B. Scrosati, J. Hassoun, and Y. Sun, Lithium-ion batteries. A look into the future, Energy & Environmental Science, vol.128, issue.9, pp.3287-3295, 2011.
DOI : 10.1039/c1ee01388b

D. Bresser, E. Paillard, M. Copley, P. Bishop, M. Winter et al., The importance of ???going nano??? for high power battery materials, Journal of Power Sources, vol.219, pp.217-222, 2012.
DOI : 10.1016/j.jpowsour.2012.07.035

R. Mukherjee, R. Krishnan, T. Lu, and N. Koratkar, Nanostructured electrodes for high-power lithium ion batteries, Nano Energy, vol.1, issue.4, pp.518-533, 2012.
DOI : 10.1016/j.nanoen.2012.04.001

G. G. Eshetu, S. Grugeon, G. Gachot, D. Mathiron, M. Armand et al., LiFSI vs. LiPF6 electrolytes in contact with lithiated graphite: Comparing thermal stabilities and identification of specific SEI-reinforcing additives, Electrochimica Acta, vol.102, pp.133-141, 2013.
DOI : 10.1016/j.electacta.2013.03.171

URL : https://hal.archives-ouvertes.fr/hal-00820299

J. B. Goodenough and K. Park, The Li-Ion Rechargeable Battery: A Perspective, Journal of the American Chemical Society, vol.135, issue.4, pp.1167-1176, 2013.
DOI : 10.1021/ja3091438

M. Winter and J. R. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites, Electrochimica Acta, vol.45, issue.1-2, pp.31-50, 1999.
DOI : 10.1016/S0013-4686(99)00191-7

S. Naille, C. M. Ionica-bousquet, F. Robert, F. Morato, P. E. Lippens et al., Sn-based intermetallic materials, Journal of Power Sources, vol.174, issue.2, pp.1091-1094, 2007.
DOI : 10.1016/j.jpowsour.2007.06.040

URL : https://hal.archives-ouvertes.fr/hal-00355246

L. Bazin, S. Mitra, P. L. Taberna, P. Poizot, M. Gressier et al., High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries, Journal of Power Sources, vol.188, issue.2, pp.578-582, 2009.
DOI : 10.1016/j.jpowsour.2008.12.025

H. Groult, H. Ghallali, A. Barhoun, E. Briot, C. M. Julien et al., Study of Co???Sn and Ni???Sn alloys prepared in molten chlorides and used as negative electrode in rechargeable lithium battery, Electrochimica Acta, vol.56, issue.6, pp.2656-2664, 2011.
DOI : 10.1016/j.electacta.2010.12.015

URL : https://hal.archives-ouvertes.fr/hal-00825164

C. Nayral, E. Viala, P. Fau, F. Senocq, J. Jumas et al., Synthesis of Tin and Tin Oxide Nanoparticles of Low Size Dispersity for Application in Gas Sensing, Chemistry, vol.75, issue.25, pp.4082-4090, 2000.
DOI : 10.1002/1521-3765(20001117)6:22<4082::AID-CHEM4082>3.0.CO;2-S

Y. Wang, J. Y. Lee, and T. C. Deivaraj, Tin Nanoparticle Loaded Graphite Anodes for Li-Ion Battery Applications, Journal of The Electrochemical Society, vol.151, issue.11, pp.1804-1809, 2004.
DOI : 10.1149/1.1799491

Á. Caballero, J. Morales, and L. Sánchez, Tin Nanoparticles Formed in the Presence of Cellulose Fibers Exhibit Excellent Electrochemical Performance as Anode Materials in Lithium-Ion Batteries, Electrochemical and Solid-State Letters, vol.8, issue.9, pp.464-466, 2005.
DOI : 10.1149/1.1993388

S. Chee and J. Lee, Reduction synthesis of tin nanoparticles using various precursors and melting behavior, Electronic Materials Letters, vol.77, issue.6, pp.587-593, 1021.
DOI : 10.1007/s13391-012-2086-y

H. Zhang, H. Song, X. Chen, and J. Zhou, Enhanced Lithium Ion Storage Property of Sn Nanoparticles: The Confinement Effect of Few-Walled Carbon Nanotubes, The Journal of Physical Chemistry C, vol.116, issue.43, pp.22774-22779, 2012.
DOI : 10.1021/jp308571p

J. Dupont, G. S. Fonseca, A. P. Umpierre, P. F. Fichtner, and S. R. Teixeira, Transition-Metal Nanoparticles in Imidazolium Ionic Liquids:?? Recycable Catalysts for Biphasic Hydrogenation Reactions, Journal of the American Chemical Society, vol.124, issue.16, pp.4228-4229, 2002.
DOI : 10.1021/ja025818u

. Olivier-bourbigou, Advanced Synthesis & Catalysis, pp.153-159, 2008.

J. Dupont and J. D. Scholten, On the structural and surface properties of transition-metal nanoparticles in ionic liquids, Chemical Society Reviews, vol.140, issue.158, pp.1780-1804, 2010.
DOI : 10.1039/b906567a

C. Vollmer and C. Janiak, Naked metal nanoparticles from metal carbonyls in ionic liquids: Easy synthesis and stabilization, Coordination Chemistry Reviews, vol.255, issue.17-18, pp.2039-2057, 2011.
DOI : 10.1016/j.ccr.2011.03.005

P. Arquillière, P. H. Haumesser, and C. C. Santini, Copper nanoparticles generated in situ in imidazolium based ionic liquids, Microelectronic Engineering, vol.92, pp.149-151, 2012.
DOI : 10.1016/j.mee.2010.11.039

J. Dupont and M. R. Meneghetti, On the stabilisation and surface properties of soluble transition-metal nanoparticles in non-functionalised imidazolium-based ionic liquids, Current Opinion in Colloid & Interface Science, vol.18, issue.1, pp.54-60, 2013.
DOI : 10.1016/j.cocis.2012.12.001

H. Itoh, K. Naka, and Y. Chujo, Synthesis of Gold Nanoparticles Modified with Ionic Liquid Based on the Imidazolium Cation, Journal of the American Chemical Society, vol.126, issue.10, pp.3026-3027, 2004.
DOI : 10.1021/ja039895g

P. Singh, S. Kumar, A. Katyal, R. Kalra, and R. Chandra, A novel route for the synthesis of indium nanoparticles in ionic liquid, Materials Letters, vol.62, issue.25, pp.4164-4166, 2008.
DOI : 10.1016/j.matlet.2008.06.031

P. Dash, S. M. Miller, and R. W. Scott, Journal of Molecular Catalysis A: Chemical, Inorganic Chemistry, vol.329, issue.35, pp.86-95, 1996.

L. Gaillon, J. Sirieix-plenet, and P. Letellier, Volumetric Study of Binary Solvent Mixtures Constituted by Amphiphilic Ionic Liquids at Room Temperature (1-Alkyl-3-Methylimidazolium Bromide) and Water, Journal of Solution Chemistry, vol.20, issue.11, pp.1333-1347, 2004.
DOI : 10.1007/s10953-004-1045-0

URL : https://hal.archives-ouvertes.fr/hal-00169953

J. Sirieix-plénet, L. Gaillon, and P. Letellier, Behaviour of a binary solvent mixture constituted by an amphiphilic ionic liquid, 1-decyl-3-methylimidazolium bromide and waterPotentiometric and conductimetric studies, Talanta, vol.63, issue.4, pp.979-986, 2004.
DOI : 10.1016/j.talanta.2004.01.001

Y. François, A. Varenne, J. Sirieix-plenet, and P. Gareil, Determination of aqueous inclusion complexation constants and stoichiometry of alkyl(methyl)-methylimidazolium-based ionic liquid cations and neutral cyclodextrins by affinity capillary electrophoresis, Journal of Separation Science, vol.555, issue.5, pp.751-760, 2007.
DOI : 10.1002/jssc.200600386

M. A. Vorotyntsev, V. A. Zinovyeva, D. V. Konev, M. Picquet, L. Gaillon et al., ]. Concentration Effects, The Journal of Physical Chemistry B, vol.113, issue.4, pp.1085-1099, 2009.
DOI : 10.1021/jp809095q

V. Lair, J. Sirieix-plenet, L. Gaillon, C. Rizzi, and A. Ringuedé, Mixtures of room temperature ionic liquid/ethanol solutions as electrolytic media for cerium oxide thin layer electrodeposition, Electrochimica Acta, vol.56, issue.2, pp.784-789, 2010.
DOI : 10.1016/j.electacta.2010.09.102

P. J. Chupas, X. Qiu, J. C. Hanson, P. L. Lee, C. P. Grey et al., Rapid-acquisition pair distribution function (RA-PDF) analysis, Journal of Applied Crystallography, vol.36, issue.6, pp.1342-1347, 2003.
DOI : 10.1107/S0021889803017564

X. Qiu, J. W. Thompson, and S. J. Billinge, : a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data, Journal of Applied Crystallography, vol.37, issue.4, pp.678-678, 2004.
DOI : 10.1107/S0021889804011744

T. Gutel, C. C. Santini, K. Philippot, A. Padua, K. Pelzer et al., Organized 3D-alkyl imidazolium ionic liquids could be used to control the size of in situ generated ruthenium nanoparticles?, Journal of Materials Chemistry, vol.110, issue.132, pp.3624-3631, 2009.
DOI : 10.1039/b821659b

URL : https://hal.archives-ouvertes.fr/hal-00345321

P. Migowski, D. Zanchet, G. Machado, M. A. Gelesky, S. R. Teixeira et al., Nanostructures in ionic liquids: correlation of iridium nanoparticles??? size and shape with imidazolium salts??? structural organization and catalytic properties, Physical Chemistry Chemical Physics, vol.127, issue.25, pp.6826-6833, 2010.
DOI : 10.1039/b822551f

T. Gutel, J. Garcia-anton, K. Pelzer, K. Philippot, C. C. Santini et al., Influence of the self-organization of ionic liquids on the size of ruthenium nanoparticles: effect of the temperature and stirring, Journal of Materials Chemistry, vol.22, issue.31, pp.3290-3292, 2007.
DOI : 10.1039/b706139k

J. N. Lopes and A. A. Pádua, Nanostructural Organization in Ionic Liquids, The Journal of Physical Chemistry B, vol.110, issue.7, pp.3330-3335, 2006.
DOI : 10.1021/jp056006y

URL : https://hal.archives-ouvertes.fr/hal-00202031

K. Shimizu, M. F. Costa-gomes, A. A. Pádua, L. P. Rebelo, and J. N. Lopes, Three commentaries on the nano-segregated structure of ionic liquids, Journal of Molecular Structure: THEOCHEM, vol.946, issue.1-3, pp.70-76, 2010.
DOI : 10.1016/j.theochem.2009.11.034

URL : https://hal.archives-ouvertes.fr/hal-00479679

R. L. Gardas, M. G. Freire, P. J. Carvalho, I. M. Marrucho, I. M. Fonseca et al., Measurements of Imidazolium-Based Ionic Liquids, Journal of Chemical & Engineering Data, vol.52, issue.5, pp.1881-1888, 2007.
DOI : 10.1021/je700205n

E. Redel, R. Thomann, and C. Janiak, First Correlation of Nanoparticle Size-Dependent Formation with the Ionic Liquid Anion Molecular Volume, Inorganic Chemistry, vol.47, issue.1, pp.14-16, 2007.
DOI : 10.1021/ic702071w

S. Ernst, L. Aldous, and R. G. Compton, The voltammetry of surface bound 2-anthraquinonyl groups in room temperature ionic liquids: Cation size effects, Chemical Physics Letters, vol.511, issue.4-6, pp.461-465, 2011.
DOI : 10.1016/j.cplett.2011.06.073

Y. Hatakeyama, M. Okamoto, T. Torimoto, S. Kuwabata, and K. Nishikawa, Small-Angle X-ray Scattering Study of Au Nanoparticles Dispersed in the Ionic Liquids 1-Alkyl-3-methylimidazolium Tetrafluoroborate, The Journal of Physical Chemistry C, vol.113, issue.10, pp.3917-3922, 2009.
DOI : 10.1021/jp807046u