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Conjugate times and regularity of the minimum
time function with differential inclusions

Piermarco Cannarsa and Teresa Scarinci

Abstract This paper studies the regularity of the minimum time function, T (·), for
a control system with a general closed target, taking the state equation in the form
of a differential inclusion. Our first result is a sensitivity relation which guarantees
the propagation of the proximal subdifferential of T along any optimal trajectory.
Then, we obtain the local C2 regularity of the minimum time function along optimal
trajectories by using such a relation to exclude the presence of conjugate times.

1 Introduction

This paper aims to refine the study of the regularity properties of the value func-
tion of the time optimal control problem in nonparameterized form, that is, when
the state equation is given as a differential inclusion. This problem seems hard to
address by parametrization techniques, as it has been observed in the recent papers
[10], [12], [11], and [9].

Recall the minimum time problem P(x) consists of minimizing the time T over
all trajectories of a controlled dynamical system that originate from an initial point
x ∈ Rn and terminate on a compact target set K ⊆ Rn. Specifically, the problem
P(x) is

minT, (1)
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where the minimization is over all absolutely continuous arcs y(·) defined on an
interval [0,T ] that satisfy the differential inclusion{

ẏ(t) ∈ F
(
y(t)
)

a.e. t ∈ [0,T ]
y(0) = x

(2)

and the terminal condition y(T ) ∈K . Here, F : Rn ⇒ Rn is a Lipschitz continuous
sublinear multifunction such that the associated Hamiltonian

H(x, p) = sup
v∈F(x)

〈−v, p〉 (x, p) ∈ Rn×Rn

is semiconvex in x and differentiable in p. The minimum time function, T (x), is
defined as the optimal value in (1).

The main object of our analysis are sensitivity relations, that is, inclusions that
identify the dual arc as a suitable generalized gradient of the minimum time function
T (·), evaluated along a given minimizing trajectory. The importance of such rela-
tions is well acknowledged and will be made clear by the applications we provide
to the differentiability of T (·).

Sensitivity relations have a long history dating back, at least, to the papers [18],
[22], [2], and [21] that studied optimal control problems of Bolza type with finite
time horizon. In [8], such relations were adapted to the minimum time problem for
the parameterized control system

ẏ(t) = f (y(t),u(t)) t ≥ 0 (3)

assuming that:

(i) K has the inner sphere property, and
(ii) Petrov’s controllability condition is satisfied on ∂K .

For any optimal trajectory y(·) of (3) originating at a point x in the controllable set,
the result of [8] ensures the existence of an arc p, called a dual arc, such that:

• (y, p) satisfies the Hamiltonian system{
−ẏ(t) = ∇pH(y(t), p(t))

ṗ(t) ∈ ∂−x H(y(t), p(t)) 0≤ t ≤ T (x) =: T (4)

together with the transversality condition

p(T ) =− ν

H(y(T ),−ν)
,

where ν is any unit inner normal to K at y(T );
• p(t) belongs to the Fréchet superdifferential of T (·) at y(t) for all t ∈ [0,T (x)).

In [11], the above result was extended to nonparameterized control systems by de-
veloping an entirely different proof, based on the Pontryagin maximum principle
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rather than linearization techniques as in [8]. In [9], assumption (ii) above was re-
moved, still keeping (i) in force, showing that p(t) is either a proximal or a horizon-
tal supergradient of T (·) at y(t), for all t ∈ [0,T (x)), depending on whether Petrov’s
condition is satisfied or not at y(T (x)).

With respect to sensitivity relations, the purpose of the present paper is twofold:

(a) we aim to recover the conclusion of [9] for a general target K —even a point—
that is, without assuming (i) above;

(b) we will derive analogous inclusions for the the proximal subdifferential of the
minimum time function; more precisely, we will prove the propagation of the
subdifferential of T (·) along optimal trajectories.

As for point (a), the importance of which has already been explained above, we
would like to add that we have managed to remove assumption (i) by combining the
result of [9] with the fact that attainable sets from K gain the inner sphere prop-
erty for positive times. Such a property, obtained in [3] for parameterized control
systems, was generalized to systems modeled by differential inclusions in [12].

Point (b) above calls for some more explanations. By ‘propagation of the proxi-
mal subdifferential’ we mean the fact that, if a proximal subgradient of T (·) exists
at some point x of the reachable set—so that the minimum time function is differen-
tiable at x—and y(·) is a time optimal trajectory starting at x, then p(t) belongs to the
proximal subgradient of T (·) at y(t) for all t ∈ [0,T (x)). Such an invariance of the
subdifferential with respect to the Hamiltonian flow associated with (4) was pointed
out in [4] for functionals in the calculus of variations and [5] for optimal control
problems of Bolza type. A similar result was obtained in [6] for the Mayer prob-
lem and in [19] for the minimum time problem for parameterized control system. In
Theorem 3 of this paper, we show that such a property holds for the minimum time
problem with a state equation in the form of a differential inclusion.

We give two applications of the above sensitivity relations. The first one (Theo-
rem 6 below) ensures that the differentiability of T (·) propagates along an optimal
trajectory, y(·), originating at a point x of the controllable set if and only if Petrov’s
condition is satisfied at y(T (x)). This property follows directly from the above rela-
tions which guarantee that the corresponding dual arc is contained in both Fréchet
semidifferentials whenever T (·) is differentiable at x . Our second application con-
cerns the local smoothness of the minimum time function along an optimal trajec-
tory y(·), that is, the property of having continuous second order derivatives in a
neighborhood of {y(t) : 0≤ t < T (x)}. In Theorem 7, we show that this is indeed
the case whenever T (·) has a proximal subgradient at the starting point of y(·).

In order to prove the local smoothness of T (·) along an optimal trajectory we
need to analyze conjugate times, and give sufficient conditions to exclude the pres-
ence of such times. The notion of conjugate point is classical in the calculus of
variations and optimal control. Recently, conjugate times have been considered in
[19] linearizing the system on the whole Rn but neglecting the role of the time vari-
able. In such a paper, the degeneracy condition is assigned on the tangent space
to the target, which is an (n− 1)-dimensional space and the authors show that the
absence of conjugate times at a point x ensures the C1-smoothness of T (·) along
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the trajectory originating at x. In this paper, we return to the ‘classical’ definition
of conjugate point and formulate a sufficient condition for smoothness in terms of
conjugate times (see Theorem 2), much in the spirit of the result of [16].

The paper is organized as follows. Background material is collected in Section
2. In Section 3, we recall preliminary results and discuss the main assumptions we
work with. Section 4 is devoted to the analysis of conjugate times. Section 5 contains
our sensitivity relations and their applications to regularity.

2 Notation

Let us fix the notation and list some basic facts. Further details can be found in sev-
eral books, for instance [1, 14, 17, 23].

We denote by | · | the Euclidean norm in Rn and by 〈·, ·〉 the inner product. B(x,ε)
is the closed ball of radius ε > 0 centered at x, and Sn−1 the unit sphere in Rn. Rn×n

is the set of n×n real matrices and ‖ Q ‖ is the operator norm of a matrix Q, while
In is the n× n identity matrix. Recall that ‖ Q ‖= sup{|〈Ax,x〉| : x ∈ Sn−1} for any
symmetric n×n real matrix Q. Moreover, coE, ∂E, E and EC are the convex hull,
the boundary, the closure and the complement of a set E ⊂ Rn, respectively.

Let K be a closed subset of Rn and x ∈ K. NC
K(x) denotes the Clarke normal

cone to K at x. A vector v ∈ R is a proximal (outer) normal to K at x, and we write
v ∈ NP

K(x), if there exists σ = σ(x,v) such that, for all y ∈ K,

〈v,y− x〉 ≤ σ |y− x|2. (5)

In K is a convex subset of Rn, the proximal normal cone to K at x coincides with the
convex normal cone to K at x.
We say that K satisfies the inner sphere property of radius R, R > 0, if for every
x ∈ ∂K there exists a nonzero vector νx ∈ NP

KC(x) such that (5) holds true with
σ = |νx|(2R)−1 and v = νx and for all y ∈ KC. Equivalently, for all x ∈ ∂K there
exists a vector 0 6= νx ∈ NP

KC(x) realized by a ball of radius R, that is,

B
(

x+R
νx

| νx |
,R
)
⊂ K.

Roughly speaking, if K satisfies the inner sphere property of radius R then we have
an upper bound for the curvature of ∂K, even though ∂K may be a nonsmooth set.
Indeed, any x ∈ ∂K belongs to some closed ball yx +RB(0,1) ⊂ K. This fact sug-
gests that, in some sense, the curvature of ∂K is bounded above and excludes the
presence of outward pointing corners on ∂K.
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If f : [t0, t1]→ Rn is continuous, f ∈C([t0, t1]), define ‖ f‖∞ = maxt∈[t0,t1] | f (t)|.
Moreover, we usually refer to an absolutely continuous function x : [t0, t1]→ Rn

as an arc. The space Ck(Ω), where Ω is an open subset of Rn, is the space of all
functions that are continuously differentiable k times on Ω . The gradient of f is
∇ f (·), if it does exist. Moreover, if f is twice differentiable at some x ∈ Ω , then
∇2 f (x) denotes the Hessian of f at x. Let f : Ω → R be any real-valued function
defined on an open set Ω ⊂ Rn. Let x ∈Ω and p ∈ Rn. We say that:

• p is a Fréchet subgradient of f at x, p ∈ ∂− f (x), if

liminf
y→x

f (y)− f (x)−〈p,y− x〉
| y− x |

≥ 0,

• p is a Fréchet supergradient of f at x, p ∈ ∂+ f (x), if

limsup
y→x

f (y)− f (x)−〈p,y− x〉
| y− x |

≤ 0,

• p is a proximal subgradient of f at x, p ∈ ∂−,P f (x), if ∃ c, ρ ≥ 0 such that

f (y)− f (x)−〈p,y− x〉 ≥ −c|y− x|2, ∀y ∈ B(x,ρ),

• p is a proximal supergradient of f at x, p ∈ ∂+,P f (x), if ∃ c, ρ ≥ 0 such that

f (y)− f (x)−〈p,y− x〉 ≤ −c|y− x|2, ∀y ∈ B(x,ρ),

• p is a horizontal proximal supergradient of f at x, p ∈ ∂ ∞ f (x), if (p,0) ∈
NP

epi( f )(x, f (x)), where epi( f ) stands for the ephigraph of the function f .

If f is Lipschitz, ζ ∈ Rn is a reachable gradient of f at x ∈ Ω if there exists a
sequence {x j} ⊂ Ω converging to x such that f is differentiable at x j for all j ∈ N
and ζ = lim j→∞ ∇ f (x j). Let ∂ ∗ f (x) denote the set of all reachable gradients of f at
x. The (Clarke) generalized gradient of f at x ∈Ω , ∂ f (x), is the set co(∂ ∗ f (x)).
For an open set Ω ⊂ Rn, f : Ω → R is semiconcave if it is continuous in Ω and
there exists a constant c such that

f (x+h)+ f (x−h)−2 f (x)≤ c|h|2,

for all x,h ∈Rn such that [x−h,x+h]⊂Ω . We say that a function f is semiconvex
on Ω if and only if − f is semiconcave on Ω . We recall below some properties of
semiconcave functions (for further details see, for instance, [14]).

Proposition 1. Let Ω ⊂ Rn be open, f : Ω → R be a semiconcave function with
semiconcavity constant c, and let x ∈ Ω . Then, f is locally Lipschitz on Ω and the
following holds true

1. p ∈ Rn belongs to ∂+ f (x) if and only if, for any y ∈Ω such that [y,x]⊂Ω ,

f (y)− f (x)−〈p,y− x〉 ≤ c|y− x|2. (6)
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2. ∂ f (x) = ∂+ f (x) = co (∂ ∗ f (x)).
3. If ∂+ f (x) is a singleton, then f is differentiable at x.

If f is semiconvex, then (6) holds reversing the inequality and the sign of the
quadratic term, and the other two statements are true with the subdifferential in-
stead of the superdifferential.

Let M ⊂ Rn be a Cm-manifold of dimension n−1 and fix ξ0 ∈M. Let A⊂ Rn−1

be an open set, let φ : A→ Rn be a map of class Cm such that φ(A) ⊂ M, Dφ(y)
has rank equal to n− 1 for all y ∈ A and φ(η0) = ξ0 for some η0 ∈ A. We call
φ a local parameterization of M near ξ0. The components (η1, ...ηn−1) of a point
η = φ−1(ξ ) ∈ A are usually called local coordinates of ξ ∈M.
An application F : M→ Rn is of class Ck at ξ0 ∈ M if the map F ◦ φ−1 : φ(A)→
Rn is of class Ck at ν0 := φ−1(ξ0) for any local parameterization φ of M near ξ0.
Equivalently, F : M→Rn is of class Ck at ξ0 if there exists a local parameterization
φ of M near ξ0 such that F ◦φ−1 is of class Ck at η0 := φ−1(ξ0).

3 Assumptions and preliminary results

The minimum time problem P(x) consists of minimizing the time T over all tra-
jectories of a differential inclusion that start from an initial point x ∈ Rn and reach
a nonempty compact set K ⊆ Rn, usually called target. Specifically, for any abso-
lutely continuous function yx(·)∈ AC([0,+∞);Rn) that solves the differential inclu-
sion {

ẏ(t) ∈ F
(
y(t)
)

a.e. t ≥ 0
y(0) = x,

(7)

let us denote by
θ(yx(·)) := inf{t ≥ 0 : yx(t) ∈K }

the first time at which the trajectory yx(·) reaches the target K starting from x.
By convention, we set θ(yx(·)) = +∞ whenever yx(·) does not reach K . Here and
throughout the paper, F : Rn ⇒ Rn is a given multifunction that satisfies the so-
called Standing Hypotheses:

(SH)


1)F(x) is nonempty, convex, and compact for each x ∈ Rn,

2)F is locally Lipschitz with respect to the Hausdorff metric,
3) there exists ρ > 0 so that max{|v| : v ∈ F(x)} ≤ ρ(1+ |x|).

The minimum time function T : Rn→ [0,+∞] is defined by: for all x ∈ Rn,

T (x) := inf{θ(yx(·)) : yx(·) solves (7)}. (8)

T (x) represents the minimum time needed to steer the point x to the target K along
the trajectories of (7). It is well-known that (SH) guarantees the existence of ab-
solutely continuous solutions to (7) defined on [0,+∞). Moreover, if x is in the
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reachable set R (i.e. T (x) < +∞) then P(x) has an optimal solution, that is, a so-
lution to (7) that gives the minimum in (8). The main assumptions of this paper are
expressed in terms of the Hamiltonian H : Rn×Rn→R associated to F , that is, the
function defined by

H(x, p) = sup
v∈F(x)

〈−v, p〉. (9)

We shall suppose that

(H)



∀r > 0
1)∃ c≥ 0 so that , ∀p ∈ Sn−1, x 7→ H(·, p) is semiconvex on B(0,r)
with constant c,

2)∇pH(x, p) exists and is Lipschitz in x on B(0,r), uniformly for
p ∈ Rn r{0}.

We recall that (H) was introduced for the minimum time problem in [10] to derive
sufficient conditions for the semiconcavity of the minimum time function. We refer
the reader to [6, 15] for a detailed discussion of (H).

Remark 1. Actually, in [6, 15] the authors suppose that the Hamiltonian H+(x, p) :=
supv∈F(x)〈v, p〉 satisfies (H). On the other hand, it is easy to compute that H+(x, p)=
H(x,−p), and so H+ satisfies (H) if and only if so does H.

We recall below a classical result known as Maximum principle for the minimum
time problem. It yields as necessary condition for the optimality of a trajectory x(·)
the existence of a dual arc p(·) such that the pair (x, p) satisfies an Hamiltonian
inclusion and a transversality condition.

Theorem 1. Assume that (SH) and (H) hold. Suppose x(·) is an optimal solution of
the minimum time problem P(x), reaching the target K at time T := T (x). Then
there exists an absolutely continuous arc p : [0,T ]→Rn, p(·) 6= 0, such that for a.e.
t ∈ [0,T ], {

−ẋ(t) = ∇pH(x(t), p(t)),
ṗ(t) ∈ ∂−x H(x(t), p(t)), p(T ) ∈ NC

K (x(T )). (10)

The classical formulation of the above theorem (see, for instance, [17]) is expressed
in terms of the “complete” Hamiltonian system (ẋ, ṗ) ∈ ∂H(x, p) (where ∂H stays
for Clarke’s generalized gradient of H in (x, p)). However, the “splitting Lemma” in
[7] (Lemma 2.9) guarantees that under our assumptions these two formulations are
equivalent.

Remark 2. (a) Let (x, p) be a solution to the Hamiltonian inclusion{
−ẋ(t) ∈ ∂−p H(x(t), p(t)),

ṗ(t) ∈ ∂−x H(x(t), p(t)),
a.e. in [t0,T ]. (11)

Then, there are only two possible cases:

– either p(t) 6= 0 for all t ∈ [t0,T ],
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– or p(t) = 0 for all t ∈ [t0,T ].

Indeed, consider r > 0 such that x([t0,T ])⊂B(0,r). If we denote by cr a Lipschitz
constant for F on B(0,r), then cr|p| is a Lipschitz constant for H(·, p) on B(0,r).
Thus,

|ζ | ≤ cr|p| ∀ζ ∈ ∂
−
x H(x, p), ∀x ∈ B(0,r), ∀p ∈ Rn. (12)

Hence, |ṗ(s)| ≤ cr|p(s)| for a.e. s ∈ [t0,T ]. Therefore, Gronwall’s Lemma allows
to conclude.

(b) If (x, p) is a solution to (11), then for any λ > 0 the pair (x,λ p) solves (10)
as well. Indeed, by the positive 1-homogeneity in p of the Hamiltonian, that
is H(x,λ p) = λH(x, p) for all λ > 0, x, p ∈ Rn, it follows that ∂xH(x,λ p) =
λ∂xH(x, p) and ∂pH(x,λ p) = ∂pH(x, p) for all λ > 0, x, p∈Rn. Thus, the proof
of our claim is an easy verification.

For our aims, sometimes we shall need more refined necessary conditions than the
ones in Theorem 1. Assuming the interior sphere property on the target K allows
to further specify the transversality condition.

Proposition 2. Assume that (SH) and (H) hold. Suppose x(·) is an optimal solution
for the minimum time problem P(x), reaching the target K at time T := T (x), and
that there exists 0 6= ν ∈ NP

K C(x(T )) realized by a ball of radius R, that is,

B
(

x(T )+R
ν

| ν |
,R
)
⊂K .

Then there exists an absolutely continuous arc p : [0,T ]→ Rn, p(·) 6= 0, such that
for a.e. t ∈ [0,T ], {

−ẋ(t) = ∇pH(x(t), p(t)),
ṗ(t) ∈ ∂xH(x(t), p(t)), p(T ) =−ν . (13)

Proof. The trajectory x(·) is time-optimal even for the problem obtained replacing
the target K by the ball B1 := B

(
x(T )+Rν | ν |−1,R

)
. Moreover, NC

B1
(x(T )) =

{−ν}. Thus, applying Theorem 1 to this new problem we prove our claim.

Remark 3. If we suppose in addition that

µ(−ν) := H(x(T ),−ν)−1 > 0, (14)

then the above theorem together with Remark 2 (ii) gives that there exists an ab-
solutely continuous arc p : [0,T ]→ Rn, p(·) 6= 0, such that (x, p) solves, for a.e.
t ∈ [0,T ], {

−ẋ(t) = ∇pH(x(t), p(t)),
ṗ(t) ∈ ∂xH(x(t), p(t)), p(T ) =−µ(−ν)ν . (15)

In addition to our assumptions on F and H, further hypotheses on the target set
K might be needed, such as the inner sphere property and the so-called Petrov
condition we recall below:
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(PC) ∃δ > 0 such that H(x,ζ )≥ δ‖ζ‖ for all x ∈ ∂K and all ζ ∈ NP
K (x).

Assumption (PC) turns out to be equivalent to the Lipschitz continuity of the mini-
mum time function T (·) in a neighborhood of K . It is also necessary for the semi-
concavity of T (·) up to a boundary of K and equivalent to the validity of a bound
of T in terms of the distance function from the target K , which is defined as

dK : Rn→ R+, dK (x) := inf{| y− x |: y ∈K }.

Recall, among the other things, that assuming Petrov’s condition on the target K
guarantees that (14) always holds true. For a comprehensive treatment and further
references on this subject we refer to the book [14]. In sections 4 and 5.4 we shall
also assume that

(A) ∂K is an (n−1)-dimensional manifold of class C2.

Whenever (A) holds true, K satisfies the inner sphere property with a uniform
positive radius. Moreover, the signed distance from the target K , that is,

bK : Rn→ R, bK (·) := dK (·)−dK C(·),

is a function of class C2 in a neighborhood of ∂K , and −∇bK (ξ ) is a proximal
(outer) normal to K C at ξ ∈ ∂K with unit norm.

4 Conjugate times for the minimum time problem

The aim of this section is to extend the main result in [16] to the minimum time
problem. More precisely, we show that the absence of conjugate times is equivalent
to the propagation of the local regularity of the minimum time function. Let us
mention that a partial result in this framework has been recently given in [19]. On
the other hand, our notion of conjugate time is more in the spirit of [20] and allows
to recover a stronger result than the one in [19].

4.1 Conjugate times for the minimum time problem

In this section, we assume (SH), (PC), and (A) and suppose that the Hamiltonian H
is of class C2(Rn× (Rn \{0})). Given ξ ∈ ∂K , set g(ξ ) := µ(ξ )∇bK (ξ ), where
µ(ξ )> 0 is the unique positive constant such that H(ξ ,µ(ξ )∇bK (ξ )) = 1, which
we know to exist under assumption (PC). Recall also that, thanks to (A), the function
g is of class C1 in a neighborhood of ∂K . Therefore, we denote by (Y (ξ , ·),P(ξ , ·))
the solution of the backward Hamiltonian system{

Ẏ (t) = ∇pH(Y (t),P(t)), Y (ξ ,0) = ξ ,
−Ṗ(t) = ∇xH(Y (t),P(t)), P(ξ ,0) = g(ξ ). (16)
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We recall that for any ξ ∈ ∂K the solution (Y (ξ , ·),P(ξ , ·)) to (16) is well-defined
on [0,+∞) and the functions Y, P are of class C1(∂K × [0,+∞)) (for the proof of
these facts see, for instance, Section 3 in [20]).
Since ∂K is a C2-manifold of dimension n−1, for any ξ0 ∈ ∂K there exist a C2

local parameterization of ∂K :

φ : A⊂ Rn−1→ Rn, η → φ(η) = ξ .

Set η0 := φ−1(ξ0). Let us denote by Yξ ,t(ξ , t) and Pξ ,t(ξ , t) the Jacobians of
Y (φ(·), ·) and P(φ(·), ·) with respect to the state variable η ∈Rn−1 and time, that is,

Yξ ,t(ξ , t) = Yη ,s(φ(η), t), Pξ ,t(ξ , t) = Pη ,s(φ(η), t).

Therefore, note that Yξ ,t(ξ , t) and Pξ ,t(ξ , t) belong to Rn×n and the pair (Yξ ,t ,Pξ ,t)
solves the variational system Ẏξ ,t = Hxp(Y,P)Yξ ,t +Hpp(Y,P)Pξ ,t , Yξ ,t(ξ ,0) =

(
∂φ

∂η
(η),∇pH(ξ , p)

)
,

−Ṗξ ,t = Hxx(Y,P)Yξ ,t +Hpx(Y,P)Pξ ,t , Pξ ,t(ξ ,0) =
(

∂g
∂η

(φ(η)),−∇xH(ξ , p)
)
,

(17)
where we have set p := µ(ξ )∇bK (ξ ). Matrix Yξ ,t(ξ ,0) is invertible; indeed, by
(PC) and the choice of µ(·) it follows that

0 6= µ(ξ )−1H(ξ ,µ(ξ )∇bK (ξ )) = 〈∇pH(ξ ,µ(ξ )∇bK (ξ )),∇bK (ξ )〉.

Thus, the vector µ(ξ )∇bK (ξ ) is non-characteristic for the data g(·), that is,

〈∇pH(ξ ,µ(ξ )∇bK (ξ )),∇bK (ξ )〉 6= 0.

It is natural to introduce the following definition of conjugate time.

Definition 1. Let ξ0 ∈ ∂K and let φ a local C2 parameterization of ∂K near ξ0.
Let (Yξ ,t ,Pξ ,t) be the solution to (17). Define

t = sup{t ∈ [0,+∞) : detYξ ,t(ξ0,s) 6= 0 for all s ∈ [0, t]}.

The time t is called conjugate for ξ0 if t <+∞.

Thus, if t is conjugate for ξ0 then detYξ ,t(ξ0, t) = 0.
Note that the solution (Yξ ,t ,Pξ ,t) to (17) depends on the parameterization φ . On
the other hand, the ranks of the values of the maps Yξ ,t(ξ0, ·) and Pξ ,t(ξ0, ·) are
independent of the particular choice of φ , as well as the above definition of conjugate
time.
By standard techniques one deduces that if detYξ ,t(ξ0, t) 6= 0, then there exists a
neighborhood of (ξ0, t) in ∂K ×R such that the matrix Yξ ,t(ξ ,s) is nonsingular
for any vector (ξ ,s) in such a neighborhood. Furthermore, if there are no conjugate
times for ξ0 on some interval [0,a], then the map Y (·, ·) provides a diffeomorphism
from a neighborhood Jξ0

×Ut of (ξ0, t) in ∂K ×R onto its image for all t ∈ [0,a].
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Moreover, it is easy to check that the function R(ξ0, t) := Pξ ,t(ξ0, t)Y−1
ξ ,t (ξ0, t), as

long as Yξ ,t(ξ0, t) is invertible, solves the Riccati equation{
Ṙ+Hpx(Y,P)R+RHxp(Y,P)+RHpp(Y,P)R+Hxx(Y,P) = 0,
R(ξ0,0) = Pξ ,t(ξ0,0)Y−1

ξ ,t (ξ0,0).
(18)

For a fixed θ ∈Rn \{0} and for any t > 0, let us denote by w(t) the 2n-vector given
by (Yξ ,t(ξ0, t)θ ,Pξ ,t(ξ0, t)θ). It is easy to check that w(·) solves a linear differential
system with nonzero initial data, since Yξ ,t(ξ0,0) has rank n. By well-known prop-
erties of linear systems, it follows that w(t) 6= 0 for all t > 0. This means that for
any θ ∈ Rn r{0} and t > 0,

Yξ ,t(ξ0, t)θ = 0 ⇒ Pξ ,t(ξ0, t)θ 6= 0.

Therefore, it is easy to understand that a time t is conjugate for ξ0 if and only if
[0, t) is the maximal interval of existence of the solution R(ξ0, ·) to (18) and t <+∞.
Thus, t is a finite blow-up time for R(ξ0, ·), that is,

lim
t↘t
‖ R(ξ0, t) ‖=+∞.

If (Y,P) is given on a finite time interval [0,T ], then the above definition of con-
jugate time can be adapted, by saying that t ∈ [0,T ] is a conjugate time for ξ0 if
and only if detYξ ,t(ξ0, t) 6= 0 for all t ∈ [0, t) and detYξ ,t(ξ0, t) = 0. Equivalently,
t is a conjugate time for ξ0 if and only if Rξ ,t(ξ0, ·) is well defined on [0, t) and
limt↘t ‖ Rξ ,t(ξ0, t) ‖=+∞.

4.2 Local regularity of the minimum time function and conjugate
times

Let ξ0 ∈ ∂K and t ≥ 0. Given an open neighborhood Vξ0
× It of (ξ0, t) in ∂K ×R,

define the set

M(Vξ0
×Ut) := {(Y (ξ ,s),P(ξ ,s))| (Y,P) solves (16) with ξ ∈Vξ0

, s ∈Ut}.

When t > 0, the set Ut may be viewed as an interval of the form (t− b, t + b) for
some b > 0 and when t = 0 as the interval (0,b).

Theorem 2. Let us assume (SH), (PC) and (A) and suppose that the Hamiltonian
H is of class C2(Rn× (Rn \{0})). Fix t > 0. Then, the following two statements are
equivalent:

(i) for all t ∈ [0, t], there exists an open neighborhood Vξ0
× It of (ξ0, t) in ∂K ×R

such that the set

D(Vξ0
× It) := {Y (ξ ,s)|(Y,P) solves (16), with ξ ∈Vξ0

, s ∈ It} (19)
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is an open subset of Rn, and M(Vξ0
× It) is the graph of a C1 function on D(Vξ0

×
Ut);

(ii) there are no conjugate times for ξ0 on [0, t].

In [16], Caroff and Frankowska analysed the link between conjugate points and
regularity of the value function V for Bolza optimal control problems, showing that
the first emergence of a conjugate point corresponds to the first time when V stops
to be locally smooth along optimal trajectories. In Theorem 2 we prove that the
same kind of result holds true also for the minimum time problem. We note that our
result cannot be deduced from the one in [16]—even though the technique of proof
is similar—because the definition of conjugate time we use in this paper is different
from the one therein. For this reason, we give below the proof of the implication
(ii)⇒ (i), which is the one needed to derive Theorem 7.

Proof. Suppose that there are no conjugate times for ξ0 on [0, t]. We want to show
that there exists a neighborhood Vξ0

× It of (ξ0, t) in ∂K ×R such that M(Vξ0
×Ut)

is a graph of a C1 function on D(Vξ0
× It), for all t ∈ [0, t]. Actually, we shall prove,

first, that M(Vξ0
×Ut) is a graph of a Lipschitz function with Lipschitz constant

uniform in [0, t]. So, proceeding by contradiction, let us fix any neighborhood Vξ0
×

It of (ξ0, t) in ∂K ×R and let us consider the compact set Πt := M(Vξ0
× It) for all

t > 0. It is a well-known fact that there exists a time t∗ > 0 such that Πt is a graph
of a Lipschitz function for all t ∈ [0, t∗]. Let a = supT , where

T := {t ∈ [0, t] : ∃kt ≥ 0 s.t. Πs is a graph of a kt -Lipschitz function

Φs : D(Vξ0
× Is)→ Rn for all s ∈ [0, t]}.

Aiming to a contradiction, suppose that a 6∈ T , i.e., Πa is not the graph of a
k-Lipschitz function. Then, fix t ∈ [0,a). Since detYξ ,t(ξ0, t) 6= 0, without loss
of generality, we can suppose that for any vector (ξ ,s) ∈ Vξ0

×Ut we have that
detYξ ,t(ξ ,s) 6= 0. Moreover, Y (·, ·) : Vξ0

×Ut → Rn is an injective continuous map.
Thus, Y (Vξ0

,Ut) is an open set by Brouwer’s invariance of domain theorem. Note
that D(Vξ0

×Ut)≡ Y (Vξ0
,Ut). Consequently, D(Vξ0

×Ut) is open and its closure is

D(Vξ0
×Ut) := {Y (ξ ,s)|(Y,P) solves (16) with ξ ∈Vξ0

, s ∈Ut}.

Note that the map Φt is a.e. differentiable on D(Vξ0
×Ut) for all t ∈ [0,a). Since Πa

is not a Lipschitz graph, there exist two sequences ti↗ a and {xi}i∈N ⊂D(Vξ0
×Uti)

such that
‖ DΦti(xi) ‖→+∞.

Equivalently, we can find a sequence of vectors {ui,vi}i∈N ⊂ Rn ×Rn such that
DΦti(xi)ui = vi, |vi|= 1 for all i ∈ N and |ui| → 0 as i→+∞.
Since {xi}i∈N ⊂D(Vξ0

×Uti), there exist a sequence of vectors {ξi}i ⊂Vξ0
and one

of times si ∈Uti such that the solution (Y (ξi, ·),P(ξi, ·)) to (16) solves Y (ξi,si) = xi
and P(ξi,si) = Φti(xi). Now, let us consider the linearization of the system associ-
ated to (Y (ξi, ·),P(ξi, ·)) at (xi, pi) given by the solution (wi,qi) to
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ẇi = Hxp(Y (ξi, t),P(ξi, t))wi +Hpp(Y (ξi, t),P(ξi, t))qi, wi(si) = ui,
−q̇i = Hxx(Y (ξi, t),P(ξi, t))wi +Hpx(Y (ξi, t),P(ξi, t))qi, qi(si) = vi.

(20)

Consequently,

DΦti(xi)wi(si) = qi(si), |wi(si)| → 0 and |qi(si)|= 1. (21)

After possibly passing to a subsequence, we may assume that the sequence {ξi}i∈N
converges to some vector ξ ∈Vξ0

and {si}i∈N to some time s∈Ut , as i→+∞. Then,
passing to the limit as i→+∞, it is easy to deduce from (21) that the vector ξ has a
conjugate time equal to s, i.e., detYξ ,t(ξ ,s) = 0. Since (ξ ,s) ∈Vξ0

×Ut , we obtain a
contradiction. Therefore, Πt is a graph of a Lipschitz function for all t ∈ [0, t]. Since
g is of class C1 in a neighborhood of ∂K , by well-known properties of linearized
systems we deduce that, for every parameterization φ of Vξ0

, Φt ◦φ−1 is of class C1

and (i) holds true.

Remark 4. Suppose that the map Φt is of class C1 on the set D(Vξ0
×Ut) for all

t ∈ [0, t]. Then, it is easy to understand that its Jacobian is given by: for all ξ ∈ Vξ0
and s ∈Ut ,

DΦt(Y (ξ ,s)) = Pξ ,t(ξ ,s)Yξ ,t(ξ ,s)
−1,

in the sense that the matrix

Pη ,t(φ(η),s)Yη ,t(φ(η),s)−1

represents the Jacobian of Φt at Y (ξ ,s) in the system of local coordinates (η1, ...ηn−1)
induced by a parameterization φ of Vξ0

.

A characteristic Y (ξ , ·), with ξ ∈ ∂K , is said to be optimal in some interval
[0,τ] if it coincides with an optimal trajectory y(·) starting from Y (ξ ,τ) running
backward in time, that is, Y (ξ , t) = y(τ−t), for all t ∈ [0,τ]. By the classical method
of characteristics, one can deduce that any characteristic Y (ξ , ·) is optimal in [0,τ∗)
for some time τ∗ > 0. Theorem 2 allows to deduce that this result holds true as long
as there are no conjugate times.

Corollary 1. Assume that H is of class C2(Rn× (Rn×{0})) and g is of class C1 in
an open neighborhood of ∂K . If there are no conjugate times for ξ0 on the interval
[0, t], then there exists a neighborhood of ξ0 in ∂K , Vξ0

, such that Y (ξ , ·) is optimal
on [0, t] for any ξ ∈Vξ0

.

4.3 A characterization of conjugate times

In this subsection, let us assume (SH), (PC) and (A) and suppose that the Hamil-
tonian H is of class C2(Rn× (Rn \ {0})). Let us denote by Yξ (ξ , t) and Pξ (ξ , t)
the Jacobian of Y (φ(·), t) and P(φ(·), t) with respect to the state variable η ∈ Rn−1

evaluated at (ξ , t), that is,
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Yξ (ξ , t) = Yη(φ(η), t), Pξ (ξ , t) = Pη(φ(η), t).

One can easily check that the pair (Yξ (ξ , ·), Pξ (ξ , ·)) takes values in Rn×(n−1)×
Rn×(n−1) and solves the system{

Ẏξ = Hxp(Y,P)Yξ +Hpp(Y,P)Pξ , Yξ (ξ ,0) =
∂φ

∂η
(η),

−Ṗξ = Hxx(Y,P)Yξ +Hpx(Y,P)Pξ , Pξ (ξ ,0) =
∂g
∂η

(φ(η)).
(22)

In the case of a strictly convex Hamiltonian in p, the notion of conjugate time can
be characterized through the solution of the above system (see [20, Theorem 6.1]).
Let us now introduce the hypothesis:

(H2) The kernel of Hpp(x, p) has dimension equal to 1 for every (x, p) ∈ Rn×
(Rn r{0}), i.e., kerHpp(x, p) = p R.

We will show that also under the weaker assumption (H2) a similar characterization
can be provided.

Proposition 3. Suppose that H satisfies (H2). For any t > 0, it holds that detYξ ,t(ξ , t)=
0 if and only if rkYξ (ξ , t)< n−1.

To prove the above proposition, we need the following lemma.

Lemma 1. Under the assumptions of Proposition 3, it holds that, for any t > 0,

d
ds

detYξ ,s(ξ ,s) |s=t 6= 0 ⇐⇒ rkYξ ,t(ξ , t) = n−1.

Proof. First, suppose that rkYξ ,t(ξ , t) = n− 1. Following the same reasoning as in
the proof of [20, Lemma 4.3], we have that

d
ds

detYξ ,s(ξ ,s) |s=t= tr
(

Hpp(Y (ξ , t),P(ξ , t))Pξ ,t(ξ , t)Y
+
ξ ,t(ξ , t)

)
.

Moreover, if θ is such that kerYξ ,t(ξ0, t) = θR, then by [20, Lemma 4.2] there exists
c > 0 such that

d
ds

detYξ ,s(ξ ,s) |s=t= cHpp(Y (ξ , t),P(ξ , t))Pξ ,t(ξ , t)θ ·Pξ ,t(ξ , t)θ . (23)

We claim that Pξ ,t(ξ , t)θ 6∈ kerHpp(Y (ξ , t),P(ξ , t)). If not, there exists λ ∈R\{0}
such that Pξ ,t(ξ , t)θ = λP(ξ , t). Now, observe that for all ξ ∈ ∂K and all t ≥ 0 it
holds that H(Y (ξ , t),P(ξ , t)) = 1. Hence, taking the Jacobian of this map at (ξ , t)
and recalling that kerYξ ,t(ξ0, t) = θR we obtain that

0 = 〈Yξ ,t(ξ , t)θ ,Hx(Y (ξ , t),P(ξ , t))〉+ 〈Pξ ,t(ξ , t)θ ,Hp(Y (ξ , t),P(ξ , t))〉

= 〈Pξ ,t(ξ , t)θ ,Hp(Y (ξ , t),P(ξ , t))〉.

On the other hand, since we are assuming that Pξ ,t(ξ , t)θ = λP(ξ , t), we have



Conjugate times and regularity of the minimum time function 15

〈Pξ ,t(ξ , t)θ ,Hp(Y (ξ , t),P(ξ , t))〉= 〈λP(ξ , t)θ ,Hp(Y (ξ , t),P(ξ , t))〉
= λ 〈P(ξ , t)θ ,Hp(Y (ξ , t),P(ξ , t))〉= λH(Y (ξ , t),P(ξ , t)) = λ ,

that is in clear contradiction with the equality that is above it. This finally shows that
Pξ ,t(ξ , t0)θ 6∈ kerHpp(Y (ξ , t),P(ξ , t)), and so from (23) we obtain that

d
ds

detYξ ,s(ξ ,s) |s=t> 0.

For the other implication, we refer the reader to the proof of [20, Lemma 4.3].

Proof (Proof of Proposition 3). It is sufficient to show that if detYξ ,t(ξ , t) = 0
then rkYξ (ξ , t) < n− 1. Aiming at a contradiction, suppose detYξ ,t(ξ , t) = 0 but
rkYξ (ξ , t) = n−1. Hence, the vectors Yηi(ξ , t), i = 1, ...,n−1, are linearly indepen-
dent and, by continuity, there exists δ > 0 such that for any time s∈ (t−δ , t+δ ) the
vectors Yηi(ξ0, t), i = 1, ...,n− 1, are still linearly independent. We can distinguish
to cases:

1. there exists a sequence of times tk → t as k→ ∞ such that detYξ ,t(ξ , tk) = 0 for
all k,

2. there exists a constant δ ′ ∈ (0,δ ) such that detYξ ,t(ξ ,s) 6= 0 for all s∈ (t−δ ′, t+
δ ′).

For the discussion of the first case, we refer the reader to the proof of [20, Theorem
6.1]. In the second case, we have that

d
ds

detYξ ,s(ξ ,s) 6= 0 for all s ∈ (t−δ
′, t +δ

′).

Then, Lemma 1 implies that rkYξ ,t(ξ , t)< n−1 and this yields the contradiction.

Under the additional assumption (H2), the above proposition gives an equivalent
characterization of conjugate times considering only the spatial Jacobian of the map
Y (·, ·). More specifically, it follows that a time t is conjugate for ξ0 if and only if

t = sup{t ∈ [0,+∞) : rkYξ (ξ0,s) = n−1 for all s ∈ [0, t]},

and t <+∞. Consequently, rkYξ (ξ0, t)< n−1.

Remark 5. Let us suppose that (H2) holds true. If there is no conjugate time for ξ0
on [0, t], then Y (t, ·) maps a neighborhood Iξ0

of ξ0 in ∂K onto the level sets of the
minimum time function, that is, for all t ∈ [0, t],

Y (t, ·) : Iξ0
→ Γt ⊂ Rn−1,

where Γt := {x ∈ Rn : T (x) = t}. Moreover, Y (t, ·) gives a diffemorphism from a
neighborhood of ξ0 in ∂K onto an open neighborhood of Γt , for any time t smaller
than the conjugate time t.
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5 First-order sensitivity relations for the minimum time problem
and some applications

The scope of this section is twofold. First, we discuss some sensitivity relations
of first order. Subsequently, we apply these results to derive sufficient conditions
for the propagation of the regularity of the minimum time function along optimal
trajectories.

5.1 Proximal subdifferentiability of the minimum time function

The forward propagation of the dual arc into the proximal subdifferential of T is
already known for minimum time problems when the dynamic is described by a
control system with sufficiently smooth dynamics (see [19]). We shall extend this
result to the differential inclusion case.
Theorem 3. Assume (SH) and (H) hold. Let x0 ∈R \K , let x be an optimal tra-
jectory starting from x0 reaching K in time T (x0), and p : [0,T (x)]→Rn be an arc
such that (x, p) solves the system: for a.e. t ∈ [0,T (x0)],{

−ẋ(t) ∈ ∂−p H(x(t), p(t)), x(0) = x0
ṗ(t) ∈ ∂−x H(x(t), p(t)), p(0) ∈ ∂−,PT (x0).

(24)

Then, there exist constants c,r > 0 such that, for all t ∈ [0,T (x0)) and h ∈ B(0,r),

T (x(t)+h)−T (x(t))≥ 〈p(t),h〉− c | h |2 . (25)

Consequently,
p(t) ∈ ∂

−,PT (x(t)) for all t ∈ [0,T (x0)). (26)

Proof. First of all, recall that 0 6∈ ∂−,PT (x0) (see, for instance, [24, Theorem 5.1]),
and so the dual arc p never vanishes on [0,T (x0)] by Remark 2. Since p(0) ∈
∂−,PT (x0), there exist c0,r0 > 0 such that for every h ∈ B(0,r0),

T (x0 +h)−T (x0)≥ 〈p(0),h〉− c0|h|2. (27)

Fix t ∈ (0,T (x0)). Recall that x(·) is the unique solution of the final value problem{
−ẋ(s) = ∇pH(x(s), p(s)) for all s ∈ [0, t] ,
x(t) = x(t). (28)

For all h ∈ B, let xh(·) be the solution of the system{
−ẋ(s) = ∇pH(x(s), p(s)) for all s ∈ [0, t] ,
x(t) = x(t)+h.

From the optimality of x(·) and the dynamic programming principle we deduce that
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T (x(t)+h)−T (x(t))−〈p(t),h〉= T (xh(t))−T (x(t))−〈p(t),h〉
≥ T (xh(0))−T (x0)−〈p(t),h〉.

(29)

From the sublinearity of F and (H)(ii), using a standard argument based on Gron-
wall’s lemma, one can show that there exists k > 0, independent of t ∈ (0,T (x0)),
such that

‖xh− x‖∞ ≤ ekT | h |, ∀ h ∈ B. (30)

For all h ∈ B(0,r) with r := min{1,r0e−kT}, by (27), (29) and (30) we have that

T (x(t)+h)−T (x(t))−〈p(t),h〉≥−〈p(t),h〉+〈p(0),xh(0)−x0〉−c0 | xh(0)−x0 |2 .
(31)

Moreover,

〈p(0),xh(0)− x0〉−〈p(t),h〉=−
∫ t

0

d
ds
〈p(s),xh(s)− x(s)〉 ds

=−
∫ t

0

(
〈ṗ(s),xh(s)− x(s)〉+ 〈p(s), ẋh(s)− ẋ(s)〉

)
ds

=−
∫ t

0

(
〈ṗ(s),xh(s)− x(s)〉−H(xh(s), p(s))+H(x(s), p(s))

)
ds.

Since ṗ(s) ∈ ∂−x H(x(s), p(s)) a.e. in [0,T (x0)], assumption (H)(i) implies that

〈p(0),xh(0)− x0〉−〈p(t),h〉 ≥ c2

∫ t

0
| p(s) || xh(s)− x(s) |2, (32)

where c2 is a suitable constant independent from t ∈ (0,T (x0)). From (30)-(32) we
obtain our conclusion.

Theorem 4. Assume (SH) and (H) hold. Let x0 ∈R \K , let x be an optimal tra-
jectory starting from x0 reaching K in time T (x0), and p : [0,T (x)]→Rn be an arc
such that (x, p) solves the system: for a.e. t ∈ [0,T (x0)],{

−ẋ(t) ∈ ∂−p H(x(t), p(t)), x(0) = x0
ṗ(t) ∈ ∂−x H(x(t), p(t)), p(0) ∈ ∂−T (x0).

(33)

Then, p(·) satisfies

p(t) ∈ ∂
−T (x(t)) for all t ∈ [0,T (x0)). (34)

Proof. The proof of the case p 6= 0 is similar to the proof of the above theorem. As
the case p = 0, we refer the reader to the proof of [6, Theorem 2.1], where we have
described a strategy for constructing perturbations of the optimal trajectory when
the dual arc is vanishing.
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5.2 Proximal superdifferentiability of the minimum time function

When the target K satisfies the inner sphere condition, it is well-known that a dual
arc propagates backward into the proximal supergradient of T or into the proximal
horizontal supergradient of T , depending on whether K satisfies the Petrov’s con-
dition (PC) or not. We refer the reader to [8] and [10] for the propagation of the
superdifferentiability of T in the case of smooth control systems and differential in-
clusions, respectively. The propagation of the dual arc into the proximal horizontal
supergradient of T was shown for differential inclusions in [9]. Here, we shall ex-
tend these results showing that they hold true for any compact target (for instance,
a target that is a singleton) whenever we are willing to assume that the sets of all
admissible velocities satisfy the inner sphere property.

Theorem 5. Assume (SH), (H) and suppose that, for some R > 0 and all x ∈ Rn,
F(x) has the inner sphere property of radius R. Let the target K be any nonempty
compact subset of Rn. Let x ∈ R rK and let x be an optimal trajectory starting
from x and reaching K at time T (x). Consider the system: for a.e. t ∈ [0,T (x)],{

−ẋ(t) = ∇pH(x(t), p(t)),
ṗ(t) ∈ ∂xH(x(t), p(t)), p(T ) ∈ NC

K (x(T )). (35)

Then, there exists an arc p : [0,T (x)]→Rn with p 6= 0 such that the pair (x, p) solves
(35) and, moreover,

• if (PC) holds true it holds that, for all t ∈ [0,T (x)),

p(t) ∈ ∂
+,PT (x(t)). (36)

• if (PC) does not hold true it holds that, for all t ∈ [0,T (x)),

p(t) ∈ ∂
∞T (x(t)). (37)

Proof. Let x ∈RrK and let x(·) be an optimal trajectory starting from x reaching
K at time T (x). By the dynamic programming principle, we have that, for any
T ∈ [0,T (x)], the restriction of x(·) to the interval [T,T (x)] is an optimal trajectory
for the initial state x(T ), reaching K at time T (x)−T .
For any t ≥ 0, consider the attainable set A (K , t) from K at time t for the reversed
differential inclusion: {

ẏ(t) ∈ −F
(
y(t)
)

a.e. t ≥ 0,
y(0) = x,

(38)

that is,
A (K , t) := {yx(t) ∈ Rn : yx(·) solves (38) where x ∈K }.

It is easy to understand that, for any T ∈ (0,T (x)), the trajectory y : [0,T (x)−T ]→
Rn defined by y(·) := x|[T,T (x)](T (x)−·) is a boundary trajectory for the system (38)
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and the target K , that is,

y(T (x)−T ) ∈ ∂A (K ,T (x)−T ).

Moreover, if we denote by H−F the Hamiltonian associated to the multifunction
−F , it holds that

H−F(x, p) = H(x,−p) ∀(x, p) ∈ Rn×Rn.

Thus, the multifunction −F and its Hamiltonian H−F enjoy the assumption (SH)
and (H) because so F and H do. By the maximum principle (see, for instance, [17,
Theorem 3.5.4]), there exists an arc p1 : [0,T (x)−T ]→Rn, p1 6= 0, such that (y, p1)
solves {

ẋ(t) = ∇pH−F(x(t),−p(t)),
−ṗ(t) ∈ ∂xH−F(x(t),−p(t)), a.e. in [0,T (x)−T ], (39)

and
p1(T (x)−T ) ∈ NC

K (y(T (x)−T )).

System (40) can be also written as{
ẋ(t) = ∇pH(x(t), p(t)),
−ṗ(t) ∈ ∂xH(x(t), p(t)), a.e. in [0,T (x)−T ]. (40)

It simplifies the argument, and causes no loss of generality by Remark 2 (ii), to
assume that |p1(T (x)−T )|= 1. Moreover, by the proof of [12, Theorem 4.7] there
exists T ∗ > 0 such that if T ∈ (T (x),T (x)−T ∗) it holds that

B
(

y(T (x)−T )− (T (x)−T )R(T (x)−T )
p1(T (x)−T )
|p1(T (x)−T )|

,(T (x)−T )R(T (x)−T )
)

⊂A (K ,T (x)−T ),

for some suitable constants R(T )> 0. Set ξ := p1(T (x)−T ). Consequently, the vec-
tor −ξ is a proximal (outer) normal of the complement of A (K ,T (x)−T ) at the
point y(T (x)−T ). Since A (K ,T (x)−T ) coincides with the sublevel set ΓT (x)−T
and y(T (x)−T ) is equal to x(T ), −ξ is a proximal normal of the complement of
ΓT (x)−T at x(T ).
So, fix a time T ∈ (T (x),T (x)−T ∗). Consider now the minimum time problem that
has the set ΓT (x)−T as target. It is easy to understand that the trajectory x restricted
on [0,T ] is the optimal one starting from the point x reaching ΓT (x)−T at time T .
Consider the Hamiltonian inclusion{

−ẋ(t) = ∇pH(x(t), p(t)),
ṗ(t) ∈ ∂xH(x(t), p(t)), a.e. in [0,T ]. (41)

Let p2 : [0,T ]→ Rn be defined by:

(a)if H(x(T ),ξ ) 6= 0, then p2 : [0,T ]→ Rn is the solution to (41) coupled with the
condition p2(T ) = ξ H(x(T ),ξ )−1, that we know to exist by Remark 3,
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(b)otherwise, p2 : [0,T ]→ Rn is the solution of (41) such that p2(T ) = ξ (note that
Proposition 2 yields the existence of p2(·)).

Thus, by [9, Theorem 4.1]

(a)if H(x(T ),ξ ) 6= 0, then p2(t) ∈ ∂+,PT (x(t)) for all t ∈ [0,T ).
(b)otherwise, it holds that p2(t) ∈ ∂ ∞T (x(t)) for all t ∈ [0,T ).

We concatenate the curve p2(·) with

(a) p1(T (x)−·)H(x(T ),ξ )−1 in the case that H(x(T ),ξ ) = 1,
(b)p1(T (x)−·) in the case that H(x(T ),ξ ) = 0.

Explicitly, let us define the arc p : [0,T (x)]→ Rn by:

p(t) :=


p2(t) if 0≤ t ≤ T,
p1(T (x)−·)H(x(T ),ξ )−1 if H(x(T ),ξ ) 6= 0 and T ≤ t ≤ T (x),
p1(T (x)−·) if H(x(T ),ξ ) = 0 and T ≤ t ≤ T (x).

Then, the pair (x, p) solves the system (35) (recall Remark 2 (ii) for the case (a)).
Moreover,

(a)if H(x(T ), p(T )) 6= 0, then p(t) ∈ ∂+,PT (x(t)) for all t ∈ [0,T );
(b)otherwise, p(t) ∈ ∂ ∞T (x(t)) for all t ∈ [0,T ).

Note that, since F has no explicit time dependence, we can suppose that the function
t 7→ H(x(t), p(t)) is constant. Thus, the condition H(x(T ), p(T )) 6= 0 is equivalent
to the fact that K satisfies Petrov’s condition (PC).
To conclude the proof, let us show that the dual arc p satisfies the inclusions (36) in
case (a) on the whole interval [0,T (x)). Suppose that we have (36) on the maximal
interval [0,T ) with T ∈ [T (x)−T ∗,T (x)). If we take a time T1 ∈ (T ,T (x)), by [12,
Theorem 4.7] the vector p(T1) is a proximal normal for the set A (K ,T (x)−T1)
at the point x(T1). Thus, using the same reasoning as in the first part of this proof,
it is easy to understand that (36) must hold true also on the interval [0,T1). This is
in clear contradiction with the maximality of the interval [0,T ), proving (36) for all
t ∈ [0,T (x)). A similar argument allows to get our conclusion also in the case (b).

5.3 First application: differentiability of the minimum time
function

Here, we prove that all the optimal trajectories starting from a point in the domain
of differentiability of the minimum time function T (·) stay in such a set. The same
result has been obtained in [19] in the case of smooth targets and smooth control
systems whit a Hamiltonian of class C1,1. Let us also mention that the fact that T (·)
is differentiable along an optimal trajectory starting from x for all time in the open
interval (0,T (x)) has been proved earlier in [8] in the case of exit-time problems
with smooth control systems and a strongly convex Hamiltonian in p. More recently,
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in [11] this result was extended to the case of differential inclusions whit a strictly
quasi-convex Hamiltonian in p. On the other hand, in our context the Hamiltonian
is no longer strictly convex being 1-homogeneous in p and, in general, is not strictly
quasi-convex, as shown by [11, Example 1.]. Here, the Hamiltonian is only assumed
to satisfy (H), while the target or the sets of velocities are supposed to satisfy an
interior sphere property.

Theorem 6. Assume that (SH) and (H) hold and that the target satisfies (PC). Let
x0 ∈R \K , let x be an optimal trajectory starting from x0 reaching the target K at
time T (x0). Let R > 0, and suppose that one of the following conditions holds true:

(a)K is any nonempty compact subset of Rn and for all x ∈ Rn, F(x) satisfies the
inner sphere property of radius R;

(b)K is a nonempty subset of Rn and satisfies the inner sphere property of radius
R.

Suppose, moreover, that T is differentiable at x0. Then, we have that T is differen-
tiable at x(t) for all t ∈ [0,T (x0)) if and only if K satisfies the Petrov’s condition
(PC).

Proof. We recall that, if T is Lipschitz continuous in a neighborhood of some point
x, then ∂ ∞T (x) must be empty. Furthermore, T is differentiable at x if and only if
∂+T (x) and ∂−T (x) are both nonempty. Thus, the conclusions come from Theorem
4 together with Theorem 5 and [9, Theorem 4.1] in the case (a) and (b), respectively.

5.4 Second application: local C2 regularity of the minimum time
function

Theorem 2 and 3 apply to show that the existence of a proximal subgradient of T (·)
at x is sufficient for the local regularity of T (·) in a neighborhood of the optimal
trajectory starting form x. The proof is based upon ideas from [4, 7].

Theorem 7. Assume (SH),(A),(PC) and suppose that H is of class C2(Rn× (Rn \
{0})). Let x0 ∈RrK and let x be an optimal trajectory starting from x0 reaching
K at time T (x0). If ∂−,PT (x0) 6= /0, then T is of class C2 in a neighborhood of
x([0,T (x0))).

Proof. Recall first that the minimum time function T is semiconcave (see [10]).
Thus, it is well known that since ∂−,PT (x0) 6= /0, T must be differentiable at x0.
Therefore, the optimal trajectory for x0 is unique, and we call it x. Thanks to assump-
tion (PC), T is differentiable at x(t) for all t ∈ [0,T (x0)) and p(t) =∇T (x(t)), where
p : [0,T (x0)]→ Rn is such that the pair (x, p) solves system (10) on [0,T (x0)] with
ξ equal to x(T (x0)) (see Theorem 6). Let us denote by (Y (ξ , ·),P(ξ , ·)) the solution
to the system (16). Note that Y (ξ0, ·) = x(T (x0)− ·) and P(ξ0, ·) = p(T (x0)− ·),
where ξ0 := x(T (x0)).
Thanks to Theorem 2, it is sufficient to prove that the interval [0,T (x0)] does not
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contain any conjugate time for ξ0. Let us proceed by contradiction, assuming that
there exists a conjugate time t for ξ0 with t ∈ (0,T (x0)). Fix t ∈ (0, t). By Theorem
2, we deduce that there exists an open neighborhood Vξ0

×Ut of (ξ0, t) in ∂K ×R
such that the function T (·) is of class C2 in the open neighborhood Y (Vξ0

,Ut) of
Y (ξ0, t). Furthermore, the Hessian of T is

D2T (Y (ξ ,s)) = Rξ ,t(ξ ,s) := Pξ ,t(ξ ,s)Y
−1
ξ ,t (ξ ,s), (ξ ,s) ∈Vξ0

×Ut , (42)

where (Pξ ,t ,Yξ ,t) is the solution to (17). Recall that equality (42) has to be under-
stood in the sense that we have explained in Remark 4. Thus, for all (ξ ,s)∈Vξ0

×Ut
we have that

T (Y (ξ ,s))−T (Y (ξ0, t))−〈∇T (Y (ξ0, t)),Y (ξ ,s)−Y (ξ0, t)〉

− 1
2
〈Rξ ,t(ξ0, t)(Y (ξ ,s)−Y (ξ0, t)),Y (ξ ,s)−Y (ξ0, t)〉= o(|Y (ξ ,s)−Y (ξ0, t)|2).

(43)

Moreover, since −p(0) ∈ ∂−,PT (x0), by Theorem 3 there exists R0 > 0 and c0 ≥ 0
such that

T (y)−T (Y (ξ0, t))−〈∇T (Y (ξ0, t)),y−Y (ξ0, t)〉 ≥ −c0|y−Y (ξ0, t)|2, (44)

whenever y ∈ B(Y (ξ0, t),R0) and t ∈ [0,T (x0)]. Without lost of generality, we can
suppose that Y (Vξ0

,Ut)⊂ B(Y (ξ0, t),R0). Then, by (43) and (44),

〈Rξ ,t(ξ0, t)(Y (ξ ,s)−Y (ξ0, t)),Y (ξ ,s)−Y (ξ0, t)〉 ≥ −c0|Y (ξ ,s)−Y (ξ0, t)|2, (45)

for all (ξ ,s) ∈Vξ0
×Ut . Since Y (Vξ0

,Ut) is an open neighborhood of Y (ξ0, t) in Rn,
from (45) we deduce that

〈Rξ ,t(ξ0, t)θ ,θ〉 ≥ −c0, ∀ θ ∈ Sn−1. (46)

This provides a bound from below, uniform in [0, t), of the quadratic form associ-
ated to Rξ ,t(ξ0, t). Furthermore, since T is semiconcave it holds that for any ν ∈ Rn

such that | ν |= 1 we have ∂ 2T
∂ν2 ≤ C in the sense of distributions, where C is the

semiconcavity constant of T (see, for instance, [14, Proposition 1.1.3]). Since T is
twice differentiable on Y (Vξ0

,Ut) for all t ∈ [0, t), the distributional Hessian coin-
cides with the classical Hessian (42) on such sets. We conclude that Rξ ,t(ξ0, t) must
be bounded from above on [0, t) by C, still in the sense of quadratic form. On the
other hand, the operator norm of Rξ ,t(ξ0, t) goes to infinity as t → t, since we have
supposed that t is conjugate for ξ0. These facts together give a contradiction. Sum-
marizing, we have proved that the all interval [0,T (x0)] does not contain conjugate
times for ξ0, and we conclude by Theorem 2 that the minimum time function T is
of class C2 in a neighborhood of x([0,T (x0))).
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