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Finite element model of soil water and nutrient transport with root uptake:
explicit geometry and unstructured adaptive meshing

Pierre-Henri Tournier � Fr édéric Hecht � Myriam Comte

Abstract In this paper, we consider a model of soil water and nutrient transport with plant root uptake. The ge-
ometry of the plant root system is explicitly taken into account in the soil model. We �rst describe our modeling
approach. Then, we introduce an adaptive mesh re�nement procedure enabling us to accurately capture the geom-
etry of the root system and small-scale phenomena in the rhizosphere. Finally, we present a domain decomposition
technique for solving the problems arising from the soil model as well as some numerical results.

Keywords �nite element method; unstructured mesh adaptation; domain decomposition; plant root uptake

1 Introduction

Numerous models have been developed in the past in order to adress the different spatial and temporal scales
relevant to soil water and nutrient transport and uptake by plant roots, from crop models used to predict yields at the
�eld level to recent plant based models involving the explicit architectural description of root system development.

Spatially explicit models de�ning 3D plant architecture are designed to investigate the relationship between
root architectural traits and the spatio-temporal variability of resource supply. They are providing insights for
understanding various root-soil interactions over a range of spatial scales and aid in the design of agricultural
management schemes for improving plant performance in speci�c environments.

However, simulation of water and nutrient uptake is challenging especially if we consider spatial hetero-
geneities and local soil conditions in the rhizosphere around the roots, which are often quite different from those
in the bulk soil. In addition, the ef�ciency of yield enhancement techniques depends on responsive root growth
which allows plants to forage with precision in an heterogeneous environment.

This work is an attempt to include and resolve accurately local rhizosphere processes occurring at the individ-
ual root level in explicit plant scale models by taking advantage of the recent advances of scienti�c computing in
the �eld of adaptive meshing and parallel computing.

The mechanistic model described here can be used to investigate plant-soil relationships in speci�c situations
through for example sensitivity analysis, as well as verifying hypotheses and simpli�cations that are made in other
models. Such applications will be the focus of subsequent papers.

The model is comparable to [7,11] where a discretization technique based on regular grids is employed. In
such models, soil-root �uxes are taken into account in soil voxels by averaging and distributing between the soil
nodes. In this work, we develop a new approach that takes advantage of the �exibility of adaptive re�nement
of unstructured �nite element meshes to resolve small-scale behaviours such as the local hydraulic conductivity
drop near the soil-root interface while retaining the simplicity of the standard �nite element method. Adaptive
unstructured volume remeshing is quite a powerful tool when considering complex structures such as plant root
systems.

P.-H. Tournier E-mail: tournier@ann.jussieu.fr� F. Hecht E-mail: frederic.hecht@upmc.fr� M. Comte E-mail: comte@ann.jussieu.fr
Universit́e Pierre et Marie Curie - Paris 6, UMR 7598 Laboratoire Jacques-Louis Lions, Paris, F-75005 France
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The paper is organized as follows: section 2 describes our water model. We consider that the root system can
be represented as a tree-like network composed of cylindrical root segments. We then de�ne radial and axial water
�ows on this network that can be coupled to the soil model via a sink term in the Richards equation. The sink term
is constructed upon a characteristic function representative of the geometry of the root system. In section 3, the
nutrient model is presented in a similar way. Section 4 brie�y describes the standard �nite element method used in
this work. In section 5, the adaptive mesh re�nement algorithm is presented: the characteristic function of the root
system is computed and then used to construct a metric �eld in order to drive the mesh adaptation procedure. Since
such an approach is computationally intensive, a parallelization technique based on a scalable Schwarz domain
decomposition method is used to solve the problems arising from the soil and nutrient models. The procedure is
highlighted in section 6.

Throughout this paper the soil domain is denoted byW� Rd(d = 2;3). We consider the evolution of the water
potential and nutrient concentration fort 2 [0;T];T > 0.

2 The water model

2.1 The Richards equation

In soils, water movement is governed by the Richards equation. Richards equation is derived from the continuity
equation

¶q
¶t

+ Ñ:q = S; (2.1)

with q the volumetric water content,q the macroscopic Darcy �ow andSrepresenting sources/sinks.
Darcy law relates the water �ow to the pressure of the water at any timet:

q = � KÑH ; (2.2)

whereK is the hydraulic conductivity andH is the total hydraulic head (water potential on weight basis), which
can be expressed as

H = h+ z: (2.3)

Here,h is the pressure head and comes from a hydrostatic pressure ifh > 0 and from a capillary pressure ifh < 0.
z is the height against the gravitational direction.

The volumetric water contentq and the hydraulic conductivityK are linked to the pressure headh by relationships
that depend on the soil properties.

By combining (2.1) and (2.2) we obtain the Richards equation:

¶t (q(h)) � Ñ:(K(h)Ñ(h+ z)) = S in [0;T] � W: (2.4)

Equation (2.4) is subject to the initial condition

h(x;0) = h0(x) in W; (2.5)

and the no-�ux boundary condition

K(h)Ñ(h+ z):n = 0 on [0;T] � ¶W; (2.6)

wheren denotes the unit outward normal to the boundary of the domainW.

Theq(h) andK(h) relationships are given by empirical models whose parameters depend on the soil physical
properties. We use the Brooks-Corey model:

Q(h) :=
q(h) � qm

qM � qm
=

�
h
hb

� � l

:=

( �
h
hb

� � l
for h � hb

1 for h � hb;

K(h) = Ks

�
h
hb

� � l e(l )

with e(l ) := 3+
2
l

;

(2.7)
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whereQ is the normalized water content.
The parameters of the model are de�ned as follows:

– qM is the saturated water content.
– qm is the residual water content.
– Ks is the saturated hydraulic conductivity.
– hb is the bubbling pressure head.
– l is the pore size distribution index.

Experimental evidence has shown that a cycle of wetting-drying of a soil exhibits hysteresis: the water content
has different pro�les with respect to the wetting and draining processes. This effect can be of importance when
considering irrigation or rainfall together with root water uptake. Although hysteresis effects are neglected in the
model described here, hysteresis in the soil water retention functionq(h) can be taken into account by including
empirical hysteresis models such as [16] based on main wetting and drying curves.

We introduce the Kirchhoff transformationk which enables us to reduce the nonlinearity of Richards equation:

k : h ! p
Z h

0
K(p)dp: (2.8)

The new variablep is called the generalized pressure. Previous applications of the Kirchhoff transformation to
Richards equation can be found for example in [20,25,12,23].
The water content as a function ofp is denoted by

M(p) := q(k � 1(p)) : (2.9)

Using the chain rule, we have

Ñp = K(h)Ñ(h): (2.10)

Thus the Richards equation reads:

¶t (M(p)) � Ñ:(Ñp+ K(k � 1(p))Ñz) � S= 0 in [0;T] � W: (2.11)

The transformed equation is a semilinear equation in which the nonlinearity in front of the spatial derivative has
been eliminated.

Using the backward Euler scheme for the time discretization, we are able to write the following weak formu-
lation of the semi-discrete problem: �ndpn+ 1 2 H1(W) such that8v 2 H1(W),

Z

W

M(pn+ 1) � M(pn)
Dt

v+
Z

W
Ñpn+ 1Ñv+

Z

W
K(k � 1(pn+ 1))ÑzÑv�

Z

W
Sv= 0: (2.12)

Following the approach suggested in [4,23], the solution at each time step is obtained iteratively; applying New-
ton's method to linearizeM(pn+ 1) gives the following Newton-like iteration wherei is the inner iteration counter
for timen+ 1:

Z

W

M0(pi)( pi+ 1 � pi) + M(pi) � M(pn)
Dt

v+
Z

W
Ñpi+ 1Ñv+

Z

W
K(k � 1(pi))ÑzÑv�

Z

W
Sv= 0: (2.13)

In practice, as the soil dries the capillary effects get stronger as well as the nonlinearities, while the gravity term
becomes of less importance. This allows us to use a simple picard method for the gravity term with no effect on
the convergence rate.

The use of the Brooks-Corey model allows us to express the Kirchhoff transformation and its inverse and the
transformed functions involved in (2.13) explicitly in a closed form as in [3]:
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p = k (h) =

(
hb

� l e(l )+ 1

�
h
hb

� � l e(l )+ 1
+ � l e(l )hb

� l e(l )+ 1 for h � hb

h for h � hb;

h = k � 1(p) =

8
<

:
hb

�
p(� l e(l )+ 1)

hb
+ l e(l )

� 1
� l e(l )+ 1 for pc < p � hb

p for p � hb;

M(p) =

8
<

:
qm+ ( qM � qm)

�
p(� l e(l )+ 1)

hb
+ l e(l )

� l
l e(l )� 1 for pc < p � hb

qM for p � hb;

M0(p) =

8
<

:
(qM � qm) � l

hb

�
p(� l e(l )+ 1)

hb
+ l e(l )

� l
l e(l )� 1 � 1

for pc < p � hb

0 for p � hb;

K(k � 1(p)) =

8
<

:

�
p(� l e(l )+ 1)

hb
+ l e(l )

� l e(l )
l e(l )� 1 for pc < p � hb

1 for p � hb;

(2.14)

Since the transformations (2.14) are obtained analytically, the additional computational cost of employing the
Kirchhoff transformation is negligible compared to that of solving the linear system arising from the discretization
of (2.13).

Note that the discontinuity ofM0(p) for p = hb comes from the non-differentiability of the Brooks-Corey
functionq(h) at h = hb. However, we do not consider the saturated caseh � hb in the examples presented in this
paper. Besides, from a numerical point of view, numerical tests have shown that for realistic parameter values the
discontinuity is small and does not hinder the convergence of the iterative method.

2.2 Root water uptake

Here we consider that the root system is composed of cylindrical root segments. It can then be represented as a
series of interconnected nodes forming a network of segmentsS, each segment with its own parameters (radius,
conductivity, etc.). Such a representation can be generated by the Matlab code RootBox [18], which implements
a root system growth model based on L-Systems. RootBox is a root architectural model that explicitly simulates
the architecture of root systems in the 3D space, using a set of growth rules which are applied to a series of root
types or classes, with each root type having its own characteristic set of growth parameters such as root elongation
rate or branching density. The algorithm computes elongation and branching of the roots according to the initial
growth speed, lengths of apical and basal zones as well as internodal distances, maximal number of branches and
branching angles. Growth direction can follow different types of user de�ned tropisms. The model has a stochastic
component in that all parameters can be given with mean and standard deviation. Fig. 1 shows an example of a
maize root system generated by RootBox.

In the following we de�ne water �ows on the root network and describe the coupling with the soil model as
was done in [7].

We make the same assumptions as in [7], which are explained in [6]. The model describing root water uptake
can be found in [8,17]: water �ow in roots and between soil and roots is described by the transpiration-cohesion-
tension mechanism and follows an Ohm's law analogy.
Let us recall the hypotheses made in [6]: First, the in�uence of solutes on �ow is neglected, because during
periods of active transpiration, the hydrostatic pressure gradient rather than the osmotic potential gradient is the
effective driving force for �ow. The second hypothesis consists in neglecting the capacitive effect of the roots
and considering only steady-state �ow, because water stored in roots is generally small compared to transpiration
requirements. Thus, for a cylindrical root segment of radiusr and lengthl and following [17], we can de�ne the
volumetric radial water �ow into the root from the soilJr and the longitudinal �ow up the root in the xylemJx as

Jr = Lrsr (hs � hr );

Jx = � Kr
dhr

dl
;

(2.15)
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Fig. 1 Example of a 20-days-old maize root system generated by RootBox composed of 10611 segments

where

– Lr is the radial conductivity of the root and represents the conductivity of the series of tissues from the root
surface to the xylem,

– Kr is the xylem conductance,
– sr = 2prl is the root-soil interface area,
– hs is the soil water potential at the root surface,
– hr is the water potential in the xylem.

Although these simpli�cations are made in our model as well, the model can be extended by taking into account
osmotic gradients and capacitive effects of roots.

Equations (2.15) giving radial and longitudinal �ows can be used to formulate a water mass balance equation
for a given root nodei of parent nodep in the tree-like structure as depicted in Fig. 2:

Jx;i = å
j2childs(i)

Jx; j + Jr;i ; (2.16)

which can be written as

� Kr;i
hr;p � hr;i

l i
= � å

j2childs(i)

�
Kr; j

hr;i � hr; j

l j

�
+ Lr;i2pr i l i

(hs;i � hr;i) + ( hs;p � hr;p)
2

: (2.17)

HereKr;i ;Lr;i ; r i andl i refer to the root segment(p; i) while Kr; j andl j relate to the root segment(i; j). hs;i andhr;i
are the soil water potential at root nodei and the xylem water potential at root nodei respectively. We approximate
the potentialshs andhr for segment(i; p) by averaging their value at the two nodesi andp. ParametersLr andKr
are given for each segment and can depend on various data such as root type and age.

Writing (2.17) for every node in the tree-like structure, the xylem water potential vector(hr;i) i is then solution
of a linear system, with the right-hand side containing the soil factors represented by thehs;i .
At the root collar, we can prescribe the transpiration �ow or the xylem potential with a Neumann or Dirichlet
boundary condition respectively. We can follow the same approach as in [7,11]: In the case of a �ux-type bound-
ary condition, stress may occur when the evaporative demand cannot be met by the soil. In such a case, a maximum
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p

i

j1 j2

Jx; j1 Jx; j2

Jx;i

Jr;i

Fig. 2 Water mass balance for root nodei

allowable threshold value for absolute collar water potential is de�ned (usually taken as a typical value of the per-
manent wilting pointhw = � 150 m), beyond which the collar boundary condition is switched from a �ux-type
(Neumann) to a pressure-head-type (Dirichlet) condition.
Other models could also be considered, such as [24] where stomatal response to a drying soil is modeled by a
logistic function with empirically determined parameters.

In order to take the radial water uptake �ows into account in the soil water model, a sink termSin the Richards
equation is de�ned in the domain. Since the sink term represents root uptake �ows in the 3D (or 2D) space, we
constructSthrough a characteristic function of the root systemfc representative of its geometry using the distance
function to the root networkS. The characteristic functionfc can be seen as a smooth approximation of the 1D
root networkS, taking the values 1 at the root and 0 away from the root, with a smooth change of widthe in
between.
The purpose of the characteristic function is threefold: de�ne a regularization of the delta function representing
the network of segmentsS, construct a sink term matching the volume occupied by the roots by using the diameter
of the root as the width of the regularization, and drive the adaptive mesh re�nement procedure.

The functionfc representative of the geometry of the root system in the domain is constructed as follows:

– For a pointx of the domainW the distanced from x to the root is computed:

d(x) = min
s2S

ds(x); (2.18)

with S the set of root segments in the tree-like network. For each root segments, the distanceds(x) from the
point x to the segments is easily computed using distance from line and point routines.

– The distance functiond is then used to compute the characteristic function. There is a variety of admissible
transformations that we can use, and we choose the following:

fc(x) = fd (d(x)) = 1� tanh
�

6d(x)
e

�
: (2.19)

We can choosee to be equal to the radius of the root.

We can now build the sink term in the Richards equation. In order to ensure that the sink term in the soil model
corresponds to the volumetric radial �ow in the network model, we need to introduce a scale factor depending on
the choice offd.

Let us consider the case of a cylindrical root segments, formed by the nodesi and j. The corresponding radial
�ow is

Jr = Lr2prr lr
(hs;i � hr;i) + ( hs; j � hr; j )

2
: (2.20)

We want the integral of the corresponding sink termSover the domain to be equal to the out�ow rate, i.e.
Z

W
S= � Jr : (2.21)



Finite element model of soil water and nutrient transport with root uptake: explicit geometry and unstructured adaptive meshing 7

If fc is the characteristic function of the single root segment as de�ned above, using cylindrical coordinates we get
(in the 3D case)

Z

W
fc ' 2plr

Z R

0
r fd(r)dr (2.22)

with R>> e. The approximation error coming from the truncature in the integral is negligible for usual choices
of fd.
Let us de�neTr as

Tr =
Z R

0
r fd(r)dr: (2.23)

We then de�ne the sink termSas

S= � fc
Lr rr

Tr
hl ; (2.24)

wherehl only depends on the longitudinal coordinate and linearly interpolateshs � hr along the segment.
Thus, we have

Z

W
S= �

Z

W
fc

Lr rr

Tr
hl = � Lr2prr lr

(hs;i � hr;i) + ( hs; j � hr; j )
2

= � Jr : (2.25)

The extension to the whole root system is straightforward.

Since the characteristic function does not correspond to an arrangement of perfect cylindrical root segments
due to its shape at root tips or in-between root segments, a modi�ed approach consists in adjusting the surface
areas of the root segments in the de�nition of the radial uptake �ows in the root network model so that for each
root segment, the volumetric uptake �ow is equal to the actual contribution of the segment to the global sink term
in the soil model. This approach ensures that the amount of water depleted in the soil water model is equal to the
transpiration rate in the network model, although the difference is minimal in actual computations.

The coupling between the tree-like model and the soil water model consists in iteratively solving the two
problems until convergence. Lethti

s be the soil matric potential distribution at timeti , hk
s andhk

r the soil and xylem
matric potentials at inner iterationk and timeti+ 1. The coupling algorithm reads as follows:

1. h0
s = hti

s .
2. Solve the linear system of the tree-like model derived from (2.17) with soil factorshk

s, obtainhk
r on the root

network.
3. Compute the sink termSas in (2.24) usinghk

s andhk
r .

4. Perform an inner iteration of (2.13), obtainhs in the soil domain.
5. hk+ 1

s = hk
s + ak(hs � hk

s), whereak is an under-relaxation parameter that ensures convergence of the system.
6. If jjhs � hk

sjj > t , go to 2. withk  k+ 1.

Fig. 3 gives an overview of the water model through an example.

3 The nutrient model

Here we consider the evolution of the concentrationc of a nutrient ionN in the soil solution, governed by diffusion,
mass �ow, adsorption in the soil solid phase and root uptake.

3.1 The convection-diffusion equation

The convection-diffusion equation expresses the nutrient mass balance and can be written in its conservative form:

¶t (qc+ j (c)) = Ñ:
�
AÑc� qc)+ Sc(c) in [0;T] � W; (3.1)

where
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root water potential hr
de�ned on the tree-like
root network

slice through the mesh,
showing adaptive
re�nement relative to the
characteristic function fc

sink term S in the domain
supported by the
characteristic function

isosurfaces of the
characteristic function

slice of the solution hs to
Richards equation in the
soil domain

Fig. 3 Overview of the water model

– A is the diffusion coef�cient ofN in the soil. For simplicity we consider a modi�ed diffusion coef�cient with
a tortuosity factor in place of the effective dispersion coef�cient tensor that is usually employed for �ow in
porous media, although the model can easily be extended to account for dispersibility since water �ow is
explicitly considered. Following [2],A is given by

A = A0q fl ; (3.2)

with A0 the diffusion coef�cient ofN in free water andfl the so-called tortuosity factor:

fl =

(
f1q + f2 for q � ql ;

q( f1ql + f2)
ql

for q < ql ;
(3.3)

where f1; f2 andql are parameters depending on soil properties.
– j is an adsorption/desorption isotherm relating the amount of adsorbedN to the equilibrium concentration of

N in solution; we use the Freundlich adsorption isotherm [19], de�ned by

j (c) = kcb; (3.4)

wherek > 0 andb 2 (0;1) are �tting parameters of the model,
– Sc(c) represents sources/sinks.

Equation (3.1) is subject to the initial condition

c(x;0) = c0(x) in W; (3.5)

and the no-�ux boundary condition
�
AÑc� qc):n = 0 on [0;T] � ¶W: (3.6)
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The convective form of equation (3.1) is obtained by multiplying equation (2.1) byc and substracting it from
equation (3.1). This gives

(q + j 0(c))¶tc = Ñ:
�
AÑc) � q:Ñc� Sc+ Sc(c): (3.7)

Hereq + j 0(c) is the buffer power and represents the ability of the soil to resupply nutrients as plants take it up
from the soil solution.
The Lagrangian form is derived by dividing byq + j 0(c) and de�ning the material derivative

Dc
Dt

= ¶tc+
q

q + j 0(c)
:Ñc: (3.8)

We can use the method of characteristics to handle the convective part. The velocity �eld isa = q
q+ j 0(c) .

Following [21], we can use the approach yielding (3.7) at the semi-discrete level to reduce mass balance errors.
Using the implicit Euler scheme for the time discretization of (3.1) gives

qn+ 1cn+ 1 + j (cn+ 1) � qncn � j (cn)
Dt

= Ñ:
�
An+ 1Ñcn+ 1 � qn+ 1cn+ 1�

+ Sc(cn+ 1): (3.9)

Our implicit time discretization of Richards equation (2.12) corresponds to

qn+ 1 � qn

Dt
+ Ñ:qn+ 1 = Sn+ 1: (3.10)

Multiplying (3.10) bycn+ 1 and substracting it from (3.9), we are able to write the weak formulation of the semi-
discrete problem: �ndcn+ 1 2 H1(W) such that8v 2 H1(W),

Z

W

qncn+ 1 + j (cn+ 1) � (qncn) � X � j (cn � X)
Dt

v+
Z

W
An+ 1Ñcn+ 1Ñv+

Z

W
Sn+ 1cn+ 1v�

Z

W
Sc(cn+ 1)v = 0 (3.11)

with the approximated characteristicsX = x� Dta.
Applying Newton's method and denoting byi the inner iteration counter for timen+ 1, we get

Z

W

qnci+ 1 + j (ci) + j 0(ci)(ci+ 1 � ci) � (qncn) � X � j (cn � X)
Dt

v+
Z

W
An+ 1Ñci+ 1Ñv

+
Z

W
Sn+ 1ci+ 1v�

Z

W
Sc(ci)v�

Z

W
S0

c(c
i)(ci+ 1 � ci)v = 0:

(3.12)

3.2 Nutrient uptake

The root acts as a selective membrane for ion uptake. Nutrient uptake by roots is given by a model of enzyme
kinetics, relating in this case the root uptake rate of N to its concentration at the root surface. Here we use the
following Michaelis-Menten model:

h(c) =
Fmc

Km+ c
; (3.13)

whereh(c) is the uptake rate andFm;Km > 0 are parameters of the model.
This model of active nutrient uptake is taken from [1]. The hypothesis that active uptake becomes more important
under low nutrient supply, while the transpiration driven mass �ow dominates for higher concentrations, is pro-
posed in [27].
For a cylindrical root segment of radiusr and lengthl and assuming that (3.13) we can de�ne the volumetric
nutrient uptake rate by

JN = 2prlh(cs); (3.14)

wherecs is the concentration of N at the root surface.

Similarly to the sink term (2.24) in the Richards equation, the sink termSc representing nutrient uptake in the
convection-diffusion equation is constructed as follows:

Sc = � fc
r
Tr

h(c): (3.15)
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The model can easily be adapted to implement other nutrient uptake models. For example, in [22,10] the solute
uptake term is de�ned as

S0(c) = eSc+ ( 1� e)Sc(c);

wheree 2 [0;1] is a coef�cient partitioning total uptake between passive uptakeScwhere solute enters the root dis-
solved in water and active uptakeSc(c), which could also be described following for example [15] by a Michaelis-
Menten-type kinetic with a linear component.

4 Finite element formulation

In this section we describe brie�y the Galerkin P1 �nite element approximation of problems (2.13) and (3.12).
Let Th be a mesh of the domainW. Let

Vh =
n

uh 2 H1(W)
�
�
� uhjK 2 P1; 8K 2 Th

o
: (4.1)

Spatial discretization of Equation (2.13) leads to the following discrete variational problem: �ndph 2 Vh such that
8vh 2 Vh, �

M0(pi
h)ph;vh

�
+ Dt (Ñph;Ñvh) =

�
M0(pi

h)pi
h;vh

�
�

�
M(pi

h);vh
�

+ ( M(pn
h);vh)

�
�
K(k � 1(pi

h))Ñz;Ñvh
�

+
�
Si

h;vh
�

:
(4.2)

Spatial discretization of Equation (3.12) leads to the following discrete variational problem: �ndch 2 Vh such that
8vh 2 Vh,

(qn
h ch;vh) +

�
j 0(ci

h)ch;vh
�

+
�
An+ 1

h Ñch;Ñvh
�

+ Dt
�
Sn+ 1

h ch;vh
�

� Dt
�
S0

c(c
i)hch;vh

�

= �
�
j (ci

h);vh
�

+
�
j 0(ci

h)ci
h;vh

�
+ (( qn

h cn
h) � X;vh) + ( j (cn

h � X);vh) + Dt
�
Sc(ci)h;vh

�
� Dt

�
S0

c(c
i)hci

h;vh
�

:
(4.3)

Numerical resolution of systems (4.2) and (4.3) is carried out using the �nite element software FreeFem++ [9].

5 Mesh adaptation

The soil domainW is �rst represented by a regular initial simplicial �nite element mesh. Since the characteristic
function of the root systemfc is poorly represented on the initial mesh, we re�ne it iteratively using anisotropic
mesh adaptation. Since we expect high gradients and small-scale phenomena to be localized near the roots (i.e.
where fc exhibits strong variations), this type of a priori re�nement is adequate.
The main steps of the adaptive procedure are as follows: First, we computefc for each node of the mesh. Then we
de�ne a nodal based anisotropic metric from the Hessian of the functionfc. Finally, the mesh is adapted using the
size and streching of elements provided by the metric. This procedure is repeated iteratively.
In 2D, we use the built-in adaptive remesher of FreeFem++. For 3D simulations, FreeFem++ is interfaced with
mshmet for computing the Hessian-based anisotropic metric and with the anisotropic fully tetrahedral automatic
remesher Mmg3d [5] which uses anisotropic Delaunay kernel and local mesh modi�cations based on a combina-
tion of edge �ips, edge collapsing, node relocation and vertex insertion operations to adapt the mesh.
Fig. 4 illustrates the mesh adaptation process in a 2D simulation.

6 Domain decomposition

Sinces meshes generated as described in section 5 require a considerable number of nodes to be able to adequately
resolve the geometry of complex root systems, linear systems resulting from the discrete problems (4.2) and (4.3)
can be quite large. In order to reduce computation time, we opted for a parallel divide-and-conquer technique with
an additive Schwartz overlapping domain decomposition method.
The initial computational domain is partitioned by metis [14] into a number of subdomains, on which local vari-
ational problems are de�ned. A two-level coarse grid preconditioner taken from [13] is also used to improve the
convergence of the domain decomposition method.
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Fig. 4 2D example of the mesh adaptation process: representation of the functionfc (left) de�ned on the adapted mesh (right).

Numerical tests are conducted in 2D and in 3D in order to assess the ef�ciency of the two-level preconditioner
compared to a classical one-level preconditioner. We consider one inner iteration of (4.2). In the 2D case, the
mesh is composed of 204331 vertices and 407839 triangles. The 3D mesh is composed of 2673103 vertices and
15273475 tetrahedra.

2D 1-level precond. 2-level precond.
# of subdomains # of iterations Wall-clock time # of iterations Wall-clock time

16 42 20:95 s 11 6:69 s
64 55 4:88 s 14 1:58 s
140 68 2:08 s 16 0:69 s

3D 1-level precond. 2-level precond.
# of subdomains # of iterations Wall-clock time # of iterations Wall-clock time

16 31 209:93 s 17 129:15 s
64 39 29:24 s 15 13:17 s
140 44 12:49 s 16 5:54 s

There are several iterative algorithms used to obtain the numerical solution. In the water model, the outer loop
consists in a �xed point algorithm solving alternatively the root problem (2.18) and the soil problem (4.2). Solving
the linear system resulting from the discrete soil problem (4.2) using the domain decomposition method presented
in this section constitutes an inner loop. Local problems de�ned on each subdomain are also solved iteratively
using a conjugate gradient method, and thus the complete algorithm consists in three nested loops.
We can take advantage of the iterative nature of the domain decomposition and linear solvers by using adaptive
stopping criteria in order to further reduce the computational time. Here we use simple heuristics expressing that
there is no need to continue with iterations in the inner loop once the error from the outer loop starts to dominate.
More elaborate stopping criteria can be used, see for example [26] where adaptive stopping criteria based on a
posteriori error estimates are derived.

7 Numerical resolution

The purpose of the numerical examples presented in this section is to illustrate the capabilities of the numerical
model.
Numerical values used in the examples are as follows:

– parameters for a clay soil areqm = 0:068,qM = 0:38, l = 0:17,hb = � 0:4 m,Ks = 0:144 m d� 1.
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– the initial water potential in the soil domain is in hydrostatic equilibrium:h0 = � 15 m� z.

For simplicity, all root parameters are taken constant across the whole root system. Numerical values ofLr andKr
for maize are taken from [6]:

– Root radius is set to 5:0� 10� 4 m.
– Lr = 1:92308� 10� 4 d� 1, Kr = 4:32� 10� 8 m3 d� 1.

As an illustration of the nutrient model, we consider the transport and uptake of nitrate. Parameters for equation
(3.2) are taken from [2], Michaelis-Menten constants for maize are taken from [1]:

– A0 = 1:6416� 10� 4 m2 d� 1, f1 = 1:58 ,f2 = � 0:17,ql = 0:12.
– Fm = 8:64� 10� 3 mol m� 2 d� 1, Km = 2:5� 10� 2 mol m� 3.
– the homogeneous initial concentration of nitrate in the soil solution isc0 = 5 mol m� 3.

We consider that adsorption of nitrate in the soil solid phase is negligible:j = 0:

The �rst numerical simulation involves the 20-days-old maize root system generated by the Matlab code Root-
Box depicted in Fig. 1. The soil domain is of dimensions 0:4 m � 0:4 m � 0:4 m. No-�ux boundary conditions
are imposed on the boundaries of the soil domain. A constant transpiration rate equal to 1:44� 10� 4 m3 d� 1 is im-
posed at the root collar. The time stepDt is taken constant equal to 0:05 d. Numerical results are depicted in Figs.
5 and 6. Fig. 5 shows the Darcy �uxq in the vicinity of the roots. In the beginning of the simulation, root water
uptake is still relatively evenly distributed over the dense upper portion of the root system (left picture,t = 4:8h).
As time passes, the uptake pattern is modi�ed. The soil dries in the dense root zone and the root system takes up
water from wetter zones (mostly in the deeper part of the soil pro�le) in order to maintain a constant transpiration
rate (right picture,t = 7:3d).
Fig. 6 shows high gradients developing in the vicinity of the roots as the soil dries.

The second example illustrates how we are able to integrate root growth and chemotropism in 2D by coupling
the model with the implementation of growth and tropisms in RootBox.
RootBox can simulate root tip response to mechanical soil heterogeneities as well as various types of tropisms like
gravitropism, hydrotropism or chemotropism. The speci�c growth behaviour can be chosen for every root type.
In RootBox, the implementation of tropisms consists in computing the new growth direction by random minimiza-
tion of an objective function: for each active root tip, several rotations are randomly computed and the one that
leads to minimizing the objective function is chosen. Different types of tropisms are realized by choosing appro-
priate objective functions depending on soil properties (water content, nutrient concentration). In this example, a
combination of gravitropism and chemotropism is achieved by de�ning the objective function as� l c+ z where
l > 0 represents the relative strength of chemotropism.
At each time step, an iteration of the following coupling algorithm is performed:

1. RootBox �nds the best growth direction for each active root tip through multiple evaluations of the objective
function depending on the spatial concentrationc. RootBox is interfaced with the FreeFem++ �nite element
code so that the values of the concentration can be determined by interpolation on the mesh. Then, a new
tree-like network with new root segments is obtained.

2. A mesh adapted to the new characteristic functionfc is obtained from the previous mesh by the mesh adapta-
tion procedure described in section 5.

3. Finite element functions (namely the current soil water potential and N concentration) are interpolated from
the previous mesh to the new mesh.

4. Solve (2.12) and (3.11) and obtain the new soil water potential and N concentration distributions.

Fig. 7 depicts some results of such a simulation with the initial nitrate concentration set to a linear pro�le varying
from 0 mol m� 3 at the top left corner of the domain to 10 mol m� 3 at the bottom right corner. Notice the accu-
mulation of nitrate around some of the roots in the bottom right: as the soil dries out, radial soil-root water �ow
increases in the bottom right where the soil is wetter, resulting in the mass �ow of nitrate bringing more than the
root can take up.
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Fig. 5 Soil water �ow near the root system of a 20-days-old maize plant

Fig. 6 Root water potentialhr de�ned on the tree-like network and slice of the soil water potentialhs
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Fig. 7 2D simulation example with root growth and chemotropism: snapshots of nitrate concentration at different time steps. In white, isosur-
face 0.5 of the characteristic functionfc.

8 Conclusion

In this paper we presented a model of soil water and nutrient transport with plant root uptake. A characteristic
function of the geometry of the root system was used to construct accurate sink terms corresponding to water
and nutrient uptake by roots. An emphasis was put on the spatial discretization with an adaptive mesh re�nement
procedure producing meshes that are able to resolve the complex geometry of the root system together with small-
scale phenomena occuring in the rhizosphere. A parallel �nite element method was then presented using a two-
level Schwarz domain decomposition method to solve the potentially large systems arising from the discretization.
Numerical experiments were conducted in two and three spatial dimensions to illustrate the capabilities of the
model.
Future work will consist in using the diffuse domain approach to approximate the actual surface of the roots in
the volume mesh without relying on a surface mesh. The level set representing the root surface splits the domain
W into two subdomainsWs andWr . Following a monolithic approach, different problems are de�ned on the same
mesh in the soil domainWs and in the root systemWr using a phase �eld variable. This approach allows us to
make use of the same adaptive volume remeshing procedure that was described in this paper.
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