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Abstract

Metabarcoding is a powerful tool for exploring microbial diversity in the environment, but its accurate interpretation is
impeded by diverse technical (e.g. PCR and sequencing errors) and biological biases (e.g. intra-individual polymorphism)
that remain poorly understood. To help interpret environmental metabarcoding datasets, we investigated the intracellular
diversity of the V4 and V9 regions of the 18S rRNA gene from Acantharia and Nassellaria (radiolarians) using 454
pyrosequencing. Individual cells of radiolarians were isolated, and PCRs were performed with generalist primers to amplify
the V4 and V9 regions. Different denoising procedures were employed to filter the pyrosequenced raw amplicons (Acacia,
AmpliconNoise, Linkage method). For each of the six isolated cells, an average of 541 V4 and 562 V9 amplicons assigned to
radiolarians were obtained, from which one numerically dominant sequence and several minor variants were found. At the
97% identity, a diversity metrics commonly used in environmental surveys, up to 5 distinct OTUs were detected in a single
cell. However, most amplicons grouped within a single OTU whereas other OTUs contained very few amplicons. Different
analytical methods provided evidence that most minor variants forming different OTUs correspond to PCR and sequencing
artifacts. Duplicate PCR and sequencing from the same DNA extract of a single cell had only 9 to 16% of unique amplicons
in common, and alignment visualization of V4 and V9 amplicons showed that most minor variants contained substitutions
in highly-conserved regions. We conclude that intracellular variability of the 18S rRNA in radiolarians is very limited despite
its multi-copy nature and the existence of multiple nuclei in these protists. Our study recommends some technical
guidelines to conservatively discard artificial amplicons from metabarcoding datasets, and thus properly assess the diversity
and richness of protists in the environment.
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Introduction

High-throughput sequencing of phylogenetic markers (meta-

barcoding) is becoming the gold standard approach for exploring

microbial diversity in the environment [1,2,3]. The presence of the

18S rRNA across all eukaryotes, its extensive occurrence in public

reference databases and the availability of generalist primers make

this gene the best universal marker available to date for eukaryotes

[4,5]. Metabarcoding of microbial eukaryotes typically targets the

short variable regions V4 and V9 of the 18S rRNA gene [2,3].

From the reads generated (amplicons), definition of operational

taxonomic units (OTUs) is classically used not only to identify

taxonomic entities and describe community structure (e.g. diversity

and richness), but also to assess the extent of the so-called ‘‘rare

biosphere’’ [6,7]. Different identity thresholds, ranging between

95% and 99%, have been used to delineate OTUs in various

environmental surveys [8,9,10].

However, when using the 18S rRNA marker, heterogeneous

evolutionary rates between taxa, intracellular polymorphism,

rDNA copy number variation and presence of pseudogenes are

potentially important, yet poorly understood, shortcomings for

properly evaluating community composition [11,12,13]. For

instance, intra-individual polymorphism of the 18S rRNA has

been reported in different eukaryotes like benthic Foraminifera

[14]. Pseudogenes, defined as non-functional gene copies [15],

have been also found in different eukaryotic taxa, including

metazoans and protists [16,17]. Moreover, the ribosomal array

can be composed of ‘‘alien’’ copies resulting from lateral transfer of

one sequence from unrelated species. Recently, such lateral

transfer of rRNA gene, though considered unique to prokaryotes

[18], has been reported for the first time in eukaryotes (i.e. ciliates)

[19]. Thus, considering the sequencing depth of the next

generation technologies, the different copies, pseudogenes and

other variants of the 18S rRNA of each organism, all can be

potentially detected in metabarcoding surveys, and consequently

lead to inflated diversity metrics by increasing the number of

predicted OTUs. In this context, prior to studying specific taxa
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from metabarcoding of communities, it appears to be necessary to

explore the genetic variation of the targeted barcode in single

species or even in individual cells. Such calibration is paramount

to carefully interpret the flow of sequences obtained from complex

natural communities.

In addition to these biological concerns, PCR artifacts and

sequencing errors that scale with the sequencing effort are known

to artificially inflate diversity estimates [20,21]. Discriminating

between natural amplicons and technical artifacts is definitively a

challenge that has to be addressed for accurate interpretation of

large datasets in molecular ecology.

In this study, we investigated the intracellular diversity of the

ribosomal barcodes V4 and V9 in eukaryotes using 454

pyrosequencing. We focused on two radiolarian taxa, Acantharia

and Nassellaria, which are heterotrophic marine protists, from

which no genomic data is available to date. Their large cells (100–

500 mm in diameter) are supported by a mineral skeleton and can

contain several nuclei [22]. Acantharia and Nassellaria are

important components of planktonic communities due to their

abundance, predation, contribution to the vertical flux of organic

matter, and indirectly as primary producers through symbiosis

with microalgae [23,24,25,26]. These uncultivated planktonic

organisms have also a widespread distribution in marine

environments since numerous environmental 18S rRNA sequenc-

es have been found from diverse habitats, including coastal [27],

deep [28,29], polar [30,31], and anoxic waters [32,33,34]. The

ecological and biogeochemical significance of Acantharia and

Nassellaria make them key players in pelagic ecosystems, and

stress the need to define a proper analytical procedure to explore

their molecular diversity in the environment.

Materials and Methods

Single-cell collection, PCR amplification and
pyrosequencing of the V4 and V9 regions

Radiolarian cells were collected in the Gulf of Eilat, Red Sea

(the acantharians Ei 44 and Ei 45: Amphilonche elongata),

Mediterranean Sea (the acantharians Vil 32 and Pec 16:

Staurolithium sp. and Heteracon biformis, respectively) and Sesoko

Island, NW Pacific Ocean (the nassellarians Ses 11 and Ses 60:

Peromelissa phalacra) (see Figure 1; geographic coordinates of the

locations are given in Materials S1). Individual cells were sampled

from surface waters with a plankton net, micropipette isolated

under a binocular microscope, and cleaned by several successive

transfers into 0.22 mm-filtered seawater. No specific permits were

required for the field sites, as the locations are not privately-owned

or protected in any way (international oceanic waters), and the

studied organisms did not involve endangered or protected species.

Cells labeled Ei 44 and Ei 45 (A. elongata), and Ses 11 and Ses 60

(P. phalacra), belonging to the same acantharian and nassellarian

morphospecies, respectively, are considered hereafter as biological

replicates. The four acantharian morphospecies belong to the

highly divergent phylogenetic clades C (Pec 16, H. biformis), D

(Vil 32, Staurolithium sp.), and F (Ei 44 and Ei 45, A. elongata)

[35].

DNA from each single cell was extracted as described in [35].

The V4 (ca. 380 bp) and V9 (ca. 130 bp) regions were PCR-

amplified with eukaryote-specific primers that are regularly used in

environmental protist surveys [3 and 2, respectively]. Because

direct PCRs with 25 cycles yielded visible bands on agarose gel,

Whole Genome Amplification (WGA) or nested PCR were not

required to ensure the amplification of the V4 and V9 regions.

Each sample was amplified in triplicate to increase the yield of

amplicons, which were subsequently pooled and purified using the

NucleoSpin Extract II kit (Macherey-Nagel, Hoerdt, France). To

obtain a similar number of amplicons for each sample, purified

PCR products were quantified with the Quant-iTTM PicoGreen

dsDNA kit (Invitrogen) and then mixed in equal concentrations.

Finally, amplicons were sequenced with the 454 GS-FLX

Titanium pyrosequencing technology [36] (see Materials S1 for

methodological details). Prior to PCR amplification and sequenc-

ing, the DNA extracts from two cells (Ei 44 and Pec 16) were split

into two separate sub-samples, considered hereafter as technical

replicates (Ei 44-1–Ei 44-2 and Pec 16-1–Pec 16-2).

Filtering and taxonomic assignation of 454
pyrosequencing amplicons

A three-step filtering method was adopted to eliminate

ambiguous amplicons: 1) denoising was performed with Acacia

v1.52.b0 and AmpliconNoise v1.29 as described in Materials S1

[37,38]; 2) amplicons not containing the exact distal primer

sequence were removed; 3) chimeras were eliminated using

UCHIME with default parameters after Acacia denoising [39].

Finally, primer sequences were trimmed off and amplicons were

assigned to their closest hit in the Protist Ribosomal Reference

database (PR2, version August 13, 2012 [4]) using ggsearch [40].

Amplicons corresponding to symbiotic microalgae (e.g. Phaeocys-
tis) or contaminants (e.g. fungi, metazoans or other distant

radiolarians) were not included in subsequent analyses. The

filtered amplicons assigned to Acantharia or Nassellaria were

aligned with Muscle, implemented in Seaview v.4.2.6 [41], and

clustered at different identity thresholds, from 80% to 99%, using

usearch ([42]; v.6.0.203_i86linux32). The V4 and V9 alignments

of each individual cell did not exhibit ambiguous sections since

amplicons are short and highly similar. The secondary structure of

the V4 and V9 amplicons was predicted using the RNAfold server

available on the Vienna RNA web servers (http://rna.tbi.univie.

ac.at).

Another analytical approach, called the linkage method, was

applied to infer dominant patterns and eliminate random noise

[43]. Details of the methodological procedures are given in

Materials S1. The raw V4 and V9 sequences have been deposited

in the Short Read Archive under the accession number

PRJEB4199.

Results and Discussion

From each individual cell of Acantharia and Nassellaria, an

average of 4,000 V4 and 2,380 V9 raw amplicons were obtained

after pyrosequencing (Tables 1 and S1). Prior to assignation, two

denoising algorithms, Acacia and AmpliconNoise, were used to

filtered these amplicons. The total number of amplicons assigned

to Acantharia or Nassellaria was highly variable between samples

and denoising programs (Table 1). Using Acacia, from 4 to 957

V4 and 61 to 1,037 V9 amplicons were obtained. In general,

AmpliconNoise retrieved more amplicons than Acacia, ranging

from 386 to 2,594 for V4 and 30 to 1,080 for V9. This variability

was also observed between technical replicates: in the sample Ei

44-2 we found six times more V4 amplicons than in Ei 44-1,

despite comparable numbers of raw amplicons (7,197 and 6,942,

respectively). Note that the acantharian Pec 16-2 and the

nassellarian Ses 60 had no valid V4 amplicons after filtering in

both denoising programs, probably because of the low initial

number of raw amplicons obtained from these samples (1,081 and

1,088, respectively). Some of these raw amplicons were partial

(distal primers were missing), and the majority were assigned to

fungi, stramenopiles or metazoans that could correspond to preys

or contaminants.

V4 and V9 Diversity in Single Eukaryotic Cells
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From a single cell, after denoising with Acacia and merging

strictly identical amplicons, the number of unique amplicons was

as high as 76 for the V4 and 18 for the V9. On average, 70% of

these unique amplicons are singletons (amplicons occurring only

once in the dataset). With AmpliconNoise, the number of unique

amplicons was much lower (up to 4 V4 and 3 V9 amplicons from a

single cell). AmpliconNoise appeared to be more stringent than

Acacia since most singletons were discarded. However, this

denoising algorithm did not retrieved V4 amplicons in Ses 11,

Ses 60, Pec 16-1 and Pec 16-2. Among the radiolarians sampled in

this study, Acantharia had more amplicons (total and unique) than

Nassellaria, presumably because of the presence of multiple nuclei

in acantharian cells. For the technical replicates Ei 44-1 and Ei 44-

2, 18 and 52 unique V4 amplicons were found with Acacia,

respectively, while the corresponding biological replicate Ei 45 had

76 unique V4 amplicons. Different number of unique amplicons

between replicates were also observed with AmpliconNoise for the

same cells, but to a lesser extent. These inconsistencies between

replicates show that, in similar conditions, the PCR and

sequencing steps can yield significantly different results in terms

of amplicon number and diversity from the same morphospecies

and even from the same DNA extract.

OTU-based approaches are classically used by microbial

ecologists to assess species diversity and richness in the environ-

ment. Therefore, we investigated whether the various unique

amplicons from single cells could form distinct OTUs. At the 97%

identity level, a clustering threshold traditionally used in microbial

diversity studies [8,9], a single radiolarian cell can contain up to 5

V4 and 5 V9 radiolarian OTUs with Acacia, and up to 4 V4 and 3

V9 OTUs with the more stringent AmpliconNoise (Table 1). The

highest numbers of OTUs were observed in acantharian cells (Ei

44 and Ei 45), presumably because of their higher number of

unique amplicons. Notably, up to 3 V4 and 3 V9 OTUs were still

found at 94% identity in the acantharian cells Ei 44 and Ei 45,

both belonging to the species Amphilonche elongata (clade F).

Furthermore, for both V4 and V9 regions, the number of OTUs

was different between the biological and technical replicates,

showing again the consequences of the fluctuating PCR and

sequencing outcomes.

Overall, the distinct amplicon sequences and OTUs obtained

from a single cell may indicate the existence of natural intracellular

variability of the 18S rRNA in these radiolarians, more

particularly in Acantharia. However, there was generally one

numerically dominant amplicon sequence, and other amplicon

sequences were in single or few copies (minor variants). Similarly,

most amplicons from a single cell grouped in a single OTU,

whereas other OTUs contained only few amplicons (Figure S1):

between 88 and 100% of the total amplicons clustered in a single

OTU at the 98% identity level. Thus, we argue that these

acantharian and nassellarian morphospecies have one dominant

18S rRNA ribotype, but we cannot rule out at this stage the

presence of distinct minor ribosomal variants.

It is difficult to ascertain whether these minor variants represent

natural intracellular variability, or whether they are artificially

produced during the PCR and sequencing steps. This distinction is

critical for carefully interpreting deep sequencing of environmental

Figure 1. Light microscopy pictures of individual acantharian (n = 4) and nassellarian (n = 2) cells of 100–300 mm in size, isolated in
the Red Sea - Gulf of Eilat (the acantharians Ei 44 and Ei 45, Amphilonche elongata; scale bars = 50 mm), Mediterranean Sea (the
acantharians Vil 32 - Heteracon biformis and Pec 16 - Staurolithium sp.; scale bars = 50 and 20 mm, respectively) and Pacific Ocean -
Sesoko Island (the nassellarians Ses 11 and Ses 60, Peromelissa phalacra; scale bars = 30 mm).
doi:10.1371/journal.pone.0104297.g001

V4 and V9 Diversity in Single Eukaryotic Cells
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barcodes. Inspection of V4 and V9 alignments containing

reference Sanger sequences and amplicons produced in this study

(filtered with Acacia) revealed that most minor variants contained

substitutions that seem to be randomly distributed and were not

preferentially located in the variability hotspot region of reference

sequences (Figure 2). For instance, Ei 44-2 had 11 unique V9

amplicons that represent 7 OTUs at 97%, but 9 of these amplicons

contain nucleotide changes in regions that are conserved across all

acantharian clades. Some of these substitutions might therefore

represent PCR or sequencing errors that accumulate and can

ultimately lead to the delineation of distinct OTUs when using

high-level clustering thresholds. In addition, these substitutions can

change the secondary structure of the V4 and V9 amplicon

sequences found in individual cells (Figure S2). The secondary

structure of the minor variants is generally different from the one

of the dominant amplicon sequence, confirming that most

substitutions are probably artificial.

In a further attempt to differentiate natural and artificial

amplicons, we examined the amplicons that were shared between

technical replicates (Ei 44-1 and Ei 44-2; Pec 16-1 and Pec 16-2).

We choose to work with the radiolarian amplicons containing both

primers without any additional quality-based filtering in order to

compare between a simple noise removal procedure based on

replicates and denoising programs (Acacia and AmpliconNoise).

From the same single-cell DNA extract, we found that only 9 to

13% for the V4 and 13 to 16% for the V9 of the total unique

amplicons were common between replicates (Figure 3). The

majority of common amplicons were the most abundant ones,

corresponding to the dominant ribotypes found previously,

although some common amplicons were also present in low copy

numbers (as low as 2 copies). The common amplicons formed 2 or

3 OTUs at the 97% clustering threshold in the acantharians Ei 44

and Pec 16 for both V4 and V9 regions (Figure 3 and Table S2).

By contrast, amplicons found in only one of the replicates typically

occurred in low abundance, most of them being singletons, and

exhibited mutations in highly-conserved regions (outside the

variability hotspot region; Figure S3). Remarkably, despite their

low copy numbers, the non-common amplicons can form up to 18

OTUs at the 97% identity level, which is on average 4.7 times

more than OTUs with common amplicons (Figure 3, Table S2).

This additional line of evidence demonstrates that many

amplicons are artificially produced during the PCR and sequenc-

ing steps, and are divergent enough to lead to an overestimation of

OTU richness.

In addition to the more complex and computationally-intensive

denoising algorithms [37,38,44], sample replication and cross-

validation (selecting amplicons shared by replicates) could be an

efficient and biologically meaningful method to differentiate

technical artifacts from real biological signal in metabarcoding

surveys. The identification of common amplicons between

replicates also has the advantage of circumventing the use of

arbitrary criteria and thresholds for inclusion/rejection of

amplicons (e.g. minimum copy abundance and identity cut-off

values), therefore allowing comparison between different environ-

mental metabarcoding datasets. Considering the continually

decreasing cost of sequencing and increasing size of new datasets,

sample replication and cross-validation should be considered as an

additional denoising step to ensure accurate estimates of environ-

mental microbial diversity (‘‘Replicate or lie’’ as claimed in [45]),

though it remains to be properly tested on complex microbial

communities.

To better understand the intracellular diversity of V4 and V9

regions, another approach, called the linkage method, was applied

to the same single-cell datasets [43]. By detecting SNP combina-

tion patterns in sliding windows along the sequence, this method

found that many pyrosequenced amplicons contained numerous

random errors (Table S3). These amplicons that had unique

patterns with no redundancy in each cell were therefore excluded

for subsequent analyses (more details in File S1). The linkage

method detected from 1 to 23 and 1 to 7 amplicon patterns in each

Figure 2. V9 alignment comparison between reference sequences of all the clades of Acantharia obtained in [35] (upper sequence
consensus), and the unique V9 amplicons generated in this study filtered with Acacia (n = 47) from each individual acantharian cells
(Ei 44-1, Ei 44-2, Ei 45, Pec 16-1, Pec 16-2 and Vil 32). The red dashed lines delimit the variability hotspot region of the V9 reference sequences,
and the red arrows represent base substitutions (insertions or deletions) occurring outside the variability hotspot region in the pyrosequenced
amplicons.
doi:10.1371/journal.pone.0104297.g002
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acantharian and nassellarian cells for the V4 and V9, respectively

(Table 1, Table S3). The results confirm that intra-individual

polymorphism of the 18S rRNA is low or even absent in the

acantharian and nassellarian cells. Between the technical replicates

Ei 44-1 and Ei 44-2, three pairs of identical V4 and V9 sequences

were recognized. For V4, one pair was numerically less abundant

and more divergent compared to the other two pairs. These two

pairs with one indel were also detected in a different cell of the

same species (Ei 45, Amphilonche elongata), indicating that at least

two different ribotypes of the 18S rRNA are present in this

acantharian species. Pec 16-1 and Pec 16-2 shared a single and

identical V9 amplicon, but the absence of V4 amplicons in Pec 16-

2 prevented us from concluding that this acantharia has a single

18S rRNA ribotype. Similarly, the nassellarian species Ses 11 and

Ses 60 had one unique V9 amplicon with a 1-substitution

difference, but the number of amplicons obtained is not sufficient

to define the ribotype number in these cells.

Conclusion and Perspectives

Because of their ubiquitous distribution in marine environments

and recurrent molecular detection from distinct environmental

surveys, the radiolarian taxa Acantharia and Nassellaria will

undoubtedly represent a significant part of sequence data in

forthcoming environmental metabarcoding studies. The main goal

of our study was to assess the intracellular variability of two genetic

barcodes in these radiolarians by deep single-cell sequencing, and

improve our ability to interpret metabarcoding datasets. Although

several amplicon sequences and OTUs were found in a single cell, we

assert that intra-individual polymorphism (defined as the divergence

and relative abundance of the distinct copies) is limited in Acantharia

and Nassellaria as cells contained a dominant ribotype with low-

abundant variants. The ribosomal array seems therefore to evolve in

concert despite its multi-copy and heterogeneous nature, and more

particularly the presence of multiple nuclei in Acantharia. Based on

the combination of alignment visualization, technical replicates,

denoising algorithms, secondary structure prediction and a pattern-

based method, we provided good evidence that many of the minor

variants are artificially produced during the PCR and sequencing

steps. More particularly, as also highlighted in other studies [46], we

showed that amplicon sequencing approaches are not reproducible

and require replicates for rigorous interpretation. Consequently, we

recommend a conservative approach to discard artifacts from

metabarcoding datasets: 1) two or three technical replicates (parallel

PCR and sequencing steps from the same environmental sample), 2) a

Figure 3. Venn diagrams showing the V4 and V9 amplicons shared between single-celled technical replicates (PCR and sequencing
from the same DNA extract), or only found in one of the replicates. The number of OTUs formed with these common and non-common
amplicons at 97% identity level is indicated.
doi:10.1371/journal.pone.0104297.g003
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denoising procedure including cross-validation of amplicons between

replicates, and 3) if working on specific taxon like Acantharia,

alignment visualization with reference sequences to further remove

ambiguous amplicons. The remaining amplicons that correspond to

the dominant ribotypes of each cell should better reflect the natural

diversity and richness of radiolarians in the environment. This

conservative approach is critical to properly infer and compare

diversity estimates of a particular taxon or a whole community across

different samples, and so irrespective of the high-throughput

sequencing technique. In addition, low error-rate polymerases, low

cycle numbers and ideally PCR-free methods should be favored to

alleviate technical biases in future metabarcoding studies.

Moreover, our approach allowed improving the 18S rRNA

reference database of radiolarians by adding information about

the number of ribotypes found in each species. For instance, we

detected two ribotypes in the acantharian species Amphilonche
elongata (Ei 44 and Ei 45). Although one ribotype is numerically

more abundant than the other, both can be detected in

environmental metabarcoding datasets. Similar approach should

be adopted on more eukaryotic taxa to fine-tune the assignation of

environmental barcodes and avoid inflating diversity estimates in

metabarcoding surveys.

An obvious next step for radiolarians is to assess the rRNA

copy number in single cells in order to estimate the abundance

of these protists from metabarcoding datasets. For instance, a

recent study using qPCR assays estimated the rRNA copy

number per cell in benthic Foraminifera (i.e. 10,000–30,000)

[47]. This allowed the establishment of normalization factors

that were used to correctly determine abundance of species by

removing ‘‘excess’’ of amplicons. Similar normalization has

been also applied in bacteria based on the known copy number

in reference genomes [48]. Alternatively, a single-copy gene

could be selected as a barcode to assess the abundance of

radiolarians in the environment, but the lack of genomic data

remains the main barrier to select and validate such barcode

among radiolarians.

Extending the approach conducted here on radiolarian single

cells to other microbial taxa will help to define taxonomically

meaningful and relevant genetic entities, but also to contribute to a

better understanding of the potential and limitations of the 18S

rRNA gene marker for environmental metabarcoding studies. A

careful representation of the diversity and relative abundances of

microbial organisms is critical for the establishment of biodiversity

monitoring projects and the assessment of the impact of

anthropogenic changes.

Supporting Information

Figure S1 Number and size of the V4 and V9 OTUs
found in different individual cells of Radiolaria, based
on amplicons filtered with the denoising program
Acacia. Each OTU is represented by a single color, and its

number of amplicons is indicated in the bar.

(PDF)

Figure S2 Predicted secondary structures of the V4
amplicons found in the sample Ei 44_1. The numbers
indicate the abundance of the given amplicon.
(PDF)

Figure S3 V9 alignment comparison between reference
sequences of all the clades of Acantharia (upper
sequence consensus) and the common and non-common
pyrosequenced amplicons obtained from technical rep-
licates without Acacia denoising (Ei 44-1/Ei 44-2 and Pec
16-1 and Pec 16-2). Compared to non-common amplicons,

common amplicons tend to have fewer substitutions in highly-

conserved regions.

(PDF)

Table S1 Number of amplicons at the different consec-
utive filtering steps: 1- denoising with AmpliconNoise or
Acacia, 2- selection of amplicons with the exact distal
primer sequence and 3- detection of chimeras with
UCHIME after Acacia denoising. (T) and (U) indicate the
number of total and unique amplicons, respectively.
(PDF)

Table S2 Number of common and non-common radio-
larian amplicons (without Acacia and AmpliconNoise
denoising) between single-celled technical replicates
(PCR and sequencing on the same DNA extract). OTU

reconstruction was performed with these amplicons at different

identity levels.

(PDF)

Table S3 Number of amplicons detected by the linkage
method (See File S1). The number of unique and redundant

amplicons are indicated in the ‘‘Unique amplicon (Linkage)’’ and

‘‘Redundant amplicon (.1)’’ columns, respectively. The number

of identical sequences between technical replicates or cells is given

in the right part of the table (‘‘Number of overlapped amplicons’’).

(PDF)

File S1

(HTML)

Materials S1

(HTML)
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