown input. For these queries, random values are chosen in {0, 1}l as
H̄(Y, ⋆, B̂, P̂l); when S is queried later with H̄(Y, X, B̂, P̂l), it responds with H̄(Y, ⋆, B̂, P̂l).
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probability. And, when A outputs a correct forgery, and S guesses correctly the test
session, S outputs a valid FXCR–1 signature forgery on challenge X0 and message (Â, B̂)

with respect to the public key B. S succeeds with probability ((n− n1)2m)
−1

Pr(E.2.2),
where negligible terms are ignored, contradicting Proposition 2.

Event E.2.3. The test session’s matching session does not exist, and Â and B̂ follow
different implementation approaches.
• If Â follows the first implementation approach (E.2.3.1), A is allowed to issue either a

CorruptSC query on Â, or an EphemeralKeyReveal query on the test session.
– If E.2.3.1.1: “E.2.3.1 ∧ A issues a CorruptSC query on Â,” occurs with non–

negligible probability. We modify the simulation in the analysis of E.1.1.1 to take
as input X0, B ∈R G∗, and simulate B̂’s role as in the analysis of E.2.2 (Â’s role
is simulated as in E.1.1.1.) If A succeeds with non–negligible probability, it yields
a polynomial time FXCR–1 signature forger which succeeds with non–negligible
probability; contradicting Proposition 2.

– And, if E.2.3.1.2: “E.2.3.1 ∧ A issues an EphemeralKeyReveal query on the test
session,” occurs with non–negligible probability, we modify the simulation in E.1.1.1

to take as input A,B ∈R G∗, and abort if A activates a session matching the t–th
session at Â. We simulate Â’s role as in E.1.1.2 and B̂’s role as in E.2.2. From any
valid forgery σ0, S outputs σ0(Y e0

0 B)−x0d0 = Ay0e0+b; and using the oracle replay
technique, S yields an efficient CDH solver, contradicting the GDH assumption.

• And, if Â follows the second implementation approach, we make S take as input
A,B ∈ G∗, simulate Â’s role in the same way as that of B̂ in E.2.2, and B̂’s role as in
E.1.1.2, except that when A activates the t–th session at Â, S chooses x0 ∈R [1, q − 1]
and provides A with (Â, B̂,X0) (S also aborts if A activates a session matching the
t–th session at Â.) If A succeeds with non–negligible probability, S outputs with
non–negligible probability Ay0e0+b, and using the oracle replay technique, S yields an
efficient CDH solver; E.2.3 cannot occur, except with negligible probability.

Reflection Attacks If Â = B̂, E.1 reduces to E.1.1 and E.1.2; in addition E.1.1 reduces
to E.1.1.1 and E.1.1.2. The analyses of the events E.1.1.1, E.1.1.2, and E.1.2 hold if Â = Â;
reflections attacks cannot succeed in E.1.

In E.2 (which reduces here to E.2.1 and E.2.2), E.2.1 reduces to E.2.1.2 (the CorruptSC

query is not allowed on Â), if A succeeds with non–negligible probability, it yields a
polynomial time machine S which on input A outputs with non–negligible probability Y0

and (Y e0

0 A)a, and S yields a squaring CDH solver, contradicting the GDH assumption.
Neither E.1 nor E.2 can occur with non–negligible probability, the SMQV protocol is

seCK–secure.
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