

Metabolic responses to temperature stress under elevated pCO2 in Crepidula fornicata

Fanny Noisette, Joelle Richard, Ines Le Fur, Lloyd S. Peck, Dominique Davoult, Sophie Martin

▶ To cite this version:

Fanny Noisette, Joelle Richard, Ines Le Fur, Lloyd S. Peck, Dominique Davoult, et al.. Metabolic responses to temperature stress under elevated pCO2 in Crepidula fornicata. Journal of Molluscan Studies, 2015, 81 (2), pp.238-246. 10.1093/mollus/eyu084. hal-01100959

HAL Id: hal-01100959 https://hal.sorbonne-universite.fr/hal-01100959

Submitted on 9 Jan 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Title: METABOLIC RESPONSES TO TEMPERATURE STRESS UNDER
2	ELEVATED p CO $_2$ IN THE SLIPPER LIMPET CREPIDULA FORNICATA
3	
4	NOISETTE F^* , RICHARD J, LE FUR I, PECK LS, DAVOULT D, MARTIN S
5	
6	
7	NOISETTE Fanny (fanny.noisette@sb-roscoff.fr)
8	LE FUR Ines (Ines.LEFUR@eaurmc.fr)
9	DAVOULT Dominique (davoult@sb-roscoff.fr)
10	MARTIN Sophie (sophie.martin@sb-roscoff.fr)
11	1 Sorbonne universités, UPMC Univ Paris 06, UMR 7144, Station Biologique de Roscoff,
12	Place Georges Teissier, 29680 Roscoff Cedex, France
13	2 CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff
14	Cedex, France
15	
16	RICHARD Joëlle (Joelle.Richard@univ-brest.fr)
17	3 Université de Bretagne Occidentale, Institut Universitaire Européen de la Mer, Laboratoire
18	des Sciences de l'Environnement Marin (UMR CNRS 6539), Technopôle Brest-Iroise, Place
19	Copernic, F-29280 Plouzané, France.
20	4 Natural Environment Research Council British Antarctic Survey, High Cross, Madingley
21	Road, Cambridge CB3 0ET, United Kingdom
22	
23	PECK Lloyd S. (lspe@bas.ac.uk)
24	4 Natural Environment Research Council British Antarctic Survey, High Cross, Madingley
25	Road, Cambridge CB3 0ET, United Kingdom
26	
27	Short running head: C . fornicata respiration under high pCO_2
28	
29 30	
31	
32	
	* ~

* Corresponding author: Fanny NOISETTE

Email: fanny.noisette@sb-roscoff.fr

Postal address: Station Biologique de Roscoff, Place Georges Teissier, 29 680 ROSCOFF (France)

Phone number: +33 298292333

33 ABSTRACT

In the current context of environmental change, ocean acidification is predicted to affect the
cellular processes, physiology and behavior of all marine organisms, impacting survival,
growth and reproduction. In relation to thermal tolerance limits, the effects of elevated $p\mathrm{CO}_2$
could be expected to be more pronounced at the upper limits of the thermal tolerance window.
Our study focused on Crepidula fornicata, an invasive gastropod which colonized shallow
waters around European coasts during the 20 th century. We investigated the effects of 10
weeks' exposure to current (380 μ atm) and elevated (550, 750, 1000 μ atm) pCO_2 on this
engineer species using an acute temperature increase (1°C 12h ⁻¹) as the test. Respiration rates
were measured on both males (small individuals) and females (large individuals). Mortality
increased suddenly from 34°C, particularly in females. Respiration rate in C. fornicata
increased linearly with temperature between 18°C and 34°C, but no differences were detected
between the different pCO_2 conditions either in the regressions between respiration rate and
temperature, or in Q_{10} values. In the same way, condition indices were similar in all the $p\mathrm{CO}_2$
treatments at the end of the experiment but decreased from the beginning of the experiment.
This species was highly resistant to acute exposure to high temperature regardless of $p\mathrm{CO}_2$
levels, even though food was limited during the experiment. C. fornicata appears to have
either developed resistance mechanisms or a strong phenotypic plasticity to deal with
fluctuations of physico-chemical parameters in their habitat. This suggests that this invasive
species may be more resistant to future environmental changes compared to its native
competitors.

- **Keywords**: CO₂ stress, invasive species, ocean acidification, Q_{10} , respiration, temperate
- 57 waters

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

As part of global change, ocean acidification is caused by increasing anthropogenic CO₂ emissions which have increased since the beginning of the industrial revolution (Solomon et al., 2007). Future pCO₂ increases are predicted to reduce the pH of surface waters by 0.3 - 0.4 units by the end of the century (Caldeira & Wickett, 2003). Such decreases will produce changes in carbon and carbonate seawater chemistry through decreased carbonate ion concentrations (CO_3^{2-}) and a lower calcium carbonate saturation state (Ω). These changes are predicted to have major consequences for marine life (Fabry et al., 2008; Kroeker et al., 2013b) and, especially, could have broad impacts on physiological functions of heterotrophic marine organisms (Pörtner, 2008; Hofmann & Todgham, 2010). The decrease in pH is likely to have a wide range of effects on marine invertebrates via shifts in acid-base homeostasis, changes in metabolism and energy balance (Pörtner et al., 2005), leading to effects on somatic growth (Berge et al., 2006; Thomsen & Melzner, 2010), respiration (Melatunan et al., 2011; Schalkhausser et al., 2013), excretion (Liu & He, 2012), calcification (Gazeau et al., 2007; Wood et al., 2008; Watson et al., 2012) or feeding rates (Bamber, 1990; Navarro et al., 2013). Many marine invertebrates exposed to elevated pCO₂ have exhibited metabolic depression (Willson & Burnett, 2000; Michaelidis et al., 2005; Navarro et al., 2013) as a decrease in respiration rate while others have remained unaffected (Gutowska et al., 2008; Lannig et al., 2010; Clark et al., 2013) or even increased their metabolic rate (Wood et al., 2008; Beniash et al., 2010). These responses are highly speciesspecific and may vary with organism size (Beniash et al., 2010). The resilience of the species studied, and the capacity to regulate metabolism under stressful conditions are also important

(Pörtner, 2008). These physiological impacts are likely to have broad effects on the survival,

growth and reproduction of marine species (Shirayama & Thornton, 2005; Byrne, 2011),

which would lead to changes in community structure from altered diversity and abundances (Hale *et al.*, 2011; Kroeker *et al.*, 2013a).

These physiological impacts are likely modulated by temperature because temperature is a primary driver of physiological function in ectotherms (Hofmann & Todgham, 2010). Increasing temperature affects the rate of all biochemical reactions, and hence cellular processes and physiological functions (Clarke, 1983; Pörtner, 2012), increasing metabolic costs within a limited thermal tolerance window (Peck *et al.*, 2002; Marshall *et al.*, 2003). The interactive effects of increased temperature and elevated CO₂ concentrations are predicted to impair physiological processes (Clarke, 2003; Pörtner, 2008) by narrowing the thermal tolerance window of the organisms (Metzger et al., 2007; Lannig et al., 2010) and elevating vulnerability to extreme temperature (Schalkhausser et al., 2012).

In a context of global change, non-indigenous species are expected to be favored in their introduced area (Dukes & Mooney, 1999; Occhipinti-Ambrogi, 2007) mainly because robustness to abiotic variation is often a trait that determines the success of invasive of a species (Hellmann *et al.*, 2008; Lenz *et al.*, 2011). Climatic changes in the physical environment will likely affect the distribution, spread, abundance, impacts and interactions of species, possibly to the advantage of introduced organisms (Occhipinti-Ambrogi, 2007). Thus our study focused on the response of an invasive Calyptraeidae gastropod living on western European coasts, but which originates from North East America. The slipper limpet, *Crepidula fornicata* (Linné 1758) was introduced in Europe at the end of the 19th century, mainly with oysters (*Crassostrea gigas*) which were imported for farming (Blanchard, 1995), and has subsequently colonized European coasts from southern Sweden to southern France (Blanchard, 1997). *C. fornicata* has significant impacts on biodiversity and ecosystem functioning where it has established (De Montaudouin *et al.*, 1999; Decottignies *et al.*, 2007; Martin *et al.*, 2007). It lives in shallow sites, especially in bays and estuaries where very high

densities of over one thousand individuals m⁻² have been reported (Blanchard, 1995). *C. fornicata* is known to be strongly resistant to environmental variations, particularly temperature and salinity (Blanchard, 1995; Blanchard, 1997; Diederich & Pechenick, 2013). In light of the different ecological and physiological characteristics of *C. fornicata*, it is important to investigate the impact of future pCO_2 levels, and determine its resistance capacities to high levels of stress to assess the likely future impact of this engineer species in the ecosystems to which it was introduced.

The present study was designed to investigate the metabolic responses of C. fornicata to high pCO_2 conditions during temperature stress. Short-term experimental approaches using faster temperature elevations than natural changes provide valuable insight into physiological responses of marine invertebrates in term of their ability to resist high levels of stress or their lethal temperature (Sokolova & Pörtner, 2003; Peck *et al.*, 2004; Pörtner *et al.*, 2006; Richard *et al.*, 2012). Following the hypothesis that CO_2 stress will increase sensitivity to temperature change, we evaluated changes in oxygen-consumption of C. fornicata individuals previously reared under elevated pCO_2 for 10 weeks during a rapid temperature increase (1°C 12h⁻¹). Respiration rates were measured as a proxy for metabolism on males (small individuals) and females (large individuals), as in this species there is sexual dimorphism in size.

FMATERIAL & METHODS

Biological material

Crepidula fornicata stacks were collected by SCUBA divers on 4 February 2010, in Morlaix Bay (northwest Brittany, France), at the "Barre des Flots" site (3°53.015′W; 48°40.015′N) at a depth of 10 meters and at an *in situ* temperature of 11.6°C (SOMLIT: Service d'Observation de la Mer et du LITtoral data). They were transferred directly to

aquaria at the Station Biologique de Roscoff where they were held in natural unfiltered seawater at a temperature around 10°C, until they were used in experiments starting on 10 March 2010.

Males and females at the top and the bottom of stacks respectively, were selected, separated and individually labelled. Small males $(23.31 \pm 0.16 \text{ mm length})$, which were still slightly mobile, were placed individually on 3 cm Petri dishes one month before the beginning of the trials. Dead individual shells at the base of stacks were kept as the substratum under the largest living immobile females $(47.53 \pm 0.25 \text{ mm length})$. In *C. fornicata*, size cannot be discriminated from sex because this is a protandrous hermaphroditic organism, changing sex with age and size (Coe 1938). All individuals were gently brushed to remove epibionts and biofilm from their shells before proceeding to the metabolic measurements.

Condition indices (CI) were calculated on a pool of 20 specimens in March, before the beginning of the experiment, and on all remaining living and recently dead individuals (male n=74; female n=99) at the end of the temperature increase on 29 May 2010. Shell dry weight (DW_{Shell}), shell length and tissue dry weight (DW_{Tissue}) were determined separately on each individual after drying at 60°C for 48h. Specimens were then ignited in a muffle furnace at 520°C for 6 h, with tissue ash-free dry weight (AFDW_{Tissue}) being obtained by difference.

CI were calculated as:

151
$$CI = (AFDW_{Tissue} / DW_{Shell}) \times 100.$$

Mortality was checked daily during the experiment. Individuals with no reaction when the foot was stimulated were classed as dead and removed from the tanks.

Experimental conditions and set-up

After distributing randomly in each of twelve 10-L aquarium tanks comprising the experimental flow-through system (as described in Noisette *et al.*, 2013), 120 males and 120

females (i.e. 10 individuals of each sex per aquarium) were held in different pCO₂ conditions between 13 March and 29 May 2010. At the beginning of the experiment, pH was gradually decreased (by bubbling CO₂) over four days at 0.1 pH units day⁻¹ from 8.1 until the required pH was reached. Specimens were subsequently held for ten weeks in four different pCO₂ conditions: a current pCO₂ of 380 μ atm (pH_T = 8.07), and three elevated pCO₂ levels of 550 μ atm (pH_T = 7.94), 750 μ atm (pH_T = 7.82) and 1000 μ atm (pH_T = 7.77). The elevated pCO₂ values corresponded to different scenarios predicted by the Intergovernmental Panel on Climate Change (IPCC) for the end of the century (Solomon et al., 2007) and were selected according to the recommendations of Barry et al., (2010). pCO₂ was adjusted by bubbling CO_2 -free air (current pCO_2) or pure CO_2 (elevated pCO_2) in four 100 L header tanks (1 per pCO₂ condition) supplied with natural unfiltered seawater pumped from the sea, directly at the foot of the Station Biologique de Roscoff. Seawater was continually delivered by gravity from each header tank to three aquaria per pCO₂ condition at a constant rate of 9 L h⁻¹ (renewal rate: 90% total aquarium volume h⁻¹). pCO₂ was monitored and controlled by a feedback system (IKS Aquastar, Karlsbad, Germany) that regulated the addition of gas in the header tanks. pH values of the pH-stat system were adjusted from daily measurements of pH on the total scale (pH_T) in the aquaria using a pH meter (HQ40D, Hach Lange, Ltd portable LDOTM, Loveland, Colorado, USA) calibrated using Tris/HCl and 2-aminopyridine/HCl buffers (Dickson et al., 2007). The twelve aquaria were placed in four thermostatic baths where temperature was controlled to \pm 0.2 °C using 100 - 150 W submersible heaters.

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

Before the rapid temperature increase experiment, C. fornicata individuals were maintained in the different pCO_2 treatments for 10 weeks while temperature was raised successively to mimic the natural rate of temperature change from winter to summer. Temperature was maintained at 10° C from the beginning of the trial to 29 March. It was raised to 13° C from 5 to 19 April and to 16° C from 26 April to 18 May 2010. To reach these

set levels the temperature was increased by 0.5°C day⁻¹ until the new set temperature was achieved. During the experiment, animals were naturally fed by the phytoplankton provided by unfiltered seawater.

The rapid temperature increase experiment was conducted between the 18 and 29 May 2010. In all four pCO_2 treatments, temperature was increased from 16 to 36°C at 1°C 12h⁻¹. *C. fornicata* oxygen consumption was measured (see below) both in small and large individuals in the different pCO_2 treatments during this rapid temperature increase.

Seawater parameters

Seawater parameters were monitored throughout the experiment. pH_T and temperature were recorded daily in each of the 12 aquaria using a pH meter (HQ40D, Hach Lange, Ltd portable LDOTM, Loveland, Colorado, USA). Total alkalinity was determined every 3 weeks by 0.01N HCl potentiometric titration on an automatic titrator (Titroline alpha, Schott SI Analytics, Mainz, Germany). Seawater carbonate chemistry, *i.e.* exact CO_2 partial pressure (pCO_2) and saturation state of aragonite were calculated in each pCO_2 condition using CO_2SYS software (Lewis & Wallace, 1998) using constants from Mehrbach *et al.*, (1973) refitted by Dickson & Millero, (1987). Mean values (\pm standard error, SE) of the parameters in each pCO_2 treatment are presented in Table 1.

Oxygen consumption measurements

During the rapid temperature increase trial (18 - 29 May 2010), oxygen consumption of 6 randomly selected labeled individuals of each sex (2 per aquaria) was measured in each of the pCO_2 treatments every two days, at 18, 22, 26, 30 and 34°C. Respiration rates were determined using closed incubations in 75 mL (males) or 180 mL (females) acrylic chambers (Engineering & Design Plastics Ltd, Cambridge, UK) filled with water from the same

aquarium (see methods in Morley *et al.*, 2007). Chambers were placed in their respective aquaria during incubations to keep the temperature constant. Incubations varied between 1 h and 3 h depending on temperature and were halted before oxygen saturation fell below 80% saturation. Control incubations without animals (n = 1 control incubation / aquarium / measurement) were carried out to allow correction for microbial activity in seawater.

Respiration rates were calculated from the differences in measurements of oxygen concentration during trials and controls using a non-invasive fiber-optical system (FIBOX 3, PreSens, Regensburg, Germany) made up of an optical fiber and reactive oxygen spots attached to the inner wall of the chambers. These spots were calibrated with 0% and 100% oxygen buffers made from the manufacturer instructions. 0% O₂ buffer was prepared by dissolving 10 g of Na₂SO₃ in 1 L of seawater and 100% O₂ buffer was prepared by bubbling air in 1L of seawater for 20 min to achieve oxygen saturation. Previous experiments had demonstrated that oxygen consumption remained linear during all the incubation periods. Chamber contents were mixed gently by inverting chambers several times before each oxygen measurement. Respiration (R) rates (in µmol O₂ g⁻¹ AFDW h⁻¹) were corrected for oxygen consumption in controls and calculated as:

$$R = -(\Delta O_2 \times V) / (\Delta t \times AFDW_{Tissue})$$

where ΔO_2 (µmol O_2 L⁻¹) is the difference between initial and final O_2 concentrations during the incubation, V (L) is the chamber volume minus the individual *C. fornicata* volume, Δt (h) is the incubation time and AFDW_{Tissue} (g) is the tissue ash free dry weight of the slipper limpet incubated.

 Q_{10} coefficients were calculated by using the standard equation:

$$Q_{10} = (R_H/R_L)^{10/(T_H-T_L)}$$

where T_L and T_H were the lowest and highest temperature reached and R_L and R_H the respiration rates in these temperature respectively.

Statistical analyses

All statistical analyses were performed using R version 2.15.0 (R Core Team 2013) and STATISTICA software. A logistic regression (general linear model, GLM) was applied to test the differences in mortalities between the different pCO_2 treatments and between sex with temperature as the linear variable. The effects of pCO_2 , sex and the interaction of these two factors on condition index (CI) at the end of the experiment and on Q_{10} values were investigated by 2-way analysis of variance (ANOVA). Linear regressions between respiration rates and increasing temperatures were fitted in the four different pCO_2 treatments for males and females separately. Differences between pCO_2 treatments were explored using an ANCOVA with pCO_2 and sex as fixed factors and temperature as co-variable.. Normality was assessed using the Kolmogorov-Smirnov test and Levene's test was used to ensure that variances were homogenous. All the results are presented as mean \pm standard error (SE).

247 RESULTS

Mortality occurred between 34 and 36°C for females and 22 and 36°C for males (Figure 1). There were no significant differences in mortality between the different pCO_2 treatments (GLM, df = 3, F = 0.680, p = 0.565) or between males and females (GLM, df = 1, F = 0.580, p = 0.449). Moreover, the interaction between factors pCO_2 and sex of the individuals was not significant (GLM, df = 3; F = 0.21; p = 0.888). At pCO_2 levels of 380, 550, 750 and 1000 μ atm, the mortality was 29, 19, 19, and 24 for females and 28, 6, 8, and 6 for males . At the end of the acute temperature increase nearly twice the number of females had died (91) compared with the males (48) (χ^2 test, p < 0.05).

The mean condition index before the start of the experiment was 3.00 ± 0.27 (n=10). It varied at the end of the experiment between 1.69 ± 0.13 for males at pCO_2 of 380 μ atm and 2.41 ± 0.27 for females at pCO_2 of 550 μ atm (Table 2). There were no effects of pCO_2 , sex or the interaction of these two factors on the condition index at the end of the trial (Table 2). However, the condition index from the beginning of the experiment (3.00 ± 0.27) was different from the mean condition index including all pCO_2 conditions (2.11 ± 0.07) at the end of the trial (t-test, df = 181, t = 3.159, p = 0.002), which means that CI in both males and females decreased significantly from the start to the end of the experiment (Figure 2).

Female respiration rates varied between 0.51 μ mol O₂ g⁻¹ AFDW h⁻¹ at 18°C and pCO₂ of 750 μ atm and 91.62 μ mol O₂ g⁻¹ AFDW h⁻¹ at 32°C and pCO₂ of 380 μ atm. Males had higher rates, which ranged between 5.13 μ mol O₂ g⁻¹ AFDW h⁻¹ at 18°C and pCO₂ of 380 μ atm and 175.51 μ mol O₂ g⁻¹ AFDW h⁻¹ at 32°C and pCO₂ of 380 (Figure 3).

Relationships between respiration rate and temperature were linear at each pCO_2 level (Figure 3). Respiration rose significantly with increasing temperature in all pCO_2 treatments, for both males and females (Table 3, all p-values < 0.02). There were no significant differences between the slopes of the different regressions among the pCO_2 treatments or between sexes (analysis of slopes, df = 3, F = 1.1, p = 0.346). The intercepts of the different regressions also did not significantly vary among pCO_2 (ANCOVA, df = 3, F = 0.350, p = 0.789), but there were difference between males and females (ANCOVA, df = 1, F = 62.63, p < 0.001).

 Q_{10} values ranged from 1.24 to 2.40 for females and from 1.36 to 2.77 for males among the different pCO_2 treatments (Figure 2). There was no significant pCO_2 effect on Q_{10} values for either males or females (Table 2). Across all pCO_2 treatments, females had significantly lower Q_{10} values than males with means of 1.61 \pm 0.11 and 2.00 \pm 0.12 for

females and males, respectively (Table 2). The interaction between pCO_2 and sex, however, was not significant (Table 2).

DISCUSSION

Independently of the impact of *p*CO₂ we planned to test, one of the major issues of this study was food limitation which was unintentionally imposed on the *C. fornicata* individuals in the experiments. This food limitation was detected because the decrease in condition indices (CI) of both males and females from the beginning to the end of the experiment. Such decreases in CI are usually related to food quantity or quality supplied to organisms (Norkko & Thrush, 2006). Animals were maintained in unfiltered seawater which carried natural phytoplankton at a concentration between 0.2 and 1 µg Chl a L⁻¹ (*SOMLIT* data). The water renewal in the aquarium was maintained constant at a rate of 0.9 L h-1 (i.e. 90% of the total volume of each aquarium changed per hour). Water supply in our experimental system was likely too low to provide sufficient food for the experimental animals, which thus relied on internal energy reserves and so decreased their CI. A similar outcome was reported for mussels by Mackenzie *et al.* (2014).

The use of stored reserves was similar in the different pCO_2 conditions as CI at the end of the experiment did not differ between the different pCO_2 treatments, and this was the case for both sexes. Previous studies have shown interspecific variability in the responses of condition indices under high pCO_2 levels, ranging from a lack of effect (Cummings *et al.*, 2011; Clark *et al.*, 2013; Sanders *et al.*, 2013) to large changes in condition under high pCO_2 levels (Hiebenthal *et al.*, 2013; Range *et al.*, 2014). Energy availability is a major component in mitigating the effects of ocean acidification (Pansch *et al.*, 2014). Studies have shown that an abundant food supply might counteract even overcome the negative effects of high pCO_2

on adult and juvenile bivalves (Melzner *et al.*, 2011; Thomsen *et al.*, 2013). Thus, it is important to consider that in this study *C. fornicata* were under limited food conditions when interpreting their metabolic responses to elevated pCO_2 conditions during the temperature rise. The data here are representative of conditions where there is temperature stress and food supplies are limited, conditions that can occur in the field.

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

The limitation of food supply was not markedly more important in any of our reduced pH conditions as there were no differences in mortality rates between the different pCO₂ treatments in C. fornicata males and females. This is a different outcome to that reported for some other mollusk species held in elevated pCO₂ levels (Shirayama & Thornton, 2005; Beniash et al., 2010). However, similarly to our study, Pansh et al., (2014) showed that food availability had no impact on mortalities of the barnacle Amphibalanus improvises held in different pCO₂ conditions. In the present study, important mortalities started to occur from 32°C and they became larger at and above 34°C for both males and females. These values are consistent with the upper lethal temperature recorded for C. fornicata by Diederich & Pechenick, (2013) in a laboratory study investigating a population from Rhode Island, USA, in which only 40% of the adults survived after a 3 h exposure to 34°C, and all died after a 3 h exposure to 36°C. Mortality was higher in females (larger individuals) than in males (small individuals) even if, male started to die at lower temperatures than females. Similarly, Peck et al., (2009) demonstrated for 14 species that smaller species survived to higher temperatures than large ones when temperature was raised at 1°C day⁻¹, and Peck et al., (2013) showed that juveniles had higher upper temperature limits than adults in 4 species of marine invertebrates at warming rates of 1°C day⁻¹ and 1°C 3days⁻¹. The mechanisms setting temperature limits at acute rates of warming may not be energy availability (Peck et al., 2014) and females, which had more energetic reserves than males, may thus have not had an advantage.

Despite the decreases in CI, mean respiration rates of *C. fornicata* at 18°C and pCO₂ of 380 μatm were 31 and 26 μmol O₂ g⁻¹ AFDW h⁻¹ for males and females, respectively, which are close to the middle of the range of *in situ* values reported for wild individuals from the Bay of Brest (Brittany, France) (6 to 63 μmol O₂ g⁻¹ AFDW h⁻¹: Martin *et al.*, 2006). This indicates that animals in the experiments here had similar oxygen consumption than wild specimens and were not metabolically depressed under insufficient food supply. In both *C. fornicata* males and females, respiration rates increased with temperature, as previously demonstrated for this species by Newell & Kofoed, (1977) and most ectotherm metabolic rates are correlated positively with temperature (Cossins & Bowler, 1987). Respiration rates were higher in *C. fornicata* males than in females regardless of the temperature. Generally, mass-specific respiration rates of small individuals are higher than those of larger ones because metabolic rate (normalized to the biomass) decreases with increasing organisms size (von Bertalanffy, 1951; Parsons *et al.*, 1984).

The relationship between oxygen consumption and temperature here for C. fornicata was similar in all the different pCO_2 treatments. The slopes and intercepts of the regressions were not significantly different across the four pCO_2 conditions which means temperature effect on respiration rate was not affected by the different pCO_2 levels in males or females. In constrast to our results, Lannig $et\ al.$, (2010) found that an acute temperature rise (1.25°C/12h) caused a more rapid increase in metabolic rate in $Crassostrea\ gigas$ under elevated pCO_2 conditions, and there was a synergistic effect of temperature and pCO_2 . The lack of difference in respiration between animals held in different pCO_2 conditions may be related to a stronger ability to up-regulate their metabolism under a temperature stress irrespective of pCO_2 . Thus, under warming conditions, C. fornicata can generate sufficient energy to cope with any effects of decreased pH (Wood $et\ al.$, 2010). Q_{10} values were also similar across pCO_2 treatments in both males and females and they were within the expected

range of values recorded for marine invertebrates (Branch *et al.*, 1988; Marshall *et al.*, 2003). Even if *C. fornicata* individuals were food limited, their oxygen consumption remained unaffected by elevated pCO_2 . A similar lack of pCO_2 effect was reported for growth and shell strength of the barnacle *A. improvisus* (Pansch *et al.*, 2014). In our study, the low food supply did not appear to affect the resistance or resilience of *C. fornicata* to CO_2 stress.

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

Several studies investigating the response of mollusk respiration to elevated pCO₂ have demonstrated metabolic depression under high pCO_2 in both bivalves and gastropods (Michaelidis et al., 2005; Bibby et al., 2007; Fernandez-Reiriz et al., 2011; Melatunan et al., 2011; Liu & He, 2012; Navarro et al., 2013). Conversely, others observed no pCO₂ effect on mollusk respiration and general metabolism (Gazeau et al., 2007; Marchant et al., 2010; Fernandez-Reiriz et al., 2012; Clark et al., 2013) as reported in our study. In some rare cases, O₂ consumption was reported to increase under high pCO₂ conditions (Wood et al., 2010; Cummings et al., 2011). The effects of high CO₂ concentrations on metabolism appear species-specific and depend on resistance capacities of the organisms (Melzner et al., 2009). It has been widely reported that exposure to environmental high pCO_2 levels leads to changes in homeostasis and extracellular acid-base balance counterbalanced by metabolic depression in many cases (Pörtner et al., 2005; Pörtner, 2008), although it should be noted, as above, that metabolic depression is often not seen in high pCO₂ conditions. Differences in acid-base regulatory capacities by increasing HCO₃ internal concentrations (Michaelidis et al., 2005; Gutowska et al., 2010) or H⁺ excretion (Pörtner et al., 2005) are taxon specific and are more or less effective in mitigating the effects of hypercapnia. It has also been suggested that organisms could maintain low metabolic rates without controlling internal pH by not using pH-sensitive oxygen-binding pigments (Thomsen et al., 2010; Hiebenthal et al., 2013). Such mechanisms may be crucial factors in explaining the observed variation in sensitivities and resistances of marine invertebrates to elevated pCO₂ conditions (Gutowska et al., 2010).

It is important to note here that many of the studies to date on the effects of elevated pCO₂ on organisms are short-term and acute (e.g. Tomanek et al., 2011), not reflecting the long-term trade off in energy balance and physiological changes associated with acclimation of new environmental conditions (Clark et al., 2013). For example, metabolic depression acts as a time-limited compensation strategy to survive unfavorable condition such as high CO₂ concentrations (Guppy & Withers, 1999; Willson & Burnett, 2000). Because C. fornicata were held for 10 weeks in the different pCO_2 treatments in this investigation, it is likely there was enough time for them to acclimate to the new pH, and no difference in oxygen consumption was detected between the different pCO₂ conditions. However, the energetic cost likely produced by the negative effects of elevated pCO₂ may either be relatively small, or difficult to maintain over longer time periods. This could be seen in impacts on other physiological processes than respiration (Catarino et al., 2012). For example, Bibby et al., (2008) demonstrated that exposure to hypercapnic conditions may compromise the ability to express an immune response in mussels. They showed that Mytilus edulis phagocytosis declined as function of decreased pH. In the same way, Matozzo et al., (2012) showed that elevated pCO₂ and temperature may strongly affect haemocyte functionality in the bivalves Chamelea gallina and Mytilus galloprovincialis. Other cellular processes have also been shown to be negatively impacted by high CO₂ concentrations, including protein synthesis in the sipunculid Sipunculus nudus (Langenbuch et al., 2006) or enzyme activities in C. gallina and M. galloprovincialis (Matozzo et al., 2013). However, studies of the impact of reduced pH on immune systems have generally been of short duration and it would be interesting to investigate other physiological parameters than respiration (e.g. calcification, protein production, immunity regulation, fertility) in C. fornicata acclimated over several months in the different pCO₂ conditions predicted for the end of the century. As a coastal species adapted to relatively large fluctuations of abiotic parameters, C. fornicata in this study were

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

strongly resistant to both elevated pCO_2 and increased temperature. Indeed, resistance to high pCO_2 levels can also come from pre-acclimation or pre-adaptation to fluctuations in the environment where species live (Burnett, 1997). Species living in environments with large abiotic variation have a high phenotypic plasticity which can allow them to survive in stressful conditions (Hofmann & Todgham, 2010). Coastal organisms are more exposed to physico-chemical variations than their open-ocean counterparts that live in more stable thermal and pH environments (Berge *et al.*, 2006; Peck *et al.*, 2006). Species living in shallow waters tolerate not only seasonal and extreme temperature events but also periodic large fluctuations in seawater pH, driven by biological process that sequester and release large amounts of CO_2 (Beniash *et al.*, 2010). This exposure to a wide environmental variation has likely led to the evolution of resistance mechanisms to abiotic factors including variations in pCO_2 and/or pH (Lannig *et al.*, 2010).

C. fornicata is an invasive species which has successfully colonized European coastal shallow waters. This species is likely to have high phenotypic plasticity and resilience to physico-chemical variations that determined its success. Indeed, successful invasive species generally share characteristics that allow them to establish, colonize and expand their range. Among these characteristics, tolerance to environmental stress is one of the most common (Lenz et al., 2011). In a global change context, the movement of physico-chemical conditions away from the optimum increases the energy required by marine species to fuel the extra processes entrained to resist the stresses involved and to maintain homesostasis. This may result in changes in overall physiological condition (Cummings et al., 2011) that could impact ecological processes and community interactions. The high resilience to altered pCO₂/low pH levels observed here for C. fornicata may confer a competitive advantage to this invasive species over taxonomically or functionally related species (Lenz et al., 2011). For example, the performance of the scallop Pecten maximus, which is one of the C. fornicata competitors

(Thouzeau *et al.*, 2000; Fresard & Boncoeur, 2006), has been shown to be negatively affected by high pCO_2 levels (Schalkhausser *et al.*, 2013). These different sensitivities to environmental factors will likely dictate "winners" and "losers" among marine species that could lead to a restructuring of benthic communities. With other studies, our data suggest this restructuring could favor invasive species as evidence is building that shows they are more resistant to change than their native competitors (Dukes & Mooney, 1999; Occhipinti-Ambrogi, 2007).

ACKNOWLEDGMENTS

The authors thank the Marine Operations and Services Department from the Station Biologique de Roscoff for the underwater sampling and the help for system building. This work was supported by the CALCAO project funded from the Region Bretagne, and by the Interreg IVa France (Channel) – England Marinexus project no. 4073 funded by the FEDER programme. It also contributes to the "European Project on Ocean Acidification" (EPOCA) which received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 211384

456	Bamber R (1990) The effects of acidic seawater on three species of lamellibranch mollusc.
457	Journal of Experimental Marine Biology and Ecology 143: 181-191
458	Barry JP, Tyrrell T, Hansson L, Plattner GK, Gattuso JP (2010) Atmospheric CO ₂ targets for
459	ocean acidification perturbation experiments. In: Riebesell U. FVJ, Hansson L. &
460	Gattuso JP. (ed) Guide to best practices for ocean acidification research and data
461	reporting, Luxembourg: Publications Office of the European Union, pp 260
462	Beniash E, Ivanina A, Lieb NS, Kurochkin I, Sokolova IM (2010) Elevated level of carbon
463	dioxide affects metabolism and shell formation in oysters Crassostrea virginica.
464	Marine Ecology-Progress Series 419: 95-108
465	Berge JA, Bjerkeng B, Pettersen O, Schaanning MT, Øxnevad S (2006) Effects of increased
466	sea water concentrations of CO2 on growth of the bivalve Mytilus edulis L.
467	Chemosphere 62 : 681-687
468	Bibby R, Cleall-Harding P, Rundle S, Widdicombe S, Spicer J (2007) Ocean acidification
469	disrupts induced defences in the intertidal gastropod Littorina littorea. Biology Letters
470	3 : 699-701
471	Bibby R, Widdicombe S, Parry H, Spicer J, Pipe R (2008) Effects of ocean acidification on
472	the immune response of the blue mussel Mytilus edulis. Aquatic Biology 2: 67-74
473	Blanchard M (1995) Origine et état de la population de Crepidula fornicata (Gastropoda
474	Prosobranchia) sur le littoral français. Haliotis 24: 75-86
475	Blanchard M (1997) Spread of the slipper limpet Crepidula fornicata (L. 1758) in Europe.
476	Current state and consequences. Scientia Marina 61: 109-118
477	Branch GM, Borchers P, Brown CR, Donnelly D (1988) Temperature and food as factors
478	influencing oxygen consumption of intertidal organisms, particularly limpets.
479	American Zoologist 28: 137-146

480	Burnett LE (1997) The challenges of living in hypoxic and hypercapnic aquatic environments.
481	American Zoologist 37: 633-640
482	Byrne M (2011) Impact of ocean warming and ocean acidification on marine invertebrate life
483	history stages: vulnerabilities and potential for persistence in a changing ocean. In:
484	Gibson R, Atkinson R, Gordon J, Smith I, Hughes D (eds) Oceanography and Marine
485	Biology: An Annual Review. Taylor & Francis, pp 1-42
486	Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. <i>Nature</i> 425 : 365-365
487	Catarino AI, Bauwens M, Dubois P (2012) Acid-base balance and metabolic response of the
488	sea urchin Paracentrotus lividus to different seawater pH and temperatures.
489	Environmental Science and Pollution Research 19: 2344-2353
490	Clark MS, Thorne MAS, Amaral A, Vieira F, Batista FM, Reis J, Power DM (2013)
491	Identification of molecular and physiological responses to chronic environmental
492	challenge in an invasive species: the Pacific oyster, Crassostrea gigas. Ecology and
493	Evolution 3: 3283-3297
494	Clarke A (1983) Life in cold water: the physiological ecology of polar marine ectotherms.
495	Oceanography and Marine Biology 21: 341-453
496	Coe WR (1938) Influence of association on the sexual phases of gastropods having protandric
497	consecutive sexuality I. The Biological Bulletin 75: 274-285
498	Cossins AR, Bowler K (1987) Temperature biology of animals. Chapman and Hall London
499	Cummings V, Hewitt J, Van Rooyen A, Currie K, Beard S, Thrush S, Norkko J, Barr N,
500	Heath P, Halliday NJ, Sedcole R, Gomez A, McGraw C, Metcalf V (2011) Ocean
501	acidification at high latitudes: potential effects on functioning of the antarctic bivalve
502	Laternula elliptica. Plos One 6 : e16069

503	De Montaudouin X, Audemard C, Labourg P-J (1999) Does the slipper limpet (Crepidula
504	fornicata, L.) impair oyster growth and zoobenthos biodiversity? A revisited
505	hypothesis. Journal of Experimental Marine Biology and Ecology 235: 105-124
506	Decottignies P, Beninger PG, Rincé Y, Riera P (2007) Trophic interactions between two
507	introduced suspension-feeders, Crepidula fornicata and Crassostrea gigas, are
508	influenced by seasonal effects and qualitative selection capacity. Journal of
509	Experimental Marine Biology and Ecology 342: 231-241
510	Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the
511	dissociation of carbonic acid in seawater media. Deep Sea Research 34: 1733-1743
512	Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO ₂
513	measurements PICES special publication. North Pacific Marine Science
514	Organization, Sidney, British Columbia, pp 176
515	Diederich CM, Pechenik JA (2013) Thermal tolerance of Crepidula fornicata (Gastropoda)
516	life history stages from intertidal and subtidal subpopulations. Marine Ecology-
517	Progress Series 486 : 173-187
518	Dukes JS, Mooney HA (1999) Does global change increase the success of biological
519	invaders? Trends in Ecology & Evolution 14: 135-139
520	Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine
521	fauna and ecosystem processes. Ices Journal of Marine Science 65: 414-432
522	Fernandez-Reiriz MJ, Range P, Alvarez-Salgado XA, Espinosa J, Labarta U (2012) Tolerance
523	of juvenile Mytilus galloprovincialis to experimental seawater acidification. Marine
524	Ecology-Progress Series 454: 65-74
525	Fernandez-Reiriz MJ, Range P, Alvarez-Salgado XA, Labarta U (2011) Physiological
526	energetics of juvenile clams Ruditapes decussatus in a high CO ₂ coastal ocean. Marine
527	Ecology-Progress Series 433: 97-105

528	Fresard M, Boncoeur J (2006) Costs and benefits of stock enhancement and biological
529	invasion control: the case of the Bay of Brest scallop fishery. Aquatic Living
530	Resources 19: 299-305
531	Gazeau F, Quiblier C, Jansen JM, Gattuso J-P, Middelburg JJ, Heip CHR (2007) Impact of
532	elevated CO ₂ on shellfish calcification. <i>Geophysical Research Letters</i> 34 : 5
533	Guppy M, Withers P (1999) Metabolic depression in animals: physiological perspectives and
534	biochemical generalizations. Biological Reviews of the Cambridge Philosophical
535	Society 74 : 1-40
536	Gutowska MA, Melzner F, Langenbuch M, Bock C, Claireaux G, Pörtner H-O (2010) Acid-
537	base regulatory ability of the cephalopod (Sepia officinalis) in response to
538	environmental hypercapnia. Journal of Comparative Physiology B 180: 323-335
539	Gutowska MA, Pörtner H-O, Melzner F (2008) Growth and calcification in the cephalopod
540	Sepia officinalis under elevated seawater pCO ₂ . Marine Ecology-Progress Series 373:
541	303-309
542	Hale R, Calosi P, McNeill L, Mieszkowska N, Widdicombe S (2011) Predicted levels of
543	future ocean acidification and temperature rise could alter community structure and
544	biodiversity in marine benthic communities. Oikos 120: 661-674
545	Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of
546	climate change for invasive species. Cinco Consecuencias Potenciales del Cambio
547	Climático para Especies Invasoras. Conservation Biology 22: 534-543
548	Hiebenthal C, Philipp EE, Eisenhauer A, Wahl M (2013) Effects of seawater pCO ₂ and
549	temperature on shell growth, shell stability, condition and cellular stress of Western
550	Baltic Sea Mytilus edulis (L.) and Arctica islandica (L.). Marine Biology 160: 2073-
551	2087

552	Hofmann GE, Todgham AE (2010) Living in the now: physiological mechanisms to tolerate a
553	rapidly changing environment. Annual Review of Physiology 72: 127-145
554	Kroeker KJ, Gambi MC, Micheli F (2013a) Community dynamics and ecosystem
555	simplification in a high-CO ₂ ocean. Proceedings of the National Academy of Sciences
556	110 : 12721-12726
557	Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso J-P
558	(2013b) Impacts of ocean acidification on marine organisms: quantifying sensitivities
559	and interaction with warming. Global Change Biology 19: 1884-1896
560	Langenbuch M, Bock C, Leibfritz D, Pörtner H-O (2006) Effects of environmental
561	hypercapnia on animal physiology: A C-13 NMR study of protein synthesis rates in
562	the marine invertebrate Sipunculus nudus. Comparative Biochemistry and Physiology
563	A-Molecular & Integrative Physiology 144: 479-484
564	Lannig G, Eilers S, Pörtner H-O, Sokolova IM, Bock C (2010) Impact of ocean acidification
565	on energy metabolism of oyster, Crassostrea gigas - Changes in metabolic pathways
566	and thermal response. <i>Marine Drugs</i> 8 : 2318-2339
567	Lenz M, da Gama BAP, Gerner NV, Gobin J, Groner F, Harry A, Jenkins SR, Kraufvelin P,
568	Mummelthei C, Sareyka J, Xavier EA, Wahl M (2011) Non-native marine
569	invertebrates are more tolerant towards environmental stress than taxonomically
570	related native species: Results from a globally replicated study. Environmental
571	Research 111: 943-952
572	Lewis E, Wallace DWR (1998) Program developed for CO ₂ system calculations. Carbon
573	Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S.
574	Department of Energy

575	Liu W, He M (2012) Effects of ocean acidification on the metabolic rates of three species of
576	bivalve from southern coast of China. Chinese Journal of Oceanology and Limnology
577	30 : 206-211
578	Mackenzie CL, Ormondroyd GA, Curling SF, Ball RJ, Whiteley NM, Malham SK (2014)
579	Ocean warming, more than acidification, reduces shell strength in a commercial
580	shellfish species during food limitation. Plos One 9: e86764
581	Marchant HK, Calosi P, Spicer JI (2010) Short-term exposure to hypercapnia does not
582	compromise feeding, acid-base balance or respiration of Patella vulgata but
583	surprisingly is accompanied by radula damage. Journal of the Marine Biological
584	Association of the United Kingdom 90: 1379-1384
585	Marshall DJ, Perissinotto R, Holley JF (2003) Respiratory responses of the mysid
586	Gastrosaccus brevifissura (Peracarida : Mysidacea), in relation to body size,
587	temperature and salinity. Comparative Biochemistry and Physiology A-Molecular &
588	Integrative Physiology 134: 257-266
589	Martin S, Thouzeau G, Chauvaud L, Jean F, Guérin L (2006) Respiration, calcification, and
590	excretion of the invasive slipper limpet, Crepidula fornicata L.: Implications for
591	carbon, carbonate, and nitrogen fluxes in affected areas. Limnology & Oceanography
592	51 : 1996-2007
593	Martin S, Thouzeau G, Richard M, Chauvaud L, Jean F, Clavier J (2007) Benthic community
594	respiration in areas impacted by the invasive mollusk Crepidula fornicata. Marine
595	Ecology-Progress Series 347: 51-60
596	Matozzo V, Chinellato A, Munari M, Bressan M, Marin MG (2013) Can the combination of
597	decreased pH and increased temperature values induce oxidative stress in the clam
598	Chamelea gallina and the mussel Mytilus galloprovincialis? Marine Pollution Bulletin
599	72 : 34-40

600	Matozzo V, Chinellato A, Munari M, Finos L, Bressan M, Marin MG (2012) First evidence of
601	immunomodulation in bivalves under seawater acidification and increased
602	temperature. Plos One 7: e33820
603	Mehrbach C, Culberso.Ch, Hawley JE, Pytkowic RM (1973) Measurement of apparent
604	dissociation-constants of carbonic-acid in seawater at atmospheric-pressure.
605	Limnology & Oceanography 18: 897-907
606	Melatunan S, Calosi P, Rundle SD, Moody AJ, Widdicombe S (2011) Exposure to elevated
607	temperature and pCO_2 reduces respiration rate and energy status in the periwinkle
608	Littorina littorea. Physiological and Biochemical Zoology 84: 583-594
609	Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich
610	M, Pörtner H-O (2009) Physiological basis for high CO ₂ tolerance in marine
611	ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:
612	2313-2331
613	Melzner F, Stange P, Trubenbach K, Thomsen J, Casties I, Panknin U, Gorb SN, Gutowska
614	MA (2011) Food supply and seawater pCO_2 impact calcification and internal shell
615	dissolution in the blue mussel Mytilus edulis. Plos One 6: e24223
616	Metzger R, Sartoris FJ, Langenbuch M, Pörtner H-O (2007) Influence of elevated CO ₂
617	concentrations on thermal tolerance of the edible crab Cancer pagurus. Journal of
618	Thermal Biology 32: 144-151
619	Michaelidis B, Ouzounis C, Paleras A, Pörtner H-O (2005) Effects of long-term moderate
620	hypercapnia on acid-base balance and growth rate in marine mussels Mytilus
621	galloprovincialis. Marine Ecology-Progress Series 293: 109-118
622	Morley SA, Peck LS, Miller AJ, Pörtner HO (2007) Hypoxia tolerance associated with
623	activity reduction is a key adaptation for Laternula elliptica seasonal energetics.
624	Oecologia 153 : 29-36

625	Navarro JM, Torres R, Acuña K, Duarte C, Manriquez PH, Lardies M, Lagos NA, Vargas C,
626	Aguilera V (2013) Impact of medium-term exposure to elevated pCO ₂ levels on the
627	physiological energetics of the mussel Mytilus chilensis. Chemosphere 90: 1242-1248
628	Newell RC, Kofoed LH (1977) Adjustment of components of energy-balance in gastropod
629	Crepidula fornicata in response to thermal acclimation. Marine Biology 44: 275-286
630	Noisette F, Duong G, Six C, Davoult D, Martin S (2013) Effects of elevated pCO ₂ on the
631	metabolism of a temperate rhodolith Lithothamnion corallioides grown under different
632	temperatures. Journal of Phycology 49: 746-757
633	Norkko J, Thrush SF (2006) Ecophysiology in environmental impact assessment: implications
634	of spatial differences in seasonal variability of bivalve condition. Marine Ecology
635	Progress Series 326 : 175-186
636	Occhipinti-Ambrogi A (2007) Global change and marine communities: Alien species and
637	climate change. Marine Pollution Bulletin 55: 342-352Pansch C, Schaub I, Havenhand
638	J, Wahl M (2014) Habitat traits and food availability determine the response of marine
639	invertebrates to ocean acidification. Global Change Biology 20: 265-277
640	Pansch C, Schaub I, Havenhand J, Wahl M (2014) Habitat traits and food availability
641	determine the response of marine invertebrates to ocean acidification. Global Change
642	Biology 20 : 265-277
643	Parsons TR, Takahashi M, Hargrave B (1984) Biological oceanographic processes (3 rd ed). In:
644	(Eds) BH (ed), Oxford, pp 330
645	Peck LS, Clark MS, Morley SA, Massey A, Rossetti H (2009) Animal temperature limits and
646	ecological relevance: effects of size, activity and rates of change. Functional Ecology
647	23 : 248-256

648	Peck LS, Convey P, Barnes DKA (2006) Environmental constraints on life histories in
649	antarctic ecosystems: Tempos, timings and predictability, Biological Reviews 81: 75-
650	109
651	Peck LS, Morley SA, Richard J, Clark MS (2014) Acclimation and thermal tolerance in
652	Antarctic marine ectotherms. Journal of Experimental Biology 217: 16-22
653	Peck LS, Pörtner H-O, Hardewig I (2002) Metabolic demand, oxygen supply, and critical
654	temperatures in the Antarctic bivalve Laternula elliptica. Physiological and
655	Biochemical Zoology 75 : 123-133
656	Peck LS, Souster T, Clark MS (2013) Juveniles are more resistant to warming than adults in 4
657	species of Antarctic marine invertebrates. PLoS One 8: e66033
658	Peck LS, Webb KE, Bailey DM (2004) Extreme sensitivity of biological function to
659	temperature in Antarctic marine species. Functional Ecology 18: 625-630
660	Pörtner H-O (2008) Ecosystem effects of ocean acidification in times of ocean warming: a
661	physiologist's view. Marine Ecology-Progress Series 373: 203-217
662	Pörtner H-O (2012) Integrating climate-related stressor effects on marine organisms: unifying
663	principles linking molecule to ecosystem-level changes. Marine Ecology-Progress
664	Series 470 : 273-290
665	Pörtner H-O, Langenbuch M, Michaelidis B (2005) Synergistic effects of temperature
666	extremes, hypoxia, and increases in CO2 on marine animals: from Earth history to
667	global change. Journal of Geophysical Research-Oceans 110: C09S10
668	Pörtner H-O, Peck LS, Hirse T (2006) Hyperoxia alleviates thermal stress in the Antarctic
669	bivalve, Laternula elliptica: evidence for oxygen limited thermal tolerance. Polar
670	Biology 29 : 688-693
671	R Core Team (2013) R: a language and environment for statistical computing. R Foundation
672	for Statistical Computing, Vienna, Austria

673	Range P, Chicharo MA, Ben-Hamadou R, Pilo D, Fernandez-Reiriz MJ, Labarta U, Marin
674	MG, Bressan M, Matozzo V, Chinellato A, Munari M, El Menif NT, Dellali M,
675	Chicharo L (2014) Impacts of CO ₂ -induced seawater acidification on coastal
676	Mediterranean bivalves and interactions with other climatic stressors. Regional
677	Environmental Change 14 (Suppl 1): S19-S30
678	Richard J, Morley SA, Deloffre J, Peck LS (2012) Thermal acclimation capacity for four
679	Arctic marine benthic species. Journal of Experimental Marine Biology and Ecology
680	424 : 38-43
681	Sanders MB, Bean TP, Hutchinson TH, Le Quesne WJF (2013) Juvenile king scallop, Pecten
682	maximus, is potentially tolerant to low levels of ocean acidification when food is
683	unrestricted. Plos One 8: e74118
684	Schalkhausser B, Bock C, Stemmer K, Brey T, Pörtner H-O, Lannig G (2013) Impact of
685	ocean acidification on escape performance of the king scallop, Pecten maximus, from
686	Norway. <i>Marine Biology</i> 160 : 1995-2006
687	Shirayama Y, Thornton H (2005) Effect of increased atmospheric CO ₂ on shallow water
688	marine benthos. Journal of Geophysical Research: Oceans 110 (C09S08): 1-8
689	Sokolova IM, Pörtner H-O (2003) Metabolic plasticity and critical temperatures for aerobic
690	scope in a eurythermal marine invertebrate (Littorina saxatilis, Gastropoda :
691	Littorinidae) from different latitudes. Journal of Experimental Biology 206: 195-207
692	Solomon S, Quin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miler H (2007)
693	Contribution of working group I to the fourth assessment report of the
694	Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge,
695	pp 996

696	Thomsen J, Casties I, Pansch C, Kortzinger A, Melzner F (2013) Food availability outweighs
697	ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments.
698	Global Change Biology 19: 1017-1027
699	Thomsen J, Gutowska MA, Saphorster J, Heinemann A, Trubenbach K, Fietzke J, Hiebenthal
700	C, Eisenhauer A, Kortzinger A, Wahl M, Melzner F (2010) Calcifying invertebrates
701	succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of
702	future acidification. Biogeosciences 7: 3879-3891
703	Thomsen J, Melzner F (2010) Moderate seawater acidification does not elicit long-term
704	metabolic depression in the blue mussel Mytilus edulis. Marine Biology 157: 2667-
705	2676
706	Thouzeau G, Chauvaud L, Grall J, Guérin L (2000) Rôle des interactions biotiques sur le
707	devenir du pré-recrutement et la croissance de Pecten maximus (L.) en rade de Brest.
708	Comptes Rendus de l'Académie des Sciences - Series III - Sciences de la Vie 323: 815-
709	825
710	Tomanek L, Zuzow MJ, Ivanina AV, Beniash E, Sokolova IM (2011) Proteomic response to
711	elevated pCO_2 level in eastern oysters, $Crassostrea\ virginica$: evidence for oxidative
712	stress. Journal of Experimental Biology 214: 1836-1844
713	von Bertalanffy L (1951) Metabolic types and growth types. The American Naturalist 85:
714	111-117
715	Watson S-A, Peck LS, Tyler PA, Southgate PC, Tan KS, Day RW, Morley SA (2012) Marine
716	invertebrate skeleton size varies with latitude, temperature and carbonate saturation:
717	implications for global change and ocean acidification. Global Change Biology 18:
718	3026-3038
719	Willson LL, Burnett LE (2000) Whole animal and gill tissue oxygen uptake in the Eastern
720	oyster, Crassostrea virginica: effects of hypoxia, hypercapnia, air exposure, and

/21	infection with the protozoan parasite Perkinsus marinus. Journal of Experimental
722	Marine Biology and Ecology 246 : 223-240
723	Wood HL, Spicer JI, Lowe DM, Widdicombe S (2010) Interaction of ocean acidification and
724	temperature; the high cost of survival in the brittlestar Ophiura ophiura. Marine
725	Biology 157 : 2001-2013
726	Wood HL, Spicer JI, Widdicombe S (2008) Ocean acidification may increase calcification
727	rates, but at a cost. <i>Proceedings of the Royal Society B-Biological Sciences</i> 275 : 1767-
728	1773
	1773
729	
730	
731	
732	
733	
734	
735	
736	
737	
738	
739	
740 741	
741 742	
742 743	
743 744	
745	
7 4 5	
7 4 0 747	
748	
749	
750	
751	

FIGURES CAPTIONS Figure 1: Cumulated mortalities during the temperature increase. Males are represented on the graph on the top and females are on the graph in the bottom. The greyscale represent the different pCO₂ levels in which C. fornicata individuals where held during the experiment. Figure 2: Mean (± SE) conditions indices at the beginning (black bar), and at the end of the experiment for C. fornicata females (white bars) and males (grey bars) in the different pCO₂. 27 > N > 10Figure 3: Respiration rates as a function of increasing temperature in each pCO_2 treatment, for C. fornicata males (top, triangles) and females (bottom, circles). Detailed statistical analyses relative to the regressions can be found in Table 3. **Figure 4:** Mean (\pm SE) Q₁₀ values for *C. fornicata* females (white bars) and males (grey bars) in the different pCO_2 treatments. N = 3

777 TABLES

Table 1: Mean (\pm standard error, SE) carbonate chemistry parameters for each pCO_2 treatment. pH (on the total scale, pH_T) was measured daily and total alkalinity (A_T) was measured every 3 weeks. Other parameters were calculated with CO2sys software. pCO_2 : CO₂ partial pressure; Ω_{Ar} : saturation state of seawater with respect to aragonite.

<i>p</i> CO ₂ treatment	pH_T	pH_{T} $p\mathrm{CO}_{2}(\mu\mathrm{atm})$ Ω		A_T (μ Eq kg ⁻¹ SW)
	n = 69	n = 69	n = 69	n = 76
380 µatm	8.13 ± 0.01	324 ± 8	2.72 ± 0.06	2333 ± 1
550 µatm	7.89 ± 0.01	619 ± <i>16</i>	1.69 ± 0.04	2334 ± 2
750 µatm	7.75 ± 0.01	873 ± 20	1.28 ± 0.03	2335 ± 2
1000 µatm	7.66 ± 0.01	1138 ± 65	1.05 ± 0.02	2334 ± 2

Table 2: Summary of two-way ANOVAs testing the effects of pCO_2 , sex and the interaction of these two factors on the final condition indices (CI) and the Q_{10} values determined for C. *fornicata* males and females in the different pCO_2 conditions (380, 550, 750 and 1000 μ atm). Bold numbers indicate significant level greater than 95%.

		CI		Q_{10}	
	df	F-value	p-value	F-value	p-value
$p\mathrm{CO}_2$	3	1.245	0.295	0.657	0.590
sex	1	2.472	0.118	6.124	0.025
pCO_2 x sex	3	1.371	0.254	2.293	0.117

Table 3: Relationships between *C. fornicata* male and female respiration rates and
793 temperature in each pCO₂ treatment

	pCO_2	Regression equation	n	R	R²	F	p
	380	y = 3.691 x - 34.455	42	0.60	0.37	22.97	< 0.001
males	550	y = 2.993 x - 18.461	42	0.46	0.21	10.56	0.002
mates	750	y = 2.406 x - 4.543	41	0.40	0.16	7.55	0.009
	1000	y= 3.701 x - 41.556	41	0.56	0.31	17.37	< 0.001
	380	y = 1.826 x - 7.635	42	0.49	0.24	12.72	< 0.001
females	550	y = 1.585 x - 4.218	42	0.55	0.30	16.89	< 0.001
Temates	750	y = 2.637 x - 26.240	42	0.63	0.40	26.66	< 0.001
	1000	y = 1.442 x + 3.435	42	0.37	0.14	6.26	0.017