
HAL Id: hal-01102767
https://hal.sorbonne-universite.fr/hal-01102767

Submitted on 13 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Kinetic models coupled with Gaussian thermostats:
macroscopic frameworks

Carlo Bianca, Christian Dogbe

To cite this version:
Carlo Bianca, Christian Dogbe. Kinetic models coupled with Gaussian thermostats: macroscopic
frameworks. Nonlinearity, 2014, 27 (12), pp.2771-2803. �10.1088/0951-7715/27/12/2771�. �hal-
01102767�

https://hal.sorbonne-universite.fr/hal-01102767
https://hal.archives-ouvertes.fr


Kinetic models coupled with Gaussian

thermostats: macroscopic frameworks∗

Carlo Bianca1,2, Christian Dogbe3

(1) Sorbonne Universités, UPMC Univ Paris 06, UMR 7600,
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Abstract

This paper deals with the modelling of complex systems composed
by a large number of elements grouped into different functional subsys-
tems. The modelling framework is that of the thermostatted kinetic the-
ory which consists in a set of nonlinear integro-differential equations. A
source of nonlinearity is also the presence of the mathematical thermo-
stat that ensures the control of the global energy of the system. Specif-
ically this paper is devoted to the derivation of evolution equations for
the macroscopic variables (density and momentum) from the underly-
ing description at the microscopic scale delivered by the thermostatted
kinetic models. To this aim, hyperbolic and parabolic type scalings of
the thermostatted kinetic for active particles model are performed and
the resulting macroscopic equations are obtained. Finally the asymptotic
methods are applied to the relaxation model.

Keywords: Functional subsystems, kinetic theory, hyperbolic scaling,
parabolic scaling, integro-differential equation

1 Introduction

The evolution of the macroscopic state of a physical or living system is described
by means of suitable partial differential equations for the macroscopic variables
(typically mass, momentum and energy). These equations are usually derived
by following the guidelines offered by continuum mechanics approach. Indeed
mass, momentum, and energy conservation equations are properly closed by
phenomenological models corresponding to the material behavior of the system.
In particular, the continuum mechanics approach has been recently employed

∗The first author acknowledges the support by L’Agence Nationale de la Recherche (ANR
T-KiNeT Project)
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for deriving macroscopic equations for biological systems viewed as large sys-
tems of interacting cells. Accordingly, macroscopic models are based on the
interactions between cells and extracellular matrix, as cells may synthesize and
undergo degradation, which may affect cell properties and orientation. The
evolution of both cells and extracellular matrix is mediated by some chemical
growth factors, which regulate both cell proliferation and extracellular matrix
reorganization, see books [1, 2], the review paper [3] and the references cited
therein. Macroscopic equations delivered by the continuum mechanics approach
have been also derived in an attempt to describe crowds and swarms dynamics,
see [4, 5] and the perspective section of the review paper [6].

An alternative method for deriving macroscopic equations able to take into
account the dynamics at a lower scale (usually the mesoscopic), has been pro-
posed by the kinetic theory. This method, called asymptotic method, consists in
deriving macroscopic equations by suitable limits of Boltzmann-type equations
related to the statistical microscopic description, see [37, 7, 8, 9, 10, 11, 13]. In
particular Hillen and Othmer [14] and Hillen [15] deal with the moment closure
of kinetic equations with stochastic jump velocity to derive hyperbolic equations
modeling chemosentitive movement; Lachowicz and Wrzosek [9] derive diffusion
equations for a coagulation model with nonlocal interactions by a generalization
of the Boltzmann equation.

At the basic of the asymptotic methods is the time-space scaling. Classically
different types of scalings lead to different types of equations: parabolic and
hyperbolic [16, 18]. The low-field (or parabolic) limit of kinetic equations leads
to a drift-diffusion type system in which the diffusion processes dominate the
behavior of the solutions, see papers [19, 20] and the references therein. In the
high-field (or hyperbolic) limit the influence of the diffusion terms is of lower (or
equal) order of magnitude in comparison with other convective or interaction
terms and the models consist of linear or nonlinear hyperbolic equations for the
local density, see [21, 22, 23, 24, 26]. After the assessment of the scaling, the
distribution function is expanded in terms of a small dimensionless parameter
(the Knudsen number, the time- or the space-scale dimensionless parameter);
the asymptotic limit is singular and convergence is guaranteed under suitable
technical assumptions.

The low-field and the high-field limits have been applied to the kinetic the-
ory for active particles models for the derivation of macroscopic equations that
can be proposed as models for analyzing the complex phenomena occurring in a
tumor tissue in competition with the immune system, see the review paper [29].
Different combinations of parabolic and hyperbolic scales are used, according on
the dispersive or non-dispersive nature of the system under consideration. The
macroscopic (tissue) models show that interactions which change the biologi-
cal functions of cells may substantially modify the structure of the macroscopic
equations. In particular, it has been shown the onset of linear and nonlin-
ear diffusion terms and hyperbolic behavior, departing from the simple mass
conservation equation. An interesting result is the appearance of source terms
in the case of proliferative phenomena for systems consisting in, at least, two
populations.

Recently, the kinetic theory for active particles (KTAP) has been generalized
in [30] in order to model complex systems in physics and life sciences that
are subjected to external force fields. Generalizations have been obtained by
coupling the KTAP with the time-reversible Gaussian thermostats with the
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aim of capturing the nonequilibrium stationary states that appear in most real-
world complex phenomena, see paper [6]. The introduction of the Gaussian
thermostat allows to maintain constant the total energy of the system and is
based on the Gauss principle of least constraint. The Cauchy problem of the
resulting framework, called thermostatted kinetic framework (briefly TKF), has
been analyzed in [31] and in [32]. The TKF has been further generalized for
taking into account systems where the microscopic state variables of the particles
of the system can attain discrete values, e.g. in vehicular traffic dynamics, see
[33]. In particular the microscopic state of the particles includes, in addition
to classical space and velocity variables, the activity variable which models the
ability of the particles to perform autonomous strategies.

This paper deals with the high-field and low-field asymptotic limits of the
thermostatted kinetic theory for active particles framework which has been pro-
posed for the modelling of complex systems composed by a large number of
particles grouped in subsystems. The framework is further generalized in order
to include the space structure by adding the stochastic velocity-jump process
proposed in [16] and subsequently developed in various papers, see, among oth-
ers, [27, 28, 29, 34]. The time evolution of each subsystem is depicted by a
distribution function, over the microscopic state of the particles, satisfying an
evolution equation.

It is worth precising that a high-field asymptotic analysis has been recently
developed for a thermostatted kinetic model. Specifically Degond andWennberg
in [35] consider the thermostatted Boltzmann equation with the one-dimensional
Bhatnagar-Gross-Krook relaxation type operator [36] (where the distribution
function relaxes to a Maxwellian with same density and temperature), and the
three dimensions Fokker-Planck collision operator [38] (where the density and
energy are preserved). The classical Boltzmann equation for elastic collisions,
see Cercignani [39], is subjected to a large force field and coupled with Gaus-
sian thermostats. By adding a thermostat correction, it is possible to expand
the solutions about a high-field equilibrium obtained when balancing the ther-
mostatted field drift operator with the elastic collision operator. Degond and
Wennberg derive coupled mass and energy balance laws that are hyperbolic,
thereby indicating that they might be appropriate for a use in physically real-
istic situations.

The asymptotic method developed in the present paper is very different by
that of Degond-Wennberg and also more general because we do not consider a
kinetic model with an appropriate choice of the interaction operator (its terms
are generic functions). Under suitable assumptions on the turning operator, that
as already mentioned models the velocity-jump process, we derive macroscopic
hyperbolic and parabolic equations. Specifically, the macroscopic equations
model the evolution of the gross local variables which describe the state of the
system, i.e. the density and the momentum. These equations are generally
derived by heuristic methods of continuum mechanics.

It is worth stressing that, to the best of our knowledge, this is the first time
that the high-field and low-field limit is performed for the thermostatted kinetic
theory for active particles models.

The present paper is organized into four more sections and an appendix that
follow this introduction. In detail, Section 2 deals with the thermostatted ki-
netic framework for active particles which models complex systems divided into
different functional subsystems where the activity of the particles is modelled
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by conservative interactions (namely the number of particles is preserved) and
the velocity variable by a jump-process. The decomposition of the overall sys-
tem into functional subsystems is performed in order to reduce its complexity.
The framework acts as a background paradigm for the derivation of specific
models in the applied sciences. Section 3 is devoted the low-field limit of the
thermostatted kinetic framework by considering the parabolic scaling. Section
4 is concerned with the assessment of the hyperbolic scaling and the deriva-
tion of the rescaled thermostatted framework. Furthermore after the definition
of the technical assumptions on the turning operator, the hyperbolic limit is
performed and the macroscopic equations for the density and the momentum
of the system are derived. The section is concluded with the derivation of the
macroscopic equations for the relaxation model. Section 5 concludes the paper
with a discussion on the applicability of the macroscopic models obtained by
asymptotic analysis performed in the previous sections, with special attention
to research perspectives and applications to biological phenomena, including tu-
mor growth, cancer modelling, chemotaxis. Finally, the Appendix collects some
technical computations.

2 The underlying mathematical framework

This section is devoted the derivation of the thermostatted kinetic framework
that can be proposed for the modelling of most real-world complex systems.
The section is presented through two sequential subsections. First we deal with
the complexity problem, the decomposition of system into subsystems and their
statistical representation, then with the modeling of the microscopic interactions
among the selected subsystems, and finally with the derivation of the relative
class of evolution equations that act as a general paradigm for the derivation of
specific models.

2.1 Complexity, functional subsystems decomposition and represen-

tation

Complexity is an intrinsic characteristic of most living systems that makes the
modelling of the system disputable. Indeed not only the large number of ele-
ments constituting the system but also the emergence of behaviour, that arises
as result of the whole interactions among the elements that occur in nonlin-
ear fashion, are key issues of the complexity. The complex behavior is also
due to the fact that the living entities (cells, animals, pedestrians), differently
from the inert matter entities (ball billiard, gas particles, electrons), have the
ability to perform specific strategies and functions such that small variations
in their will, could modify the overall asymptotic dynamics. Moreover exter-
nal factors influence their strategies and consequently the occurrence of their
emerging behaviour. Finally the strategy of entities at the lower scale (micro-
scopic or mesoscopic) determines the behaviors of the system at the upper scale
(macroscopic). The interested reader in a general and more deeper treatment
of the complexity is referred to the book [41].

From the modelling viewpoint, the onset of complexity indicates the needing
to develop tools and methods which allow to reduce the perplexity. In the
biological systems case, several authors suggest the approach of system biology
as an essential tool to achieve this objective, see, among others, papers [42, 43].
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Principles that originate from physics and biology have also be proposed for the
modelling of complex economic systems [44, 45, 46, 47].

In what follow we use the systems approach proposed in [32]. Accordingly the
overall system S is viewed as composed by a large number of elements (particles
of the inert matter, animals, cells, pedestrians) that interact in nonlinear matter
and under the effect of macroscopic external force fields. In this approach the
elements of the system are called active particles because in addition to their
possibility to be allocated, at time t, in the position x with velocity v, they
also have an active role in the evolution of the system (the ability to express
strategy) modelled by the scalar variable u ∈ Du. The triplet (x,v, u) is called
the microscopic state of the particles. The active particles are of heterogeneous
type and they are selected for the ability they express and not for their size and
shape. Particles having the same ability are grouped into a subsystem, called
functional subsystem.

Therefore the overall complex system S is decomposed into different func-
tional subsystems Si, for i ∈ {1, 2, . . . , n}, such that:

Si ∩ Sj = ∅, ∀i 6= j, and S =

n⋃

i=1

Si. (2.1)

It is worth precising that the decomposition into functional subsystems is
a flexible approach to be adapted at each system and is related to the activity
variable. Finally a functional subsystem could be itself a complex system and
therefore can be decomposed into subsystems.

The evolution of each functional subsystem Si is represented by the sta-
tistical mechanics approach. Accordingly, we assume that the active particle
during a time interval [0, T ], or [0,+∞), is located in x which attains values
in a (bounded or unbounded) domain Dx ⊂ R

d (usually d = 3), with veloc-
ity variable v that attains values in a domain Dv ⊂ R

d and activity variable
u which varies in a domain Du ⊂ R. Then the kinetic of the i-th functional
subsystem, for i ∈ {1, 2, . . . , n}, is depicted by the evolution of the distribution
function fi(t,x,v, u) defined on [0, T ]×Dx×Dv×Du. For any fixed time t, the
quantity fi(t,x,v, u)dx dv du stands for the density of particles in the volume
element dx dv du centered at (x,v, u). Let Ω = Dx×Dv×Du be the domain of
the all possible microscopic states and dΩ = dx dv du the Lebesgue measure on
Ω, then the minimal assumption that one can make on f is that for all t > 0,

fi(t, ·, ·, ·) ∈ L1
loc(Ω, dΩ).

If the number of particles is constant in time, the distribution function fi of the
functional subsystem Si can be normalized with respect to such a number and
acquires the structure of a probability function.

Let f = f(t,x,v, u) = (f1(t,x,v, u), . . . , fn(t,x,v, u)) be the vector whose
components are the distribution functions of the functional subsystems. The
global density of the system S thus reads:

Ξ[f ](t) =
n∑

i=1

∫

Ω

fi(t,x,v, u) dx dv du =

∫

Ω

f̃(t,x,v, u) dx dv du, (2.2)

where

f̃(t,x,v, u) =

n∑

i=1

fi(t,x,v, u). (2.3)
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It worth noting that if fi represents the joint distribution function, marginal
distribution functions of fi refer either to the distribution over the mechanical
state or to distribution over the microscopic activity. These marginal distribu-
tion functions define the local quantities. For instance, the local linear activation
moment at time t in x is computed as follows:

A[fi](t,x) =

∫

Σ

u fi(t,x,v, u) dv du, (2.4)

where Σ = Dv ×Du.
It is worth stressing that every function defined in this paper is assumed to

be measurable in all variables.

2.2 The thermostatted kinetic framework

This subsection is devoted to the derivation of the evolution equation for the
distribution function fi of the ith functional subsystem, for i ∈ {1, 2, . . . , n}.
Each functional subsystem is subjected to the external force field Fi = Fi(u) :
Du → R whose magnitude modifies the asymptotic behavior and move out of
equilibrium the system. The function Fi is assumed to be a known function of
u.

The evolution equation for the distribution function fi is obtained by equat-
ing the time derivative of fi to the balance of the inlet and outlet flows in the
elementary volume dΩ of the space of the microscopic states and under the
following assumptions.

(A1) The interactions between the particles of the ith functional subsystem
and the jth functional subsystem are binary and instantaneous in time,
for i, j ∈ {1, 2, . . . , n}. Moreover interactions occur when two particles are
very close each other.

(A2) The interactions among the particles of the functional subsystems occur
with rate η. Specifically ηij denote the probability that a particle of the
ith functional subsystem with activity u∗ interacts instantaneously with
a particle of the jth functional subsystem with activity u∗.

(A3) The particles of the ith functional subsystem with activity u∗ interacting
with the particles of the jth functional subsystem with activity u∗ have a
probability density to reach the activity u given by A = A(u∗, u

∗, u).

The kernel A(u∗, u
∗, u) : Du ×Du ×Du → R

+ satisfies

∀u∗, u
∗ ∈ Du,

∫

Du

A(u∗, u
∗, u) du = 1

(density or number of cells conservation).

(A4) The velocity variable v ∈ Dv changes according to the stochastic velocity-
jump process: a particle moves with constant velocity in a straight line,
stops after a certain time, chooses a new direction, continues running and
so on.

(A5) The domain Dv is bounded and spherically symmetric with respect to
origin (i.e. v and −v ∈ Dv).
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Therefore, denoting by ∂t, ∇x the time derivative and the space gradient of
f , respectively, the mathematical framework of thermostatted kinetic evolution
equation for fi, i ∈ {1, 2, . . . , n}, thus reads:

(∂t + v · ∇x) fi + ∂u

(
Fi(u)

(
1− u

∫

Ω

u f̃ dx dv du

)
fi

)
= Ji[f ] + ν Vi[fi], (2.5)

where f̃ is given by Eq. (2.3) and

• v · ∇xfi is the usual transport operator;

• ν is the turning rate or turning frequency of the velocity-jump, hence 1/ν
is the mean run time;

• The operator Ji[f ] = Ji[f ](t,x,v, u), which models the interactions in the
activity, reads:

Ji[f ] =

n∑

j=1

∫

Du×Du

ηij Aij(u∗, u
∗, u)fi(t,x,v, u∗) fj(t,x,v, u

∗) du∗ du
∗

−fi(t,x,v, u)
n∑

j=1

∫

Du

ηij fj(t,x,v, u
∗) du∗. (2.6)

The first term in the right-hand side of Eq. (2.6) models the gain due to
transitions from other states: a particle with state u∗, after an encounter
with the particle with state u∗ will reach the activity u. The second term
in the right-hand side of the Eq. (2.6) is the loss due to transitions into
other states: a particle with state u having an encounter with a particle
with state u∗ will change its activity as a result of the interaction and thus
will leave the state u.

• The operator Vi[fi] ≡ Vi[fi](t,x,v, u), which models the velocity-jump
process is defined as follows:

Vi[fi] =

∫

Dv

[
Ti(v

∗,v)fi(t,x,v
∗, u)− Ti(v,v

∗)fi(t,x,v, u)
]
dv∗, (2.7)

where Ti(v
∗,v) is the turning kernel which gives the probability that the

velocity v∗ ∈ Dv jumps into the velocity v ∈ Dv (if a jump occurs).

• The term

TFi
[fi] := ∂u

(
Fi(u)

(
1− u

∫

Ω

u f̃(t,x,v, u) dx dv du

)
fi(t,x,v, u)

)
, (2.8)

is a transport term due to the activity of the particles. This term models
the Gaussian thermostat, which is based on the mathematical thermostats
[48, 49] and the Gauss’s principle of the least constraint [50].

Remark 2.1.

• Usually the turning event is governed by a Poisson process [51, 52].
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• In general the interaction rate is a function of the activity u∗ and u∗,
namely ηij = η(u∗, u

∗).

• Implicit in the above formulation is the assumption that the choice of a
new velocity is independent of the run time. In general ν may be space
dependent and may depend on internal and external variables as well.

Remark 2.2.

The function Aij(u∗, u
∗, u) is not symmetrical with respect to u and has the

structure of a probability density only for mass conservative systems. Thus
the micro-reversibility property Aij(u∗, u

∗, u) = Aij(u
∗, u∗, u) is false.

We conclude this section by defining the local macroscopic quantities that we
will study in the next sections. Specifically we introduce, for i ∈ {1, 2, . . . , n},
the local density ̺[fi](t,x, u) of the ith functional subsystem defined at time t
in the position x and activity u as follows:

̺i := ̺[fi](t,x, u) =

∫

Dv

fi(t,x,v, u) dv, (2.9)

and the relative mass velocity of particles Ui(t,x, u) defined on [0,∞[×Dx×Du

by

Ui := Ui(t,x, u) =
1

̺[fi](t,x, u)

∫

Dv

v fi(t,x,v, u) dv (2.10)

and the pressure term

Pi := Pi(t,x, u) =

∫

Dv

(v − Ui)⊗(v − Ui)fi(t,x,v, u) dv. (2.11)

Notice that, by definition of U, one has

∫

Dv

v⊗vfi(t,x,v, u) dv = ̺iUi⊗Ui + Pi. (2.12)

It worth stressing that high order local quantities are calculated if motivated by
some interest for the modelling, see [34].

2.3 On the macroscopic description and equilibrium state

The goal of this paper is to derive by Eq. (2.5) the macroscopic (fluid) dynam-
ics. Let ψ(v) ∈ {1,v}, then the transition from microscopic to macroscopic
description is realized multiplying Eq. (2.5) by ψ and by integrating over the
velocity variable v to get

∂t

∫

Dv

ψ fi dv +∇x ·

∫

Dv

vψ fi dv + ∂u

∫

Dv

ψ TFi
[fi] dv

=

∫

Dv

ψ Ji[fi] dv + ν

∫

Dv

ψ Vi[fi] dv. (2.13)

8



Making the identification (2.9)-(2.10)-(2.11), we obtain formally at least, the
system of conservation laws:

∂t̺i +∇x · (̺iUi) + ∂u

∫

Dv

TFi
[fi] dv

=

∫

Dv

Ji[fi] dv + ν

∫

Dv

Vi[fi] dv (2.14a)

∂t(̺iUi) +∇x ·

∫

Dv

v ⊗ vfi dv + ∂u

∫

Dv

v TFi
[fi] dv

=

∫

Dv

v Ji[fi] dv +

∫

Dv

v Vi[fi] dv. (2.14b)

Recalling (2.12), the equation (2.14b) of the system of conservation laws can be
rewritten as follows:

∂t(̺iU) +∇x · (̺iUi ⊗ Ui + Pi) + ∂u

∫

Dv

v TFi
[fi] dv

=

∫

Dv

v Ji[fi] dv +

∫

Dv

v Vi[fi] dv. (2.15)

The equations (2.14a) and (2.14b) provide the fluid dynamic description of the
system (that is not closed).

It is well known that in the kinetic theory approach the equilibrium is, in
general, a Maxwellian. When an equilibrium state is known it is possible to
avoid the physical description of the local interactions. A typical equilibrium
state has the following form (see [17]):

̺

ϑd/2(̺)
F

(
v − U

ϑ1/2(̺)

)
, (2.16)

where F : R → [0,∞) is a given smooth function, ϑ : [0,∞) → [0,∞) is a
power-like function and the velocity domain Dv = R

d (according to Galilean
invariance). Therefore in order to fulfill basic conservation laws (particle density
and momentum) one assumes that

∫

Dv

F (η) dη = 1, i.e.

∫

Dv

̺

ϑd/2(̺)
F

(
v − U

ϑ1/2(̺)

)
dv = ̺

∫

Dv

ηF (η) dη = 0, i.e.

∫

Dv

v
̺

ϑd/2(̺)
F

(
v − U

ϑ1/2(̺)

)
dv = ̺U.

Usually, in the asymptotic regimes (see e.g. [39, 25, 57] and the references
therein), the density of particles f , when the mean free path (Knudsen number)
goes to zero, is very close to a Maxwellian M, i.e. there exist a density ̺, a
bulk velocity u ∈ R

3 and a temperature θ such that f = M̺,u,θ, where

M̺,u,θ :=
̺

(2πθ)3/2
e−

|v−u|2

2θ , for each v ∈ R
3.
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In particular one has

∫

R3

M̺,u,θ dv = ̺,

∫

R3

vM̺,u,θ dv = ̺u,

∫

R3

|v|2

2
M̺,u,θ dv = ̺

(
1

2
|u|2 +

3

2
θ

)
.

Nevertheless, in our framework, we do not need to know θ because it does not
have sense in our model. Our asymptotic limit will be only in function of ̺ and u.

It is worth stressing that in [58] the asymptotic limits of kinetic-type equation
are performed in the case where the thermodynamical equilibrium is not given
by a Maxwellian but by a heavy tail distribution function.

3 Derivation of macroscopic frameworks by parabolic scal-

ing

This section is concerned with the rescaled thermostatted kinetic theory for
active particles framework (2.5) which states that the time evolution and the
interactions among the activity variable u of the active particles of the functional
subsystems is modelled by the operator Ji and the evolution of the velocity
variable v is ruled by the velocity jump-process modelled by Vi.

Specifically this section deals with the macroscopic equation obtained apply-
ing the low-field asymptotic limit to the thermostatted framework (2.5). The
solutions of the rescaled equation are assumed to be bounded in a space of
functions where all the convergence results needed will be true.

Let ε be the ratio between the microscopic length scale (mean free path) and
macroscopic length scale. In order to obtain a relation between the kinetic-type
Eq. (2.5) and the fluid dynamic equations, we introduce the following scaling:

(t,x,v, u, F ) →

(
t

ε
,x,v, u, εℓF

)
, (3.1)

and the following choice of the parameters is setted:

η = εr, ν =
1

εp
, (3.2)

where ℓ, p, r ≥ 1. Applying these transformations in (2.5) and setting for all
i ∈ {1, 2, . . . , n}

fi,ε(t,x,v, u) = fi

(
t

ε
,x,v, u

)
, and f̃ε(t,x,v, u) =

n∑

i=1

fi,ε(t,x,v, u),

the thermostatted framework (2.5) thus reads:

(ε∂t + v · ∇x) fi,ε + εℓTFi
[fi,ε] = εrJi[fε] +

1

εp
Vi[fi,ε], (3.3)
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where Ji[fε] and Vi[fi,ε] are the operators given by the following formulas

Ji[fε](t,x,v, u) =

n∑

j=1

∫

Du×Du

Aij(u∗, u
∗, u)fi,ε(t,x,v, u∗) fj,ε(t,x,v, u

∗) du∗ du
∗

−fi,ε(t,x,v, u)
n∑

j=1

∫

Du

fj,ε(t,x,v, u
∗) du∗, (3.4)

Vi[fi,ε](t,x,v, u) =

∫

Dv

[
Ti(v

∗,v)fi,ε(t,x,v
∗, u)− Ti(v,v

∗)fi,ε(t,x,v, u)
]
dv∗, (3.5)

for fε = (f1,ε, f2,ε, . . . , fn,ε).

It is worth stressing the singular character of the problem because the small
parameter ε basically multiplies all derivatives in the equation (3.3).

The limit of Eq. (3.3), when ǫ goes to zero, strongly depends on the prop-
erties of the turning operator Vi[fi], as it appears in the leading order term in
(3.3).

Before proceeding further, the turning operator Vi[fi] has to be recast in a
suitable form: a gain term K[fi] (global operator) and a loss term νifi (local
operator).

Vi[fi] =

∫

Dv

[
Ti(v,v

∗)fi(t,x,v
∗, u)− Ti(v

∗,v)fi(t,x,v, u)
]
dv∗

:= K[fi]− νifi,

where

K[fi] =

∫

Dv

Ti(v,v
∗) fi(t,x,v

∗, u) dv∗, νi(v) =

∫

Dv

Ti(v
∗,v) dv∗.

We consider the following assumptions:

(A6) The turning operator Vi satisfies, for all fi and i ∈ {1, 2, . . . , n}, the
following solvability conditions:

∫

Dv

Vi[fi](t,x,v, u) dv = 0;

∫

Dv

v Vi[fi](t,x,v, u) dv = 0. (3.6)

(A7) (i) There exists a bounded equilibrium velocity distribution, denoted by
Fi(v) : Dv → R

+, independent of t and x, such that the following
detailed balance assumption holds:

Ti(v
∗,v)Fi(v) = Ti(v,v

∗)Fi(v
∗), i ∈ {1, 2, . . . , n}. (3.7)

Furthermore, the flow produced by this equilibrium distribution Fi

vanishes, and Fi is normalized:

∫

Dv

vFi(v) dv = 0,

∫

Dv

Fi(v) dv = 1, Vi[Fi] = 0. (3.8)
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(ii) The kernel Ti(v,v
∗) is locally integrable on Dv ×Dv, bounded, and

there exists a constant σi > 0 such that

Ti(v,v
∗) ≥ σiFi(v), ∀(v,v∗) ∈ Dv ×Dv. (3.9)

(A8) (i) The collision frequency νi is a function locally integrable on Dv and
even with respect to v, namely

νi(−v) = νi(v) > 0 forallv ∈ Dv.

(ii) The function Fi defined by the assumption (A7) is such that Fi ∈
L1(Dv), |v|

2νi(v)
−1Fi is locally integrable and

νi(v)Fi(v) = Ki[Fi](v) =

∫

Dv

Ti(v,v
∗)Fi(v

∗) dv∗.

Remark 3.1.

• The assumption (A6) is trivially satisfied when T is symmetric with respect
to v and v′ (then the equilibrium is the constant).

• Furthermore, it is easy to check that (3.8) implies

νi(v) =

∫

Dv

Ti(v,v
∗)dv∗ =

∫

Dv

Ti(v
∗,v)dv∗.

Preliminary to the asymptotic analysis, it follows a detailed qualitative anal-
ysis of the operator Vi[fi]. Specifically it is proven that for the operator Vi[fi],
theH-Theorem is very simple and can be expressed in theH := L2(Dv, F

−1
i dv)

norm. The interaction processes have a relaxation effect which forces the solu-
tion of (3.3) to resembles an equilibrium. This is related to dissipation mecha-
nisms that we rephrase here as a spectral gap property and we give the Fredholm
alternative type property which we need as well. These properties are summa-
rized in the following Lemmas.

Lemma 3.1 Assume that the Assumptions (A6)-(A7)-(A8) hold. Then the
following statements on the operator Vi, for i ∈ {1, 2, . . . , n}, hold true.

(i) (H-Theorem). The entropy equality

−

∫

Dv

Vi[fi] fiF
−1
i dv =

1

2

∫

Dv×Dv

Ti(v,v
∗)F ∗

i

(
f∗i
F ∗
i

−
fi
Fi

)2

dv dv∗
> 0

(3.10)

holds.

(ii) The null-space of Vi is spanned by a unique normalized and nonnegative
function Fi(v):

Ker(Vi) = Span{Fi}.

12



(iii) There exists a constant κ > 0 such that

−

∫

Dv

Vi[fi] fiF
−1
i dv > κ

∫

Dv

|fi−〈fi〉Fi|
2 νdv

Fi(v)
= κ‖fi−〈fi〉‖

2
H

(3.11)

being 〈g〉 :=

∫
Dv

g dv.

(iv) The following Fredholm alternative holds: For any hi ∈ H satisfying∫
Dv

hidv = 0, there exists a unique fi ∈ H such that Vi[fi] = hi and
∫
Dv

fidv = 0.

The proof of Lemma 3.1 essentially relies on Fredholm’s alternative and
Krein-Rutmann’s Theorem (see [59]). It is inspired by [60]. We postpone it to
the appendix.

Next the diffusion regime requires some conditions involving the velocity
function.

(A9) The matrix

Di :=

∫

Dv

v ⊗ vFi(v) dv (3.12)

is positive-definite.

Remark 3.2.

• The null flux assumption (A7)-(i) is crucial. Indeed it makes relevant
the scaling in our problem. As a matter of fact, it allows to define χi ∈
L2(Dv, dv/Fi) as the unique solution of the equation:

Vi[χi] = −vFi(v),

∫

Dv

χi dv = 0.

• According to Lemma 3.1, the last assumption (A9) leads to the positive-
ness of the coefficients in the limit (macroscopic) equation.

The positiveness of the coefficients Di of the limit equation for the relaxation
model (see (3.35) in Section 3.1) is guaranteed by the following lemma:

Lemma 3.2 Let Assumptions (A7)-(A9) be satisfied and set

Di =

∫

Dv

v ⊗ χi dv.

Then there exists α > 0 such that for all ξ ∈ Dv, we have Diξ · ξ > α|ξ|2.

Proof of Lemma 3.2. From the definition of Di, we have

Diξ · ξ = −

∫

Dv

Vi[χi · ξ]χi · ξ
dv

Fi(v)
> κ

∫

Dv

|χi · ξ|
2 dv

Fi(v)
> 0.
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Next observe that, from Diξ ·ξ = 0 we deduce that χi(v) ·ξ = 0 for a.e. v ∈ Dv,
and accordingly, Vi(χi · ξ) = −vFi(v) · ξ = 0. Thus we have

Diξ · ξ =

∫

Dv

|v · ξ|2F (v)dv = 0.

Under the assumption (A7), this happens for ξ = 0 only. Consequently ξ 7→
Diξ · ξ is a continuous and positive function on Dv and we therefore conclude
our lemma by defining α > 0 as to be its minimum.

The function χi(v) gives the coefficient in the parabolic limit equation.

The Hilbert space L2(Dv, dv) will be used systematically in the sequel; in par-
ticular, we denote by

〈ψ〉 =

∫

Dv

ψ(v) dv

the average of the function ψ with respect to variable v.

Bearing all above in mind, the evolution equation for the function ̺i can be
obtained as stated in the following theorem.

Theorem 3.1 Let fi,ε(t,x,v, u) be a sequence of solutions of the scaled ther-
mostatted kinetic equation (3.3). Assume that, for i ∈ {1, 2, . . . , n}, the turning
operator Vi satisfies the assumptions (A6-A7-A8-A9)) and, when ε → 0, the
following statements hold true:

fi,ε −→ fi a.e. (3.13)

Vi[fi,ε] −→ Vi[fi] (3.14)

and the following quantities

〈fi,ε〉 , 〈vfi,ε〉 , 〈v⊗vfi,ε〉 ,
〈
Ji[fi,ε]

〉
,
〈
TFi

[fi,ε]
〉
,
〈
vJi[fi,ε]

〉
,
〈
vTFi

[fi,ε]
〉

converge, in the sense of distributions on R
∗
+ ×Dx ×Du, to the corresponding

quantities

〈fi〉 , 〈vfi〉 , 〈v ⊗ vfi〉 ,
〈
Ji[fi]

〉
,
〈
TFi

[fi]
〉
,
〈
vJi[fi]

〉
,
〈
vTFi

[fi]
〉

and that every formally small term in ε vanishes. Then the asymptotic limit fi
of the sequence fi,ε (modulo the extraction of a subsequence) admits the following
factorization:

fi(t,x,v, u) = ̺i(t,x, u)Fi(v), ∀i ∈ {1, 2, . . . , n}, (3.15)

where ̺i is the weak solution of the following equation

∂t̺i+ δℓ,1 ∂u
(
Fi(u)(1− uA[̺](t))̺i

)
= δp,1divx(D̺i

·∇x̺i)+ δr,1Hi[̺], (3.16)

and

• A[̺](t) is the following operator:

A[̺](t) =

n∑

j=1

∫

Dx×Du

u ̺j(t,x, u) dx du, (3.17)

with ̺ = (̺1, ̺2, . . . , ̺n);
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• D̺i
is the following tensor:

D̺i
= −

∫

Dv

v ⊗ χi(v) dv, (3.18)

• Hi[̺](t) is the following operator:

Hi[̺] =

n∑

j=1

〈Fi(v)Fj(v)〉

∫

Du×Du

Aij(u∗, u
∗, u) ̺i(t,x, u∗) ̺j(t,x, u

∗) du∗ du
∗

− ̺i(t,x, u)

n∑

j=1

〈Fi(v)Fj(v)〉

∫

Du

̺j(t,x, u
∗) du∗. (3.19)

Proof. To prove Theorem 3.1 an integral approach would be more suitable
than Chapman-Enskog method. Indeed, employing test functions directly on
conservation equations for the velocity moments of distribution function and
balancing with care the various terms, we can pass to the limit of vanishing
mean free path and hope to derive our fluid description.
In order to avoid confusion we split the proof into three steps.

Step 1. (Factorization of the asymptotic limit of fi,ǫ).
Firstly we multiply Eq. (3.3) by εp and we let ε go to zero. Since fi,ε(t,x,v, u)
is, for T > 0, uniformly bounded in

L∞[0, T ;L2(Dx ×Dv ×Du)]

it weakly converges (modulo the extraction of a subsequence) to a solution
fi(t,x,v, u) of the equation

Vi[fi] = 0. (3.20)

Therefore we deduce from Lemma 3.1 the existence of a function ̺i = ̺i(t,x, u) :
[0,∞[×Dx×Du → R

+ independent of v and such that the relation (3.15) holds
true.

Taking the average of the equation (3.3) w.r.t. v, using A6 and dividing by ǫ,
one obtains:

∂t
〈
fi,ε
〉
+

1

ε

〈
v · ∇xfi,ε

〉
+ εℓ−1

〈
TFi

[fi,ε]
〉
= εr−1

〈
J [fi,ε]

〉
. (3.21)

The assumption of convergence for fiǫ entails the convergence in the sense of
distributions for its moments, so that one can pass to the limit in the equation
(3.21).

Assume that ℓ > 1 and r > 1. When ε → 0, the third and the fourth term in
Eq. (3.21) goes to zero, therefore just the limit of the term:

1

ε

〈
v · ∇xfi,ε(t,x,v, u)

〉
(3.22)

has to be evaluated.

Step 2. (The limit of the transport term).
Next, we perform the limit when ε goes to zero in Eq (3.21). In order to calculate
this limit, we study the asymptotic limit of the term

1

ε

〈
v · ∇xfi,ε

〉
. (3.23)
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According to Lemma 3.1, the term (3.23) can be rewritten as follows:

1

ε

〈
v · ∇xfi,ε

〉
= ∇x ·

〈
vfi,ε
ε

〉

=
1

ε
divx

〈
v fi,ε

Fi(v)

Fi(v)

〉
= divx

〈
Vi[fi,ε]

ε

χi(v)

Fi(v)

〉
. (3.24)

Moreover, multiplying the right-hand side and the left-hand side of Eq. (3.3)
by εp−1, we obtain

1

ε
Vi[fi,ε] = εp∂tfi,ε + εp+ℓ−1TFi

[fi,ε] + εp−1v · ∇xfi,ε − εp+r−1J [fi,ε] := L[fiε].

Therefore, plugging the above term into Eq. (3.24) gives

1

ε

〈
v · ∇xfi,ε

〉
= divx

〈
L[fi,ε]

χi(v)

Fi(v)

〉
.

The assumption of convergence of fi,ε ensures the convergence in the sense of
distributions of its moments, so that one can pass to the limit in the equation.
Note that if p = 1 then, when ε→ 0, a similar procedure yields

εp∂tfi,ε + εp+ℓ−1TFi
[fi,ε]− εp+r−1J [fi,ε] → 0 and εp−1v · ∇xfi,ε → v · ∇xfi.

If p > 1 then L[fi,ε] → 0, when ε→ 0.

Bearing all above in mind, we have the following limit:

1

ε

〈
v · ∇xfi,ε

〉
−−−→
ε→0

δp,1 ∇x·

〈(
χi(v)

Fi(v)
⊗ v

)
∇xfi

〉
= δp,1 ∇x·

〈
(χi(v)⊗ v)∇x̺i

〉
.

Step 3. (The limit of the thermostat term).

The term related to the Gaussian isokinetic thermostat reads:

εℓ−1Ki[fi,ε] = εℓ−1

〈
∂u


Fi(u)


1− u

n∑

i=1

∫

Ω

u fi,ε dx dv du


 fi,ε



〉

−−−→
ε→0

δl,1

〈
∂u


Fi(u)


1− u

n∑

i=1

∫

Ω

u ̺iFi dx dv du


 ̺iFi



〉

= δl,1

〈
∂u


Fi(u)


1− u

n∑

i=1

∫

Σ

u ̺i dx du


 ̺iFi



〉

= δl,1 ∂u

(
Fi(u)

(
1− uA[̺](t)

)
̺i

)
. (3.25)

Bearing all above in mind, it is an easy task to show that

εr−1〈Ji[fi,ε]〉 −−−→
ε→0

δr,1Hi[̺]
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where

Hi[̺] =

n∑

j=1

〈Fi(v)Fj(v)〉

∫

Du×Du

Aij(u∗, u
∗, u) ̺i(t,x, u∗) ̺j(t,x, u

∗) du∗ du
∗

− ̺i(t,x, u)
n∑

j=1

〈Fi(v)Fj(v)〉

∫

Du

̺j(t,x, u
∗) du∗. (3.26)

Therefore the proof is concluded. �

Remark 3.3.

In general the tensor D̺i
is non-isotropic.

3.1 On the relaxation model

In this subsection, we restrict our results to the classical case of the relaxation
model. We illustrate the above limit in the simple version of a transport process
as expressed by (2.5), that is an isotropic case. By isotropic we mean as usual
that the diffusion coefficient D is invariant under all orthogonal transformations.
For this analysis we assume that the set of velocities Dv is symmetric with
respect to the rotation group SO(d). Since directional changes are described by
the kernel Ti this assumption is not a restriction. Assume that the velocity
domain Dv = s Sd−1, s > 0, where S

d−1 is the unit sphere in R
d and for

convenience we denote

ω := |Dv| = sd−1|Sd−1| = sd−1ω0, where ω0 = |Sd−1|.

The kernel distribution is assumed to be constant; that is the redistribution is
uniform in velocity space:

Ti(v,v
∗) =

1

ω
=

s1−d

|Sd−1|
.

In particular we take Fi(v) = 1
σω . Then the operator Vi[fi] is the relaxation

operator:

Vi[fi] =
σ

ω

(
〈fi〉 − ω fi

)
, σ > 0, i ∈ {1, 2, . . . , n}, (3.27)

and we can write the model as follows:

fi =
1

ω
〈fi〉 −

1

σ
v · ∇xfi −

1

σ
∂tfi. (3.28)

If we assume that σ >> 1, then the relation (3.28) shows that fi is isotropic, i.e.
independent in v:

fi(t,x,v, u) ≃
1

ω
〈fi〉(t,x, u) =

1

ω
̺i(t,x). (3.29)

This approximation suggests that

fi ≃
1

ω2
̺i −

1

σω
v · ∇x̺i −

1

σω
∂t̺i. (3.30)
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Then, in the sense of distributions on R
∗
+×Dx, we deduce the following relation:

J̄ := 〈vfi〉 ≃
1

ω2
〈v̺i〉 −

1

σω
〈(v ⊗ v)∇x̺i)〉 −

1

σω
∂t〈v̺i〉. (3.31)

We consider now the following term:

J̄k = −
1

σω

n∑

l=1

〈vkvl〉 ∂xl
̺i. (3.32)

Simple computations give

∫

Dv

v ⊗ v dv =

∫

Sd−1

(sζ)(sζ)T sd−1dζ =
s2ω

d
Id

and one gets

J̄k ≃ −
1

σω

n∑

l=1

〈vkvl〉 ∂xl
̺i = −

s2

σd
Id∇xl

̺i. (3.33)

Thus, under the assumption that σ >> 1, we arrive at Fick’s law

J̄ ≃ −Di ∇x̺

where according to our analysis, the diffusion tensor D is defined by

Di =

∫

Dv

v ⊗ vFi(v) dv =
1

σω

∫

Dv

v ⊗ v dv =
s2

σd
Id. (3.34)

Therefore the macroscopic equation (3.16) reads:

∂t̺i + δl,1∂u(Fi

(
1− uA[̺](t))̺i

)
= δp,1Di ∆x̺i + δr,1Hi[̺], (3.35)

where Di is defined by (3.34) and

Hi[̺] =
1

ω
Ji[̺].

4 Derivation of macroscopic frameworks by hyperbolic

scaling

When the flux of the equilibrium function does not vanish, it is common to deal
with another scaling involving a slower time scale, see the analysis developed
in paper [11] in the case of chemosensitive movement and in paper [12] for a
simple fluid or for mixtures.

The hyperbolic asymptotic limit technically consists in expanding the dis-
tribution function fi in terms of a small dimensionless parameter ε by using the
following scaling for the microscopic state variables:

(t,x,v , u) →

(
t

ε
,
x

ε
,v, u

)
, (4.1)

together with a rescaling of the external force field:

Fi(u) → εℓFi(u), ∀i ∈ {1, 2, . . . , n}, l ≥ 1, (4.2)
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and letting the parameter ε go toward zero. The hyperbolic scaling given by Eq.
(4.1) (this terminology will get more clear later) implies that the turning time
(the inverse of the turning frequency 1/ν) is small compared with the typical
mechanical time τ of the system. In particular the following relation holds:

τν =
1

ε
. (4.3)

Accordingly the parameter ε models the ratio between these two times.
Moreover in paper [51] the magnitude of the interaction rate η related to the

activity variable is assumed to be small compared with the turning frequency ν
related to the velocity variable. Therefore the following choice for the interaction
rate η and the turning rate ν is performed:

η = εr−1, ν =
1

ε
(4.4)

where r ≥ 1 and ε is a small real parameter. Inserting the hyperbolic scaling
(4.1) and the various rates set in (4.4), we are interested in the following rescaled
thermostatted kinetic framework:

ε (∂t + v · ∇x) fi,ε + εℓTFi
[fi,ε] = εrJi[fε] + Vi[fi,ε], (4.5)

where TFi
[fi,ε] is defined in (2.8) and where, as already mentioned in the previ-

ous section, with a slight abuse of notation, we have set for all i ∈ {1, 2, . . . , n}

fi,ε(t,x,v, u) = fi

(
t

ε
,
x

ε
,v, u

)
, and f̃ε(t,x,v, u) =

n∑

i=1

fi,ε(t,x,v, u),

where Ji[fε] and Vi[fi,ε] are the operators defined by formulas (3.4) and (3.5),
respectively.

It is worth mentioning that, as usually, the scaling in time allows us to choose
the phenomenon we want to emphasize. By varying ℓ and r we can formally
derive the following systems.

4.1 Hyperbolic equations for macroscopic variables

The aim of this section is the derivation of macroscopic equations for the local
density and the first velocity momentum obtained by performing the asymptotic
limit of Eq. (4.5) as ε goes to zero.

The formal analysis is made under some additional assumptions regarding
the turning operator Vi. According to the function (2.16), we consider the
following hypotheses about the equilibrium state of Vi[fi].

(A10) For all ̺i ∈ [0,+∞) and Ui ∈ R
d there exists a unique function F̺i,Ui

=
F̺i,Ui

(v) ∈ L1(Dv, (1 + |v|) dv) such that:

Vi[F̺i,Ui
] = 0,

∫

Dv

F̺i,Ui
(v)dv = ̺i,

∫

Dv

vF̺i,Ui
(v) dv = ̺i Ui. (4.6)

Remark 4.1.

Since the above balance is not Maxwellian, we prefer to indicate it by F .
Moreover, the assumption (A10) simply means that the kernel of Vi is (d+1)-
dimensional.

19



Let ψ ∈ {1,v}. Then multiplying the rescaled Eq. (4.5) by ψ and integrating
with respect to velocity variable v we have

ε

∫

Dv

(∂t + v · ∇x) fi,ε ψ dv + εℓ∂u

∫

Dv

ψ TFi
[fi,ε] dv

= εr
∫

Dv

ψ Ji[fi,ε] dv +

∫

Dv

ψ Vi[fi,ε] dv. (4.7)

The system of conservation law equations will be derived from Eq. (4.7) by
performing the limit when ǫ goes to zero. Specifically in this section we show
that the moments of fi,ε, the weak limit of the sequence fi,ε, solve a class of
hyperbolic equations.

The local macroscopic laws equations (mass conservation and momentum)
are obtained multiplying (4.7) by 1 and v respectively and averaging over ve-
locity. Therefore, according to the assumptions on the turning operator, these
equations read:

∂t
〈
fi,ε
〉
+
〈
v · ∇xfi,ε

〉
+ εℓ−1

〈
∂uTFi

[fi,ε]
〉
= εr−1

〈
Ji[fε]

〉
, (4.8a)

∂t
〈
vfi,ε

〉
+ divx

〈
v ⊗ vfi,ε

〉
+ εℓ−1

〈
v∂uTFi

[fi,ε]
〉
= εr−1

〈
vJi[fε]

〉
. (4.8b)

In what follows we set Ki[fi,ε] =
〈
∂uTFi

[fi,ε]
〉
and Si[fi,ε] =

〈
v∂uTFi

[fi,ε]
〉
.

We are now able to enunciate the statement of the main result of this section,
which it will be split in two parts: the first is devoted to the limit of the rescaled
distribution function fi,ε while the second part refers to the limit of the number
density and mass velocity. The proofs of technical details are postponed to the
Appendix.

Part I. The main result is the following theorem.

Theorem 4.1 Let fi,ε(t,x,v, u), for i ∈ {1, 2, . . . , n}, be a sequence of non-
negative solutions to the rescaled thermostatted kinetic framework (4.5) such
that fi,ε converges, in the sense of distributions theory, to a function fi ∈
L2([0, T ];L2(Ω)) as ε goes to zero. Furthermore, assume that as ε → 0 the
terms

〈fi,ε〉 , 〈vfi,ε〉 , 〈v ⊗ vfi,ε〉 ,
〈
Ji[fi,ε]

〉
,
〈
TFi

[fi,ε]
〉 〈

vJi[fi,ε]
〉
,
〈
vTFi

[fi,ε]
〉

converge, in the sense of distributions, to the corresponding terms

〈fi〉 , 〈vfi〉 , 〈v ⊗ vfi〉 ,
〈
Ji[fi]

〉
,
〈
TFi

[fi]
〉 〈

vJi[fi]
〉
,
〈
vTFi

[fi]
〉

and that every formally small term in ε vanishes. Then the asymptotic limit fi
admits the following form

fi(t,x,v, u) = F̺i(t,x,u),Ui(t,x,u)(v), i ∈ {1, 2, . . . , n}. (4.9)

where ̺i and ̺iUi are the weak solutions of the following macroscopic equations:

∂t̺i + divx (̺iUi) + δℓ,1Ki[ρi] = δ1,r
〈
Ji[f ]

〉
(4.10a)

∂t(̺iUi) + divx (̺iUi ⊗ Ui + Pi) + δℓ,1Si[̺iUi] = δ1,r
〈
vJi[f ]

〉
, (4.10b)
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where
Ki[ρi] = ∂u

(
Fi(u)

(
1− uA[̺](t)

)
̺i

)

Si[̺iUi] = ∂u

(
Fi(u)

(
1− uA[̺](t)

)
̺iUi

)

being Pi positive-definite matrix (the stress tensor) and δh,k the standard Kro-
necker delta.

Remark 4.2.

The first equation (4.10a) looks like a “mass conservation equation”; in fact,
let us point out that the right-hand side δ1,r〈Ji[f ]〉 is unknown, because it
depends (in particular) on the arbitrary ηijAij . The production terms 〈Ji[f ]〉
and 〈vJi[f ]〉 can be specified if Ji is given.

Proof. We make use of a technique similar to the one employed in [8]. The
proof of this theorem is divided into three steps.

Step 1. (Expansion of fi,ǫ).
The convergence hypothesis for fi,ε entails the convergence in the sense of dis-
tributions of its moments so that one can pass to the limit in Eq (4.5) when
ε→ 0, which yields Vi[fi,0] = 0.
Now we consider, for i ∈ {1, . . . , n}, the following moments of fi,ε:

̺i,ε(t,x, u) =

∫

Dv

fi,ε(t,x,v, u) dv, (4.11)

̺i,ε(t,x, u)Ui,ε(t,x, u) =

∫

Dv

vfi,ε(t,x,v, u) dv. (4.12)

Assumption (A10) implies that there exists the unique function F̺i,Ui
, where

Ui depends on (t,x, u), verifying the conditions (4.6). Therefore

fi,0(t,x,v, u) = F̺i(t,x,u),Ui(t,x,u)(v), i ∈ {1, 2, . . . , n}. (4.13)

As a consequence, following [11], we introduce the function gi (uniformly bounded
in a suitable functional space) such that:

fi,ε(t,x,v, u) = F̺i,Ui
(v) + εgi(t,x,v, u). (4.14)

Step 2. Recalling (4.8a) and (4.8b) we obtain

∂t
〈
fi,ε
〉
+
〈
v · ∇xfi,ε

〉
−→ ∂t̺i + divx (̺iUi)

∂t
〈
vfi,ε

〉
+ divx

〈
v ⊗ vfi,ε

〉
−→ ∂t(̺iUi) +∇x ·

(∫

Dv

v ⊗ vF̺i,Ui

)
.

As previously mentioned
∫
(v ⊗ v)F̺i,U dv = ̺iUi ⊗ Ui + Pi,

therefore

∂t
〈
vfi,ε

〉
+ divx

〈
v ⊗ vfi,ε

〉
−→ ∂t(̺iUi) +∇x · (̺iUi ⊗ Ui + Pi) ,

which leads us to infer that the asymptotic limit depends on the parameter ℓ
and r as follows:
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• If ℓ > 1 and r > 1, then the pair (̺i, ̺iUi) is weak solution of the following
hyperbolic system without source term:

∂t̺i + divx (̺iUi) = 0 (4.15a)

∂t(̺iUi) +∇x · (̺iUi ⊗ Ui + Pi) = 0. (4.15b)

• If ℓ = 1 and r > 1. Letting ε→ 0, we get

∂t
〈
fi,ε
〉
+
〈
v · ∇xfi,ε

〉
+Ki[fi,ε] −→ ∂t̺i + divx (̺iUi) +Ki[fi]

∂t
〈
vfi,ε

〉
+ divx

〈
v ⊗ vfi,ε

〉
+ Si[fi,ε] −→ ∂t(̺iUi) +∇x · (̺iUi ⊗ Ui + Pi) + Si[fi].

It remains to identify Ki[fi] = lim
ε→0

Ki[fi,ε] and Si[fi] = lim
ε→0

Si[fi,ε].

Step 3. (The asymptotic limit of the thermostat term).
The velocity average of the term related to the Gaussian thermostat reads:

Ki[fi,ε] =

〈
∂u

(
Fi(u)

(
1− u

∫

Ω

u f̃ε dx dv du

)
fi,ε

)〉
. (4.16)

Letting ε go to zero, and according to the (4.9), one has the following:

Ki[fi,ε] −−−→
ε→0

Ki[̺i] =

〈
∂u

(
Fi(u)

(
1− u

n∑

j=1

∫

Ω

uF̺j ,Uj
dx dv du

)
F̺i,Ui

)〉

=

〈
∂u

(
Fi(u)

(
1− u

n∑

j=1

∫

Σ

u ̺j dx du

)
F̺i,Ui

)〉
. (4.17)

Fubini’ Theorem implies that

Ki[̺i] = ∂u

(
Fi(u)

(
1− u

n∑

j=1

∫

Σ

u ̺j dx du

)∫

Dv

F̺i,Ui
(v)dv

)

= ∂u

(
Fi(u)

(
1− uA[̺](t)

)
̺i

)
, (4.18)

where A[̺] is given by Eq. (3.17).

The term Si[fi,ε] reads:

Si[fi,ε] =

〈
v∂u

(
Fi(u)

(
1− u

∫

Ω

u f̃ε dx dv du

)
fi,ε

)
.

〉
(4.19)

Letting ε go to zero, and according to the (4.9), one has the following:

Si[fi,ε] −−−→
ε→0

Si[̺iUi] =

〈
v∂u

(
Fi(u)

(
1− u

n∑

j=1

∫

Ω

uF̺j ,Uj
dx dv du

)
F̺i,Ui

)〉

=

〈
∂u

(
Fi(u)

(
1− u

n∑

j=1

∫

Σ

u ̺j dx du

)
vF̺i,Ui

)〉

= ∂u

(
Fi(u)

(
1− uA[̺](t)

)
̺iUi

)
. (4.20)
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Finally, ̺i and Ui satisfy the relations:

∂t̺i + divx (̺iUi) +Ki[̺i] = δ1,r
〈
Ji[f ]

〉
(4.21a)

∂t(̺iUi) +∇x · (̺iUi ⊗ Ui + Pi) + Si[̺iUi] = δ1,r
〈
vJi[f ]

〉
, (4.21b)

where Ki[f ] and Si[f ] are given by relations (4.18) and (4.20). Therefore the
proof is concluded.

It is worth observing that the influence of the turning operator Vi on the
macroscopic equations comes into play through the equilibrium state F̺i,Ui

and
the pressure tensor Pi. �

Part II. The next step is to obtain the asymptotic limit for the global density
and mass velocity. Accordingly, we define

n[fε](t,x) =

n∑

i=1

∫

Σ

fi,ε(t,x,v, u) dv du (4.22)

and

q[fε](t,x) = n[fε](t,x)U[fε](t,x) =

n∑

i=1

∫

Σ

vfi,ε(t,x,v, u) dv du. (4.23)

From (4.14) and (4.6) one has

n∑

i=1

∫
fi,ε(t,x,v, u) dv du =

n∑

i=1

∫
F̺i,Ui

dv du+ ε

n∑

i=1

∫
gi,ε(t,x,v, u) dv du

=

n∑

i=1

∫
̺i(t,x, u) du+ ε

n∑

i=1

∫
gi,ε(t,x,v, u) dv du

= n[f ](t,x) +O(ε)

which means that n[f ](t,x) is the first approximation of the global density given
by

n[f ](t,x) =

n∑

i=1

∫

Du

̺i(t,x, u) du. (4.24)

Similarly one obtains that

n[fε](t,x)U[fε](t,x) = q[f ](t,x) +O(ε), (4.25)

where

q[f ](t,x) =
n∑

i=1

∫

Du

̺i(t,x, u)Ui(t,x, u) du. (4.26)

The quantity dv du is a nonnegative unit measure on Dv×Du, so we denote by
〈〈ψ〉〉 the average over this measure of any integrable function ψ(v, u), namely

〈〈ψ〉〉 =

∫

Dv×Du

ψ(v, u) dv du. (4.27)
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The next step is to integrate Eq. (4.5) with respect to v and u, then one obtains

∂t〈〈fi,ε〉〉+ 〈〈v · ∇xfi,ε〉〉+ εℓ−1〈〈∂uTFi
[fi,ε]〉〉 = εr−1〈〈Ji[fε]〉〉 (4.28a)

∂t〈〈vfi,ε〉〉+ divx〈〈v ⊗ vfi,ε〉〉+ εℓ−1〈〈v∂uTFi
[fi,ε]〉〉

= εr−1〈〈vJi[fε]〉〉. (4.28b)

From the identities

n∑

i=1

∫

Du

Ji[F̺i,Ui
, F̺i,Ui

] du = 0 and

n∑

i=1

∫

Du

vJi[F̺i,Ui
, F̺i,Ui

] du = 0 (4.29)

and taking the sum of (4.28a)-(4.28b) over i, the problem reduces to





∂tn[fi,ε] + divx q[fi,ε] = −εℓ−1

∫

Dv×Du

TFi
[fi,ε] dv du+ εr−1〈〈Ji[fε]〉〉

∂tq[fi,ε] + divx

(
n∑

i=1

∫

Dv×Du

v ⊗ vF̺iUi
dv du

)
= −εℓ−1

∫

Dv×Du

vTFi
[fi,ε] dv du+

= εr−1〈〈vJi[fε]〉〉.

The following theorem holds true.

Theorem 4.2 Let fi,ε(t,x,v, u), for i ∈ {1, 2, . . . , n}, be a sequence of non-
negative solutions to the rescaled thermostatted kinetic framework (4.5) such
that fi,ε converges, in the sense of distributions theory, to a function fi ∈
L2([0, T ];L2(Ω)) as ε goes to zero. Assume that fi,ε has the following form

fi,ε(t,x,v, u) = F̺i,Ui
(v) + εgi(t,x,v, u),

that as ε→ 0 the following terms

〈〈fi,ε〉〉 , 〈〈vfi,ε〉〉 , 〈〈v⊗vfi,ε〉〉, 〈〈TFi
[fi,ε]〉〉, 〈〈vTFi

[fi,ε]〉〉, 〈〈Ji[fi,ε]〉〉, 〈〈vJi[fi,ε]〉〉

converge, in the sense of the distributions theory, to the corresponding terms

〈〈fi〉〉, 〈〈vfi〉〉, 〈〈v ⊗ vfi〉〉, 〈〈TFi
[fi]〉〉, 〈〈vTFi

[fi]〉〉, 〈〈Ji[fi]〉〉, 〈〈vJi[fi]〉〉

and that every formally small term in ε vanishes. Then the density n[fε] defined
by (4.24) and the mass velocity n[fε]U[fε] defined by (4.26) converge respectively,
in the sense of distribution, to n[f ] and q[f ] where

• if ℓ > 1 and r > 1, then





∂tn+ divx q = 0

∂tq + div

(
n∑

i=1

∫

Dv×Du

v ⊗ vF̺i,Ui
dv du

)
= 0

(4.30)
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• if ℓ = 1 and r > 1, then




∂tn+ divx q = −

∫

Dv×Du

TFi
[f ] dv du

∂tq + div

(
n∑

i=1

∫

Dv×Du

v ⊗ vF̺i,Ui
dvdu

)
= −

∫

Dv×Du

vTFi
[f ] dv du.

(4.31)

Proof. The proof is gained by following the same steps in the proof of Theorem
4.1. It just remains the computation of the term related to the thermostat; in
particular note that

∫

Dv×Du

∂u

(
Fi(u)

(
1− u

∫

Ω

u f̃ε dx dv du

)
fi,ε

)
dv du

=

∫

Du

∂u

(
Fi(u)

(
1− uA[̺](t)

)
̺iUi

)
du = Fi(u)

(
1− uA[̺](t)

)
̺iUi.

The rest of the proof is straightforward and therefore omitted. �

It is worth observing that the specific form of Vi[fi] will depend on the choice
of the turning kernels and will be discussed in the next paragraph.

4.2 Macroscopic equations for the relaxation model

In order to obtain convergence results corresponding to our formal results, we
restrict the scope of our study. We deal with a specific example obtained by
choosing a concrete turning operator. Specifically we assume that the velocity
domain Dv is the (d− 1)−sphere of radius s > 0, namely

Dv = sSd−1 = {v ∈ R
d : |v| = s}.

Remember that |v| = s, Dv = sSd−1 and ω = |Dv|. If we choose an appropriate
turning kernel, then some models with constant coefficients can be also obtained.

Assume that the probability of a change of velocity v∗ to v depends on the
angle between these two velocities. Then the turning kernel (2.7) is replaced by

Ti(v,v
∗) =

1

ω

(
1 +

a

s2
(v · v∗)

)
with a < d. (4.32)

For the choice (4.32), simple computations (see Appendix A) give:

V [fi] =
̺i
ω

(
1 +

a

s2
v · Ui

)
− fi(v).

Before going on we set

F̺i,Ui
(v) =

̺i
ω

(
1 +

a

s2
v · Ui

)
. (4.33)
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(for notational convenience, we do not mention explicitly the dependence of ̺i
and Ui on (t,x, u)).

According to the above choice we have

F̺i∗ ,Ui∗
(v) =

̺i∗
ω

(
1 +

a

s2
v · Ui∗

)

and (see Appendix A) the following identities hold true:

∫

Dv

F̺i∗ ,Ui∗
(v)F̺j∗ ,Uj∗

(v) dv =
̺i∗̺j∗

ω

(
1 +

a2

ds2
Ui∗ · Uj∗

)
,

and

∫

Dv

vF̺i∗ ,Ui∗
(v)F̺j∗ ,Uj∗

(v) dv =
̺i∗̺j∗

ω

a2

ds2
(Ui∗ + Uj∗).

Moreover we have

∫

Dv

TFi
[fi]dv =

∫

Dv

∂u

(
Fi(u)

(
1− u

∫

Ω

u f̃(t,x,v, u) dx dv du

)
fi(t,x,v, u)

)

=

∫

Dv

∂u

(
Fi(u)

(
1− u

n∑

j=1

∫

Ω

u
̺j
ω

(
1 +

a

s2
v · Uj

)
dx dv du

)

×
̺i
ω

(
1 +

a

s2
v · Ui

))
dv.

By using Fubini’s Theorem, one has

u

n∑

j=1

∫

Ω

u
̺j
ω

(
1 +

a

s2
v · Uj

)
dx dv du

=
u

ω

n∑

j=1

∫

Dx×Du

u ̺j dx du

∫

Dv

dv +
u

ω

n∑

j=1

a

s2

∫

Dx×Du

̺jUj dx du ·

∫

Dv

v dv

namely

u
n∑

j=1

∫

Ω

u
̺j
ω

(
1 +

a

s2
v · Uj

)
dx dv du = uA[̺],

and
∫

Dv

̺i
ω

(
1 +

a

s2
v · Ui

)
dv = ̺i +

a̺i
ωs2

Ui ·

∫

Dv

vdv = ̺i. (4.34)
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Thus ∫

Dv

TFi
[fi]dv = ∂u(Fi(u)(1− uA[̺]̺i)). (4.35)

Finally
∫

Dv

v
̺i
ω

(
1 +

a

s2
v · Ui

)
dv =

̺i
ω

∫

Dv

v dv +
a̺i
ωs2

Ui ·

∫

Dv

vkvldv

=
a̺i
ωs2

Ui ·
ω

d
s2I =

a

d
̺iUi, (4.36)

and

∫

Dv

vTFi
[fi] dv = ∂u

(
Fi(u)

(
1−

a

d
uA[̺] ̺iUi

))
.

The following two lemmas, which provide the computation of the integrals
of equilibrium function and the operator Ji[f ], are key tools for the derivation
of the macroscopic equation.

Lemma 4.1 Let u∗, u∗ ∈ Du and ̺∗ = ̺(t,x, u∗), U
∗ = U(t,x, u∗), ̺∗ =

̺(t,x, u∗), U∗ = U(t,x, u∗). Then

∫

Dv

F̺i∗ ,Ui∗
(v)F̺j∗ ,Uj∗

(v) dv =
̺i∗̺j∗

ω

(
1 +

a2

ds2
Ui∗Uj∗

)
(4.37)

∫

Dv

vF̺i∗ ,Ui∗
(v)F̺j∗ ,Uj∗

(v) dv =
̺i∗̺j∗

ω

a2

ds2
(Ui∗ + Uj∗). (4.38)

Lemma 4.2 If f = (F̺1,U1
, F̺2,U2

, . . . , F̺n,Un
), where F̺i,Ui

is given by Eq.
(4.33), then the following equalities hold true:

∫

Dv

Ji[f ] dv =
1

|Dv|

(
Ji[̺] +

a2

ds2
Ji[̺U]

)
, (4.39)

∫

Dv

v Ji[f ] dv =
1

|Dv|

(
Ai[̺,̺U] +Bi[̺,̺U]

)
, (4.40)

hold true, where ̺ = (̺1, ̺2, . . . , ̺n), ̺U = (̺1U1, ̺2U2, . . . , ̺nUn) and

Ai(̺,̺U) =
n∑

j=1

∫

Du×Du

Aij(u∗, u
∗, u) ̺i∗ Ui∗ ̺

∗
j du∗ du

∗

−̺i(u)Ui(u)

n∑

j=1

∫

Du×Du

Aij(u∗, u
∗, u) ̺∗j du∗ du

∗, (4.41)

Bi(̺,̺U) =

n∑

j=1

∫

Du×Du

Aij(u∗, u
∗, u) ̺∗j U

∗
j ̺i∗ du∗ du

∗

−̺i(u)
n∑

j=1

∫

Du×Du

Aij(u∗, u
∗, u) ̺∗j U

∗
j du∗ du

∗. (4.42)
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The proof of these lemmas is postponed to Appendix A.

By gathering all the above results we obtain the main result for the relaxation
model.

Theorem 4.3 Let fi,ε(t,x,v, u) be a sequence of solutions to the rescaled ki-
netic equation (4.5) and Vi the relaxation operator given by Eq. (4.33) such that
fi,ε converges, in the sense of distributions, to a function fi as ε goes to zero.
Furthermore, assume that for ψ ∈ {1,v}, the moments

〈
ψfi,ε

〉
,

〈
ψJi[fε]

〉
,

〈
ψTFi

[fi,ε]
〉
,

converge in the sense of distributions to the corresponding moments

〈ψfi〉 ,
〈
ψJi[f ]

〉
,

〈
ψTFi

[fi]
〉
.

Then the asymptotic limit fi, for i ∈ {1, 2, . . . , n}, has the form (4.9), where ̺i
and ̺iUi are the weak solutions of the following macroscopic equations:




∂t̺i + divx (̺iUi) + δl,1∂u

(
Fi(u)

(
1− uA[̺](t)

)
̺i

)

=
δ1,r
|Dv|

(
Ji[̺] +

d

s2
Ji[̺U]

)
,

∂t(̺iUi) +
s2

d
∇x̺i + δl,1∂u

(
Fi(u)

(
1− uA1[̺](t)

)
̺iUi

)

=
δ1,r
|Dv|

(
Ai[̺,̺U] +Bi[̺,̺U]

)
,

(4.43)

being the operators Ai and Bi given by (4.41) and (4.42) respectively and δh,k
the standard Kronecker delta.

Proof. Starting with Eq. (4.5) one replaces the turning kernel Vi[fi,ε] by
(4.33). Next letting ε → 0, we obtain the equations of the moments. The rest
of the proof is straightforward and therefore omitted. �

We derive now the limit of the density and mass velocity in the case of the
relaxation model.

Theorem 4.4 Let fi,ε be a smooth solution of the rescaled thermostatted kinetic
framework (4.5). Assume that, for any t ∈ [0, T ]

∫

Dx×Dv×Du

fi,ε(t,x,v, u) dx dv du <∞, i ∈ {1, 2, . . . , n} (4.44)

and fi,ε converges a.e. in [0, T ]×Dx×sS
d−1×Du for some T > 0. Furthermore,

assume that the kernel A(u∗, u
∗, u) of the operator Ji[fi] is in L2(Du)

3. Then,
the pointwise limit of fi,ε is the function F̺i,Ui

given by (4.32) where

̺i ≡ lim
ε→0

̺i,ε, Ui ≡ lim
ε→0

Ui,ε,

that is, the weak moment and pointwise limit of the moments (4.11)-(4.12) of
fi,ε. Then
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• if ℓ > 1, one obtains, as ε→ 0 the following limit:





∂t̺i + divx (̺iUi) = 0

∂t(̺iUi) +
s2

d
∇x̺i = 0

(4.45)

• if ℓ = 1, one obtains:





∂t̺i + divx (̺iUi) = ∂u

(
Fi(u)

(
1− uA[̺](t)

)
̺i

)

∂t(̺iUi) +
s2

d
∇x̺i = ∂u

(
Fi(u)

(
1− uA[̺](t)

)
̺iUi

)
.

(4.46)

Proof. The proof is based on the Dunford-Pettis Criterion. The assumption
(4.44) ensures that any solution fi,ε is contained in a relatively weakly compact
set of L1

loc(R
∗
+×Dx×Dv×Du). From now on, weak convergence at least means

convergence in this sense.
From the statement (4.44) on fi,ε, by virtue of Dunford-Pettis Theorem (see

[68] Th. 4.21.2 p. 274), up to the extraction of a subsequence (still denoted
with the index i, ε) such that fi,ε ⇀ fi weakly in Lp([0, T ]×Dx × sSd−1 ×Du)
to its pointwise limit and weakly in L1([0, T ] × Dx × sSd−1 × Du) locally, so
then strongly in L1

loc([0, T ]×Dx × sSd−1 ×Du). Then, there exists a function
fi,0(t,x,v, u) such that, the subsequences

fi,ε ⇀ fi,0 weakly in L1
loc([0, T ]×Dx × sSd−1 ×Du),

V [fi,ε]⇀ V [fi,0] weakly in L1
loc([0, T ]×Dx × sSd−1 ×Du),

as ε→ 0. On the other hand, from the definition of Ji and the hypotheses under
fε, Aij and ηij , we deduce similarly the convergence of

Ji,ε ⇀ Ji,0 strongly in L1
loc([0, T ]×Dx × sSd−1 ×Du)

and

TFi
(fε)⇀ TFi

(f0) strongly in L1
loc([0, T ]×Dx × sSd−1 ×Du).

The limit f0 is identified by taking the limit in (4.5), in distributional sense on
R

∗
+×Dx×Dv×Du to deduce that V [f0] = 0 and then Lemma 4.1 ensures that

f0 = F̺0,U0 .

Moreover the velocity space sSd−1 has finite measure, then the hypothesis
(4.44) holds for the v-moments of fε, therefore

̺i,ε ⇀ ̺i,0,

∫

Dv

vfi,ε dv ⇀

∫

Dv

vfi,0 dv = ̺i,0Ui,0,

and ∫

Dv

v ⊗ vfi,ε dv ⇀

∫

Dv

v ⊗ vfi,0 dv =

∫

Dv

v ⊗ vF̺0,U0
dv =

s2

d
I
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Combining the convergence of Ji[fi,ε] and Vi[fi,ε] with the weak convergence of
fi,ε, we can pass to the limit ε → 0 in this relation, which proves that (n, q)
is indeed solution, in the sense of distributions, of (4.28a)-(4.28b). If we suc-
cessively apply Lemmas 4.1 and 4.2, the different regimes are straightforwardly
obtained. This proves our claim and complete the proof. �

We are now able to formulate the derivation of macroscopic equations for
the relaxation model. Let nε and nεUε be the number density and the main
velocity defined in (4.24) and (4.26), then one gets the following result in the
case of the relaxation model.

Theorem 4.5 Let fi,ε be a smooth solution of the rescaled thermostatted kinetic
framework (4.5). Under the assumptions of Theorem 4.2 the density nε and the
mass velocity nεUε converge respectively, in the distributional sense, to n and
q. In addition, every limit point is governed by a weak solution of the following
hyperbolic equations:

• if ℓ > 1, one obtains, as ε→ 0 the following limit:





∂tn+ divx q = 0

∂tq +
s2

d
∇xn = 0

(4.47)

• if ℓ = 1, one obtains:





∂tn+ divx q + Fi(u)

(
1−

a

d
uA[̺]q

)
= 0

∂tq +
s2

d
∇xn+ F(u)

(
1− uA[̺](t)

)
q = 0.

(4.48)

We can summarize our results in the following diagram:

fi,e(t,x,v, u)
convergence in D

′(R+
× Dx × Du)

(ε−→0)
//

00

̺i,0(t,x, u)

averaging w.r.t. u
(ε−→0)

��

n(t,x)

where n(t,x) is a weak solution to hyperbolic equations (4.47) and (4.48).

5 Applications and perspective

The present paper was concerned with the derivation of macroscopic equations
for the modelling of macroscopic variables of complex systems composed by a
large number of active particles. The macroscopic description has been obtained
by asymptotic limits of the thermostatted kinetic for active particles models.
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Therefore the linking between the mesoscopic (kinetic) and the macroscopic
scale has been reached in a first attempt to obtain the multiscale description.

Applications refer to biological systems and specifically to the derivation of
tissue scale models in the modelling of cancer phenomena where the interactions
among the cells at the kinetic scale have a key role in the onset and growth of
tumor and cancer metastasis [53, 54, 55, 56, 61, 62], capillary sprouts phenomena
and angiogenesis [63, 64, 65]. A technical difficulty in treating biological systems
is their evolutionary characteristics. Indeed genetic mutations may affect the
dynamics at the cellular scale and subsequently the whole dynamics at the tissue
scale [61].

Another application refers to the modelling of chemotaxis, which describes
the motion of microorganisms induced by chemical signals that they are able to
sense, transduce and eventually relay into the medium. This phenomenon plays
a key role in a large number of homeostatic and pathological situations [66].
The thermostatted kinetic framework appears more appropriate for the mod-
elling of this phenomenon because introduces the external force but ensures the
conservation of the total energy and the reaching of nonequilibrium stationary
steady states.

It is worth stressing that the analysis performed in this paper is brought
to the attention of applied mathematicians involved in multiscale modeling and
simulations of complex systems. Nevertheless we are aware that interesting
problems are still open. Among others, as already mentioned, in the biological
systems case, genetic mutations can modify the interactions among the cancer
cells. Therefore the underlying description offered by the thermostatted kinetic
theory models needs to be related to the evolution at the molecular (microscopic)
scale.

Finally, as known, the collective behavior of biological, animal or human
systems occurs in response to environmental factors that can affect the whole
dynamics, e.g., the dynamics of swarms of insect can be modified by the attack
of a predator, the tumor growth can be slacked by injections of vaccine. There-
fore the environment role has to be taken into account in the models of the
thermostatted kinetic theory not only by considering the external macroscopic
force field F but also by modeling the interaction with the outer environment
at the microscopic scale. Modelling external actions at the microscopic scale
means representing the outer system as a specific functional subsystem with the
ability to interact with the active particles of the inner system. This generaliza-
tion appears to be essentially technical and has been proposed and developed
in [6], while the formal asymptotic analysis appears definitively to be a hard
problem.

It is worth noticing that a comparison between the parabolic and hyperbolic
limit shows that a different choice (and the magnitude-predominant) of the in-
teraction rate η and the turning rate ν modifies the structure of the macroscopic
equations and correspondingly the macroscopic behavior. Therefore the scaling
plays a crucial role in the treatment of different complex phenomena. Specifi-
cally the parabolic scaling allows the modelling of transport propriety instead
the hyperbolic scaling is chosen consistently with the phenomenological behavior
which requires models with finite speed of propagation. The interested reader
in the phenomena described by the hyperbolic models is referred to the review
[67].

It is worth stressing that the asymptotic analysis developed in this paper as-
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sumes that the same time or space scaling (hyperbolic or parabolic) is performed
in the distribution function of each functional subsystem. Mixed parabolic and
hyperbolic limit can be considered with reference to the system to be modelled
and according to the dispersive or non-dispersive nature of the subsystems (a
subsystem is involved in a diffusion process and a subsystem has a dynamics
that is dominated by the hyperbolic behavior). This is object of future analysis.

A Appendix

This Appendix is devoted to some computations that have been omitted in the
main part of the paper.

A.1 Proof of Lemma 3.1

To prove the coercitivity inequality (3.10), we write

∫

Dv

Vi[fi]
fi
Fi
dv =

∫

Dv×Dv

Ti(v,v
∗)f∗i

fi
Fi
dv dv∗ −

∫

Dv

νi(v)
f2i
F
dv

=

∫

Dv×Dv

Ti(v,v
∗)F ∗

i

f∗i
F ∗
i

fi
Fi
dv dv∗ −

∫

Dv

νi(v)
f2i
Fi
dv, (A.1)

where f∗ denotes f(v∗). We now consider the second term of the right-hand
side of (A.1). On one hand we have:

∫

Dv

νi(v)
f2i
Fi
dv =

∫

Dv

∫

Dv

Ti(v
∗,v)Fi

f2i
F 2
i

dv dv∗

=

∫

Dv×Dv

Ti(v,v
∗)F ∗

i

f∗2i
F ∗2
i

dv dv∗. (A.2)

On the other hand, considering that νiFi = K[Fi], we have also:

∫

Dv

νi(v)
f2i
Fi
dv =

∫

Dv

[νi(v)Fi]
1

Fi

f2i
Fi
dv =

∫

Dv

K[Fi]
f2i
F 2
i

dv

=

∫

Dv×Dv

Ti(v,v
∗)F ∗

i

f2i
F 2
i

dv dv∗. (A.3)

Combining (A.1)-(A.2)-A.3) we get

2

∫

Dv

Vi[fi]
fi
Fi
dv = 2

∫

Dv×Dv

Ti(v,v
∗)F ∗

i

f∗i
F ∗
i

fi
Fi
dv dv∗ −

∫

Dv×Dv

Ti(v,v
∗)
F ∗
i f

∗2
i

F ∗2
i

dv dv∗

−

∫

Dv×Dv

Ti(v,v
∗)F ∗

i

f2i
F 2
i

dv dv∗

=

∫

Dv×Dv

Ti(v,v
∗)F ∗

i

[
2
f∗i
F ∗
i

fi
Fi

−
f∗2i
F ∗2
i

−
f2i
F 2
i

]
dv dv∗,
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so that (A.1) reads

−

∫

Dv

Vi[fi]
fi
Fi
dv =

1

2

∫

Dv×Dv

Ti(v,v
∗)F ∗

i

(
f∗i
F ∗
i

−
fi
Fi

)2

dvdv∗
> 0. (A.4)

We have proved the dissipative property of the collision operator in the sense

that an ‘H- theorem’ holds, i.e.
∫
Dv

Vi[fi]
fi

Fi

dv 6 0. In particular, if Vi[fi] = 0.

This suggests to introduce the space L2(dµ) where the measure dµ(v) is defined
on the phase space by dµ := dµ(v)/F (v), v ∈ Dv. Then with the help of (A.4)
we led to

f∗i
F ∗
i

=
fi
Fi
dµ(v)⊗ dµ(v∗) a.e.

from which we deduce the result about the null space of V [fi].

The solvability conditions imply that
∫
Dv

hi dv = 0 is a necessary condition

for the solvability of Vi[fi] = hi. The Fredholm alternative follows from a
direct application of the Lax-Milgram theorem applied to the variational formula∫
Dv

Vi[fi] g dv =

∫
Dv

h g dv on the closed subspace
{

fi ∈ L
1
(Dv) :

∫

Dv

fi dv = 0

}

.

Next, by integration with respect to v∗ of the following identity

fiF
∗
i − f∗i Fi =

(
fi
Fi

−
f∗i
F ∗
i

)
FiF

∗
i ,

we get

fi

∫

Dv

F ∗
i dv

∗ −

(∫

Dv

f∗i dv
∗

)
Fi =

∫

Dv

(
fi
Fi

−
f∗i
F ∗
i

)
FiF

∗
i dv

∗. (A.5)

The right-hand side of the (A.5) is estimated, with the help of the Cauchy-
Schwarz inequality, as

|fi − 〈fi〉Fi|
2
6



∫

Dv

(
fi
Fi

−
f∗i
F ∗
i

)
T (v,v∗)F ∗dv∗



(∫

Dv

F 2
i

T
F ∗dv∗

)
.

Therefore

∫

Dv

fi − 〈fi〉Fi

Fi
νi dv 6

(
sup
v∈Dv

νi

∫

Dv

Fi

T (v,v∗)
F ∗dv∗

)

×



∫

Dv

(
fi
Fi

−
f∗i
F ∗
i

)2

T (v,v∗)F ∗
i dvdv

∗




6 κ

∫

Dv

Vi[fi]
fi
Fi
dv. (A.6)

By using (A.4) and (A.6) we obtain the estimation (3.11). The proof is now
completed.
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A.2 Computations of the turning term

Let T (v,v∗) be the turning kernel defined by Eq. (4.32). Therefore the corre-
sponding turning operator reads:

V [f ] =
1

ω

∫

Dv

[(
1 +

a

s2
v · v∗

)
f(v∗)−

(
1 +

a

s2
v · v∗

)
f(v)

]
dv∗

=
1

ω

[∫

Dv

f(v∗) dv∗ +
a

s2

∫

Dv

(v · v∗) f(v∗) dv∗

−

∫

Dv

f(v) dv∗ −
a

s2

∫

Dv

(v · v∗) f(v) dv∗

]

namely

V [f ] =
1

ω



∫

Dv

f(v∗) dv∗ +
a

s2

(
v ·

∫

Dv

v∗ f(v∗) dv∗

)

−f(v)

∫

Dv

dv∗ −
a

s2

(
vf(v) ·

∫

Dv

v∗ dv∗

)
 .

Since

∫

Dv

v dv = 0 we have

V [f ] =
1

ω

[
̺+ ̺

a

s2
v · U− ωf(v)

]
=
̺

ω

(
1 +

a

s2
v · U

)
− f(v).

From the identity given by Eq. (4.33) one has

F̺i∗,Ui∗(v) =
̺i∗
ω

(
1 +

a

s2
v · Ui∗

)

and then
∫

Dv

F̺i∗,Ui∗(v)F̺j∗ ,Uj∗
(v) dv =

̺i∗̺j∗
ω2

∫

Dv

(
1 +

a

s2
v · Ui∗

)(
1 +

a

s2
v · Uj∗

)
dv

=
̺i∗̺j∗
ω2

∫

Dv

(
1 +

a

s2
v · Ui∗ +

a

s2
v · Uj∗ +

a2

s4
(v · Ui∗)(v · Uj∗)

)
dv

Since ∫

Dv

vh vk dv =
1

d
s2 sd−1 |Sd−1| δhk,=

ω

d
s2 δhk,

one obtains
∫

Dv

F̺i∗,Ui∗
(v)F̺∗

j
,U∗

j
(v) dv =

̺i∗̺j∗
ω

(
1 +

s2

d

a2

s4
Ui∗ · Uj∗

)

=
̺i∗̺j∗
ω

(
1 +

a2

ds2
Ui∗ · Uj∗

)
.
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Finally, since

∫

Dv

vivjvk dv = 0, one obtains

∫

Dv

vF̺i∗,Ui∗
(v)F̺∗

j
,U∗

j
(v) dv =

̺i∗̺j∗
ω2

∫

Dv

(
1 +

a

s2
v · Ui∗

)(
1 +

a

s2
v · Uj∗

)
v dv

=
̺i∗̺j∗
ω2

a2

s4

∫

Dv

(Ui∗ + Uj∗) vi vk dv

=
̺i∗̺j∗
ω2

a2

s4
(Ui∗ + Uj∗)

ω

d
s2 =

̺i∗̺j∗
ω

a2

ds2
(Ui∗ + Uj∗).

A.3 Proof of Lemma 4.2

Going back to Lemma 4.1 yields:

∫

Dv

Ji[f ] dv =

n∑

j=1

∫

Du×Du

Aij(u∗, u
∗, u)

̺i∗̺j∗

|Dv|

(
1 +

a2

ds2
Ui∗ · Uj∗

)
du∗ du

∗

−
n∑

j=1

∫

Du

̺i ̺j∗

|Dv|

(
1 +

a2

ds2
Ui · Uj∗

)
du∗,

and then

∫

Dv

Ji[f ]dv =
1

|Dv|

n∑

j=1

∫

Du×Du

Aij(u∗, u
∗, u) ̺i∗ ̺j∗ du∗ du

∗

+
a2

ds2|Dv|

n∑

j=1

∫

Du×Du

Aij(u∗, u
∗, u) (̺i∗Ui∗ · ̺j∗Uj∗) du∗ du

∗

−
̺i

|Dv|

n∑

j=1

∫

Du

̺∗jdu
∗ −

a2

ds2
̺iUi ·

n∑

j=1

∫

Du

̺j∗Uj∗ du
∗,

=
1

|Dv|

(
Ji[̺] +

a2

ds2
Ji[̺U]

)
. (A.7)

Therefore the first equality is proved. For the first order moment of Ji, simple
computations give:

∫

Dv

vJi[f ] dv =
a2

ds2

n∑

j=1

∫

Du×Du

Aij(u∗, u
∗, u)

̺i∗̺j∗

|Dv|
(Ui∗ + Uj∗) du∗ du

∗

−
a2

ds2

n∑

j=1

∫

Du

̺i ̺j∗

|Dv|

(
Ui + Uj∗

)
du∗.
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That is

∫

Dv

v Ji[f ] dv =
a2

ds2|Dv|

n∑

j=1

∫

Du×Du

Aij(u∗, u
∗, u)(̺i∗Ui∗̺j∗ + ̺j∗Uj∗̺i∗) du∗du

∗

−
a2

ds2|Dv|

n∑

j=1

∫

Du×Du

Aij(u∗, u
∗, u)(̺iUinj∗ + ̺j∗Uj∗̺i) du∗du

∗

=
a2

ds2|Dv|

(
Ai[̺,̺U] +Bi[̺,̺U]

)
(A.8)

so that (4.40) is also proved. �

A.4 Pressure computation

The pressure term is defined as follows:

Pi(t,x,v) =

∫

Dv

(v − Ui)⊗(v − Ui) fi(t,x,v, u) dv

=

∫

Dv

(v − Ui(t,x, u)⊗ (v − Ui(t,x, u)F̺iUi
(v) dv.

Straightforward computations give

Pi(t,x,v) =

∫

Dv

(v − Ui(t,x, u)⊗ (v − Ui(t,x, u)F̺iUi
dv

=

∫

Dv

(v ⊗ v)F̺iUi
dv − 2

∫

Dv

v ⊗ Ui F̺iUi
dv +

∫

Dv

Ui ⊗ Ui F̺iUi
dv,

that in the Example 1 case, it reads:

Pi =
̺i
ω

∫

Dv

(v ⊗ v)

(
1 +

a

s2
v · Ui

)
dv −

2̺i
ω

∫

Dv

v

(
1 +

a

s2
v · Ui

)
dv ⊗ Ui

+
̺i
ω

Ui ⊗ Ui

∫

Dv

(
1 +

a

s2
v · Ui

)
dv.

Taking into account the following relations

∫

Dv

dv = ω

∫

Dv

v dv = 0,

∫

Dv

vivk dv =
s2

d
ω δik,

∫

Dv

vivjvk dv = 0,

one obtains

Pi =
s2

d
̺i I−

2a

d
̺iUi ⊗ Ui + ̺iUi ⊗ Ui.
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