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Abstract 
 
Increased incidence of fungal infections in the immunocompromised individuals and 

fungi-mediated allergy and inflammatory conditions in immunocompetent individuals 

is a cause of concern. Consequently, there is a need for efficient therapeutic 

alternatives to treat fungal infections and inflammation. Several studies have 

demonstrated that antibodies or immunoglobulins have a role in restricting the fungal 

burden and their clearance. However, based on the data from monoclonal antibodies it 

is now evident that the efficacy of antibodies in fungal infections is dependent on 

epitope specificity, abundance of protective antibodies and their isotype. Antibodies 

confer protection against fungal infections by multiple mechanisms that include direct 

neutralization of fungi and their antigens, inhibition of growth of fungi, modification 

of gene expression, signaling and lipid metabolism, causing iron starvation, inhibition 

of polysaccharide release and biofilm formation. Antibodies promote opsonization of 

fungi and their phagocytosis, complement activation and antibody-dependent cell 

toxicity. Passive administration of specific protective monoclonal antibodies could 

prove to be beneficial in drug-resistance cases, to reduce the dosage and associated 

toxic symptoms of anti-fungal drugs. The longer half-life of the antibodies and 

flexibilities to modify their structure/forms are additional advantages. The clinical 

data obtained with two monoclonal antibodies should incite interests in translating 

pre-clinical success into the clinics. The anti-inflammatory and immunomodulatory 

role of antibodies in fungal inflammation could be exploited by intravenous 

immunoglobulin or IVIg. 

 
Keywords: Fungi . Immunoglobulin . Inflammation . Aspergillus . Candida . 
Intravenous immunoglobulin .  Therapy –Natural antibodies 
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Background 

Fungi are among the most common microbes encountered by mammalian 

hosts. Approximately, 1-10 fungal spores are ingested in each breath, making it a 

natural route of infection for most filamentous fungal pathogens. Medically important 

fungi include Aspergillus, Blastomyces, Candida, Coccidioides, Coccidioides, 

Cryptococcus, Histoplasma, Malassezia, Paracoccidioides and Pneumocystis [1-3].  

Fungi are experts in sensing their surrounding environment and respond suitably to 

the different fluctuating environmental factors. Due to their acclimatization 

capabilities, fungi can interact with plants, animals and humans and establish 

symbiotic, commensal, latent or pathogenic relationships. For example, Candida 

albicans are commensal organisms in humans until the host becomes immune 

deficient, which can lead to life-threatening disease [4]. Omics-based approaches 

have revealed a link between fungal metabolism, morphogenesis and response to 

stress during adaptation to the host environment. These processes not only enhance 

fungal virulence but also provide opportunities for identifying potential therapeutic 

targets [5].  

 

Many fungal pathogens as well as commensal fungi have co-evolved with 

their mammalian hosts over millions of years. This shows that fungi have developed 

effective and complex strategies to antagonize immune responses in the host. One 

recent report shows that air borne fungal spores of Aspergillus fumigatus evade the 

innate immune recognition and immune responses by expressing surface  “rodelt 

layer” [6, 7]. This layer is composed of hydrophobic RodA protein covalently bound 

to the conidial cell wall through glycosylphosphotidylionositol remnants. RodA 

extracted from conidia of A. fumigatus was immunologically inert and did not induce 
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dendritic cell (DC) or alveolar macrophage maturation and activation. The disruption 

of this ‘rodlet layer’ chemically (using hydrofluoric acid), genetically (ΔrodA mutant) 

or biologically (germination) resulted in a conidial morphotype that induce immune 

activation. These observations show that the fungal pathogens have immune evasive 

mechanisms. 

 

Innate immune responses are the first line of defense against fungal infections 

that lay foundation for the long lasting, more specific and effective adaptive immune 

responses. The fungal pathogen-associated molecular patterns (PAMPs) such as heat-

shock protein 60 (Hsp60), β-glucans, phospholipomannan, O-linked mannans, 

zymosan and fungal DNA are recognized by various pattern recognition receptors that 

include toll-like receptors (TLRs) (such as TLR 2, 4 and TLR9) and C-type lectin 

receptors (such as Dectin-1 and DC-SIGN) [8-10]. These detection mechanisms are 

also complemented by other defense mechanisms such as microbial antagonism, 

defensins, collectins and complement system.  

 

The detection of fungal pathogens by phagocytes especially macrophages and 

DCs initiate downstream intracellular events that activate immune responses resulting 

in efficient clearance of fungi through phagocytosis and direct pathogen killing.  

Neutrophils play a key role in clearing hyphae, the tissue-invasive form of molds. 

DCs migrate to secondary lymphoid tissues and polarize diverse CD4+ T-cell (T 

helper, Th) responses including Th1, Th2, Th17, and regulatory T (Treg) cell 

responses. This has been shown in case of Histoplasma capsulatum, Cryptococcus 

neoformans, C. albicans and A. fumigatus. The Th cells in turn direct B cells to 

produce antigen-specific antibodies that mediate humoral immunity. 
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Role of humoral immune response in the protection against fungal infections: 

data from experimental models 

 Antibodies or immunoglobulins (Igs) are glycoproteins and one of the vital 

components of the immune system. Five classes or isotypes of antibodies have been 

identified that include IgG, IgM, IgA, IgE and IgD and their prevalence in the blood 

in the order of IgG>IgA>IgM>IgD>IgE. Further IgG is divided into four subclasses 

such as IgG1, IgG2, IgG3 and IgG4 in human and IgG1, IgG2a, IgG2b and IgG3 in 

mice. IgA is most abundant antibody at mucosa and is divided into IgA1 and IgA2. 

Studies to prove the beneficial effects of antibodies in the protection against fungal 

infections have mostly came from in vivo studies in experimental models. These data 

suggest that antibodies provide protection against fungal infections via several and 

possibly interdependent mechanisms. In fact, antibodies are well known effector 

molecules of the adaptive immune system and neutralize the pathogens and their 

derived molecules in part through activation of the complement. In addition, they also 

exert regulatory role in the activation of innate immune cells by signaling via diverse 

Fc receptors. However, initial studies to understand the role of antibodies in anti-

fungal immunity were largely inconclusive. These inconclusive reports could be due 

to occurrence of insufficient proportion of protective antibodies in the serum that are 

capable of clearing fungal infection. On the other hand, there could be inhibitory 

antibodies that neutralize the effect of protective antibodies [11, 12]. 

 

Several reports demonstrated that natural antibodies have an important role in 

the defense against fungal infection. In fact, administration of normal mice serum to 

μMT mice was shown to restrict the fungal growth in various models [13-16]. Natural 
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antibodies are polyreactive, generally germ-line encoded and are characterized by low 

to medium affinity. Natural antibodies belong to IgM, IgA and IgG classes and are 

produced mainly by B1 cells [17-23]. A substantial fraction of serum antibodies from 

naive mice recognize fungal antigens including C. albicans [24, 25]. Further, passive 

administration of a monoclonal natural IgM antibody 3B4 recognizing self-antigen 

keratin and germ tubes of C. albicans, protected mice from C. albicans-induced 

death. The anti-fungal mechanisms of this natural antibody include direct suppression 

of germ tube formation and enhancing the macrophage-mediated phagocytosis of 

candida by opsonization [24, 26] (Fig. 1). In line with these observations, murine 

studies have shown that administration of opsonizing antibodies results in protection 

against invasive candidiasis [27, 28] although beneficial effects could not be observed 

in vaginal candidiasis [29]. 

 

Natural IgM are important for the resistance to C. neoformans and 

Pneumocystis murina in mice by diverse mechanisms. It was proposed that natural 

IgM enhance the recruitment of macrophages to the site of infection and phagocytosis 

of fungi; guide the recognition of fungal antigens by DCs and their migration to 

draining lymph nodes; and support B cell class-switch by helping differentiation of 

Th2 cells [30, 31]. In line with these observations, mice with X-linked 

immunodeficiency that have significantly lower levels of IgM displayed higher 

susceptibility to C. neoformans infection [32].  

 

B-cell depleted mice show higher susceptibility to systemic candidiasis [33].  

Systemic challenge of C. albicans in athymic mice [34], severe combined 

immunodeficiency (SCID) mice [35] and antibody deficient CBA/N mice lacking 



 7 

Lyb-5 B cells [36] showed that humoral immune responses play an important role in 

conferring protection against systemic candidiasis. Further, studies in B-cell knockout 

(JHD μ KO) mice have shown that these mice are susceptible to experimental 

systemic candidiasis but resistant to mucosal and systemic candidiasis of endogenous 

origin [37]. These JHD mice lacked circulating B cells or secretory antibodies due to 

disruption of immunoglobulin gene JH that arrests B cell development in the bone 

marrow. After oral immunization, these mice developed protective immunity to 

intravenous challenge. However, the mice showed colonization of C. albicans in the 

gut, indicating that the mode of infection does influence the outcome of immune 

responses by the host. 

 

A report by Romani and colleagues reveals that antibodies have a critical role 

in the generation of memory anti-fungal immunity [16]. By evaluating the 

susceptibility of wild-type and B-deficient (μMT) mice to C. albicans or A. fumigatus 

infections by intravenous or intra-tracheal route respectively, they found that μMT 

mice could efficiently limit the fungal growth both upon primary and the secondary 

infections. Their results thus point out that Th1 cells are important to mediate 

protective immunity to these two fungal pathogens. However, μMT mice were 

incapable of surviving the re-infection with C. albicans. These results thus indicated 

that although the resistance to Aspergillus is independent of B cells and antibodies, 

protection against Candida appears to be mediated both by antibody-dependent and 

independent mechanisms [16]. Administration of normal mice serum to μMT mice 

further restricted the fungal growth, thus confirming that antibodies do have a role in 

restricting the fungal burden and in the clearance of pathogens, but as discussed later, 
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their efficacy might be dependent on epitope specificity, abundance of protective 

antibodies and their isotype. 

 

The findings of Romani and colleagues also suggest that the functions of 

antibodies in the protection against fungal infections might go beyond neutralization 

of pathogens, opsonization, antibody-dependent cytotoxicity or preventing adherence 

[16, 38] (Fig. 1). Thus, they identified a novel mechanism through which antibodies 

might participate in the protective immunity to Candida infections. It is known that 

circulating antibodies and B cells have remarkable ability to modulate the immune 

responses by regulating the functions of antigen presenting cells such as DCs [39-46]. 

Romani and colleagues reported that the inability of μMT mice to survive re-infection 

with C. albicans was associated with failure to generate IL-10-producing CD4+CD25+ 

Tregs.  Interestingly, antifungal opsonizing antibodies could restore IL-10 production 

in DCs indicating that antibodies could limit the exaggerated inflammatory responses 

to fungal infections and might educate the DCs for the development of long-lasting 

anti-fungal immunity [16] (Fig. 1). 

 

In experimental paracoccidioidomycosis, a chronic granulomatous disease 

caused by thermally dimorphic fungi Paracoccidioides brasiliensis, circulating 

normal antibodies were shown to control P. brasiliensis growth and organization of 

the granulomatous lesions by regulating the infiltration of inflammatory cells [47].  

 

Several reports also demonstrate that protective anti-fungal antibody responses 

could be induced in mice by vaccination with appropriate fungal antigens. Thus, 

vaccination with a liposomal-mannan admixture mediated antibody-dependent 
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protection against C. albicans [14]. Importantly, synthetic glycopeptide vaccines that 

combine β-mannan and peptide epitopes (corresponding to those proteins expressed 

during human candidiasis and their cell wall association) also induced high titred 

antibodies to β-mannan and test antigens that include fructose-bisphosphate aldolase-

Fba, methyltetrahydropteroyltriglutamate-Met6 and hyphal wall protein-1. In 

addition, these antibodies rendered protection against experimental disseminated 

candidiasis following DC vaccination approach [48]. Further, passive transfer of 

immune sera either from peptide (Fba)-vaccinated mice or glycol-peptide ([β-

(Man)3]-Fba)-vaccinated mice, conferred protection in naïve mice [49, 50]. Similarly, 

vaccination with other antigens was also shown to elicit protective antibody 

responses. A glycol-conjugate vaccine consisting of laminarin, a β-glucan from 

Laminaria digitata, and diphtheria toxoid CRM197 (Lam-CRM conjugate) protected 

mice against A. fumigatus and C. albicans by eliciting anti-β-1,3-glucan antibodies 

[51, 52]. Intravaginal immunization with secreted aspartic proteases family (Sap2t) of 

C. albicans elicited protective mucosal IgG and IgA antibodies to Sap2t. Passive 

transfer of these antibodies or anti-Sap2t IgM and IgG monoclonal antibodies 

protected mice against vaginal candidiasis [53]. A virosomal vaccine containing Sap2t 

also induced similar immune responses and protection against vaginal candidiasis 

[54]. In line with these reports, immunization with purified or recombinant major 

surface glycoprotein of Pneumocystis carinii elicited protective humoral and cellular 

responses in rats [55]. These data thus suggested that abundance of protective 

antibodies is the key factor that determines the role of antibodies in the protection 

against fungal infections.  
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DNA vaccination strategy was also explored for eliciting protective antibody 

response to fungal pathogens. Pneumocystis pneumonia infection is the most 

prevalent respiratory pathogen of AIDS patients and the options for immunotherapy 

have been limited given the poor CD4+ T cell immune responses.  DNA vaccination 

with a Pneumocystis antigen, kexin linked to CD40 ligand, induced strong antibody 

response in mice, and that B cells or IgG from vaccinated mice were highly protective 

upon adoptive transfer [56, 57]. This approach is highly desirable for patients who 

have CD4+ deficiency or dysfunction as this method could induce protective humoral 

responses independent of CD4+ T cells. 

 

Demonstration of protective role of antibodies in fungal infections by using 

monoclonal antibodies 

As relative abundance of protective specific antibodies was postulated as one 

of the factors that determine the protection afforded by circulating antibodies, various 

groups have evaluated this hypothesis by using monoclonal antibodies (MAbs). Most 

of the protective antibodies described to date recognize surface molecules that 

include, but not limited to glucans, mannans, and glucuronoxylomannans. In addition, 

proteins and glycolipids could also induce protective antibodies upon immunization.  

 

By using C. neoformans capsular glucuronoxylomannan-specific murine 

MAbs, Casadevall and colleagues compared the protective capacities of various 

isoforms of antibodies upon passive transfer to lethally infected mice. They found that 

on a weight basis, IgA isotype antibody was most effective as compared to IgG1> 

IgM> IgG3. However, IgA has a shorter half-life than IgG1 in the circulation and 

hence more IgA antibodies would be required for the protective effects. Therefore, 
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authors further performed the experiments by using antibody concentrations that 

closely mimics in vivo situation and found that IgG1 was more effective than IgA in 

conferring the protection against challenge [15]. In addition, other reports also 

confirmed the therapeutic potential of murine IgG1 MAb to capsular polysaccharide 

(CNPS), IgM MAb that binds to melanin and murine IgG2b MAb to 

glucosylceramide and β-glucan (laminarin) of C. neoformans [58-61]. 

 

The subclass of IgG also plays an important role in the protection against C. 

neoformans. The relative efficacy of IgG subclass antibodies was in the order of 

IgG1, IgG2a, and IgG2b ≫ IgG3. Switching from IgG3 to IgG1 converted a 

nonprotective glucuronoxylomannan-reactive MAb into a protective antibody [62, 

63]. Thus these data indicated that by simple isotype/subclass switching, a non-

protective antibody could be converted into a protective antibody and hence 

suggesting that those non-protective antibodies reported for fungal infections should 

be re-examined for the isotype. These C. neoformans protective 

glucuronoxylomannan-specific IgG MAbs seem to work in cooperation with nitric 

oxide, and both Th1 and Th2 cytokines [64, 65]. In addition, binding of protective 

glucuronoxylomannan-reactive 18B78 IgG MAb and IgM MAbs (12A1 and 13F1) to 

C. neoformans also modifies the gene expression of the fungi, phosphorylation of 

proteins and lipid metabolism [66]. (Fig. 1) The complement component C3 was 

found to be dispensable for the protection by these IgGs [67]. In addition, mouse 

background also shown to influence the protection given by IgG subclass antibodies 

[68] thus underscoring the complex relationship between the cellular and humoral 

components of the immune system. Further studies from the same group revealed that 

epitope specificity of the MAbs is the critical factor that determines the serotype-
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specific protection rendered by the anti-C. neoformans MAbs and to confer protection 

against distinct serotypes of C. neoformans [69].  

 

Han et al., showed that transfer of β-1, 2-mannotriose [β-(Man)3]-specific IgM 

MAbs enhance the resistance to disseminated candidiasis in normal, SCID and 

neutropenic mice, and to vaginal infection [14, 70, 71] and was dependent on the 

specificity of the antigens but independent of isotype (IgM or IgG3) of antibodies 

[72]. Structural analysis revealed that internal antigenic determinants dominate 

recognition of β-(Man)3 by IgG3 MAb [73]. β-mannan-specific IgM MAb could also 

reduce the dose of amphotericin B when used in combination in experimental 

candidiasis [74]. In contrast to C. neoformans-specific MAbs, complement was found 

to be essential for the protection by C. albicans β-mannan-specific IgM and IgG3 

MAbs and was associated with enhanced phagocytosis and killing of the yeast cells 

by phagocytic cells [75, 76] (Fig. 1). These results thus suggest that the mechanisms 

of anti-fungal antibodies might also depend on the fungal species and epitope 

specificity of the antibodies and that a generalized mechanism cannot be drawn.  

 

An IgM MAb C7 that reacts with Als3p and enolase of C. albicans cell wall 

exerted three anti-candida actions such as candidacidal activity and inhibition of both 

adhesion and filamentation [77]. Subsequently it was found that the candidacidal 

activity of this MAb was linked to interference with iron acquisition by C. albicans 

[78] (Fig. 1). Of note, MAb C7 also showed reactivity against several species of 

Candida as well as in C. neoformans, Scedosporium prolificans and A. fumigatus thus 

pointing towards broad-spectrum activities of this antibody [78]. 
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Compared to Candida and Cryptococcus, studies on the development of 

therapeutic MAbs to A. fumigatus are limited. An A. fumigatus-specific IgG1 MAb 

directed against cell wall glycoprotein of A. fumigatus exhibited protection against 

experimental aspergillosis in mice and significantly reduced the fungal load in the 

kidneys. The protection by this MAb might be due to its effects on germination of A. 

fumigatus [79]. The same group also developed an IgM MAb against 

immunodominant catalase B of A. fumigatus that exerted anti-A. fumigatus activities 

in vitro [80]. In a murine pulmonary aspergillosis model, A. fumigatus-specific IgM 

MAb-alliinase conjugate enhanced survival of immunosuppressed mice by causing 

specific killing of A. fumigatus without damaging the lung tissue [81]. 

 

IgG2a and IgG2b MAbs to gp43 of P. brasiliensis were shown to reduce 

fungal burden and was associated with the enhanced phagocytosis of P. brasiliensis 

by macrophages leading to increased nitric oxide production [82]. Prophylaxis passive 

intranasal administration of anti-glycoprotein A IgM or IgG1 switch variant MAb 

protected against murine P. carinii [83]. Further studies revealed that complement 

was required for the protection conferred by anti- P. carinii IgG1 antibodies [84]. 

 

Passive transfer of cell surface histone-like protein-specific IgM MAbs 

protected the mice against Histoplasma capsulatum by altering the intracellular fate of 

the fungus in the macrophages in a complement receptor 3-dependent process [85, 

86]. This protection was associated with the enhanced IL-4, IL-6 and IFN-γ in the 

lungs either on day 2 or day 7 post-infection. Similar to this report, passive transfer of 

H. capsulatum Hsp60-specific protective IgG1 and IgG2a MAbs significantly 

sustained the survival of mice infected with H. capsulatum. Administration of these 
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MAbs could alter the pathogenesis H. capsulatum by modulating its intracellular fate 

and by significantly boosting Th1 cytokine responses such as IL-2, IL-12, IFN-γ and 

TNF-α but not IL-4 in various organs either at day 7 or day 14 post infection [87]. 

Thus, enhancement of Th1 cytokine responses and modulation of intracellular fate of 

the fungus seems to be common factors associated with protection rendered by H. 

capsulatum MAbs. However, the regulation of cytokine responses might be 

dependent either on isotype of MAb or time-point of analysis.  

 

Role of antibodies in the protection against fungal infections: Data from human 

studies 

 Normal human serum or repertoire contains natural antibodies to various 

pathogens. Candidal mannan-specific human IgG antibodies from normal human 

serum were shown to mediate classical complement pathway initiation [88]. Affinity 

purified natural mannan-specific human IgG displayed prozone-like effect and hence 

therapeutic use of monoclonal version of these natural IgGs requires careful dose 

titration studies [89]. A full-length human recombinant anti-mannan IgG1 (M1g1) 

was generated from anti-mannan Fab that was isolated from a phage Fab display 

combinatorial library containing Fab genes of bone marrow lymphocytes [90]. M1g1 

activated complement pathway, enhanced phagocytosis and phagocytic killing of C. 

albicans by murine macrophages and rendered resistance to disseminated candidiasis 

in mice [90]. The complement activation and deposition of C3 on C. albicans by 

M1g1 could be independent of Fc-region as Fab fragments could activate alternative 

pathway to initiate C3 deposition [91]. Natural antibodies that react with candida 

antigens are also part of mucosal immunoglobulin repertoire wherein IgA from saliva 
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were shown to recognize Candida antigens such as phosphoglycerate kinase and 

fructose bisphosphate aldolase [92]. 

 

 Confirming the experimental studies on the role of immunoglobulins and B 

cells in the protection against fungal infection, a primary hepatic invasive 

aspergillosis with progression has been reported in a patient following rituximab 

therapy for a post transplantation lymphoproliferative disorder [93]. This report was 

further substantiated by another report wherein rituximab therapy was significantly 

associated with increased risk for invasive aspergillosis in patients with 

lymphoproliferative diseases after autologous hematopoietic stem cell transplantation 

[94].  

 

Though, many break-through studies have dissected the role of antibodies in 

anti-fungal immunity, the translation of these pre-clinical studies to patients is still 

under progress. The presence of specific antibodies in patients with progressive 

fungal infections has provided evidence against a protective role of antibodies in 

fungal infections. Also, it has been shown that naturally acquired antibodies develop 

during infancy to C. albicans and in early childhood to C. neoformans [95]. However, 

the individuals still could not fight against fungal infections indicating that the 

presence of antibodies does not necessarily prevent fungal infections. Based on the 

reports from experimental studies, it is now clear that these patients’ data might not 

reveal fundamental incapacity of antibodies to protect against fungal infections rather 

point towards inadequate amounts of protective antibody and/or the concurrent 

presence of both protective and non-protective antibodies. In fact, higher levels of 

IgG protective antibodies including those against Met6p, Pgk1p and Hsp90 are 



 16 

associated with good-prognosis in invasive candidiasis patients [96]. Another report 

indicated that patients who survived candidiasis display amplified antibody reactivity 

towards C-terminal epitope of mp58 mannoprotein [97]. Nevertheless an absence of 

relationship between hypogammaglobulinemia and susceptibility to fungal infections 

in general (with the exception of case studies) suggests that cellular responses have a 

major role in the protection against fungal infections and that antibodies might play a 

supportive role by reducing the fungal burden and by shaping the immune responses. 

Therefore, further research is warranted to understand the natural antibody responses 

to fungal pathogens in humans. 

 

As passive administration of specific protective antibodies shown promising 

results in experimental models, two antibodies have entered clinical trials in recent 

years.  

  

 Patients with cryptococcosis elicit specific antibodies to glucosylceramide and 

affinity purified these antibodies exhibit inhibitory activity on cell budding and fungal 

growth of C. neoformans [98]. Human IgM MAb specific to glucuronoxylomannan 

prolonged survival of C. neoformans-infected mice [99]. Based on these experimental 

data, a murine-derived anticryptococcal IgG1κ MAb 18B7 reacting to 

glucuronoxylomannan entered phase I, multi-institution, open-label, nonrandomized, 

dose-escalation study in HIV-infected subjects who had been successfully treated for 

cryptococcal meningitis [100]. Preclinical study has demonstrated that MAb 18B7 

recognizes all four serotypes of C. neoformans, opsonizes C. neoformans serotypes A 

and D, increase the antifungal actions of human and mouse effector cells, and activate 

the complement pathway leading to deposition of complement C3 on the capsule of 
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Cryptococcus [101]. Also, MAb 18B7 therapy in mice led to quick clearance of serum 

cryptococcal antigen. Phase I study revealed acceptable safety for this antibody and 

suggested further investigation at a maximum single dose of 1.0 mg/kg. Cryptococcal 

antigen titers in the serum of these patients dropped by a median of two-fold at first 

week and a median of three-fold at two weeks post-therapy. The half-life of the MAb 

18B7 in the serum was found to be nearly 53 h.  Further randomized clinical trials are 

awaited for this antibody.  

 

 A strong and sustained antibody response to hsp90 was associated with 

recovery of patients from invasive candidiasis following treatment with amphotericin 

B [102-104]. An immunodominant epitope on the Hsp90 of C. albicans is present 

both in filamentaous fungi and in yeasts including C. parapsilosis, Torulopsis 

glabrata, Candida tropicalis, Candida krusei and A. fumigatus [105]. Therefore, a 

single-chain variable fragment of a human monoclonal antibody Efungumab 

(Mycograb®) recognizing immunodominat epitope on the Hsp90 of C. albicans has 

entered clinical trials in patients with invasive candidiasis. A double-blind, 

randomized study demonstrated that Efungumab combined with lipid-associated 

amphotericin B produce significant clinical and culture-confirmed improvement in 

outcome for patients with invasive candidiasis [106]. A pre-clinical data also 

supported synergy between Efungumab and caspofungin [107]. However, a recent 

study suggested that Efungumab potentiation of amphotericin B could be non-specific 

[108]. Although a status of an orphan drug has been given in USA for this antibody, 

its use in Europe is not permitted by European Medicines Agency due to potential 

side effects and concerns about aggregation of the antibody. Also, Novartis 

discontinued the clinical development of this anti-fungal antibody in 2010. 
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Treatment of fungal-mediated inflammatory conditions: quest for unusual 

savior, intravenous immunoglobulin 

 Intravenous immunoglobulin (IVIg) is a therapeutic preparation of normal IgG 

obtained from pooled plasma of several thousand healthy donors. Depending on the 

exposure of donors to infectious diseases and vaccines and also on the endemic nature 

of the infectious diseases, IVIg contains antibodies to various pathogens of bacterial, 

viral, fungal and parasitic origin [40, 109]. In addition, natural antibodies represent 

major composition of IVIg [110]. 

Initially used for the replacement therapy of primary and secondary 

immunodeficiencies, high-dose (1-2 g/kg body weight) IVIg is currently used in the 

therapy of diverse autoimmune and inflammatory diseases such as Kawasaki disease, 

Guillain-Barré Syndrome, inflammatory myopathies, immune thrombocytopenic 

purpura, chronic inflammatory demyelinating polyneuropathy, vasculitis, graft versus 

host disease, and others as an immunomodulatory agent with no reports of serious 

side effects [110-115].  In addition to invasive disease, fungi species are also 

associated with several inflammatory conditions such as both IgE and eosinophilia-

driven hypersensitivity diseases including severe asthma, allergic bronchopulmonary 

mycoses, chronic sinusitis, hypersensitivity pneumonitis, atopic eczema/dermatitis 

syndrome and gut inflammation. Of note, IVIg has been used as an off label drug in 

allergy and asthma [116-121] and shown protective effects in experimental models of 

allergic airway inflammation [122-126].  

 

IVIg could act as immunomodulatory agent in inflammatory conditions via 

several mutually nonexclusive mechanisms (Fig. 1). Thus, IVIg could inhibit the 
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activation of innate cells such as DCs, macrophages, neutrophils, iNKT cells and the 

secretion of inflammatory cytokines while enhancing the anti-inflammatory mediators 

such as IL-1RA and IL-10. IVIg inhibits the differentiation and expansion of Th17 

cells and reciprocally expands Tregs, regulates the functions of B cells, activation of 

endothelial cells and their secretion of cytokines and chemokines. In addition, IVIg 

could neutralize the pathogens including fungi and their antigens [123, 124, 126-143]. 

This broad range of activities of IVIg reflects the importance of circulating 

immunoglobulins in the maintenance of immune homeostasis. 

 

In an open-label study with eight severe steroid-dependent asthma children 

aged between 6 to 17 years, treatment with IVIg (six monthly infusion at 2g/kg) 

resulted in significant reductions in steroid requirements. In addition, IVIg therapy led 

to decrease in serum IgE levels and a progressive diminution in skin test reactivity to 

allergens [116]. Other anecdotal studies also supported the use of IVIg in severe 

asthma with a steroid-sparing effect [117, 144-146]. The immunological analysis 

revealed that IVIg treatment decreased number of activated CD3+ T cells, CD4+ T 

cells in endobronchial biopsies with a reduction in peripheral blood T cell activation, 

decreased total serum IgE and IL-8 [144]. Also, IVIg could synergistically act with 

dexamethasone to inhibit lymphocyte activation and improve glucocorticoid receptor 

binding affinity [117, 147]. A multicenter, randomized, double-blind, placebo-

controlled trial of high-dose IVIg although failed to show benefits in corticosteroid-

dependent asthma [118], this study period was only two months and patients included 

were over 40 years. Therefore, based on this report, it might be concluded that 

younger patients probably benefit from IVIg therapy. Also modifications in the 

immune system due to previous drugs/therapies in adult patients might influence the 
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immunomodulatory functions of IVIg. Although further randomized clinical trials are 

required to support the use of IVIg in asthma and allergy, IVIg is not currently used as 

a first line therapy due to the availability of several new generation drugs. But these 

studies and experimental models provided a clue that IVIg could benefits fungal 

inflammatory conditions. 

 

Conclusion 

Treatment of disseminated fungal infections are still challenging due to costs 

associated with the treatments, growing reports of antifungal drug resistance, toxicity 

of anti-fungal drugs and non-availability of protective vaccines.  Although, humoral 

immunity might not have a major role in conferring protection against fungal 

infections in human, passive administration of specific protective antibodies could 

prove to be beneficial in drug-resistance cases, to reduce the dosage and associated 

toxic symptoms of anti-fungal drugs. The longer half-life of the antibodies and 

flexibilities to modify their structure/forms are additional advantages with anti-fungal 

antibodies. The clinical data obtained with two antibodies should incite interests in 

translating pre-clinical success into the clinics. In addition, clinically proven benefits 

of IVIg in various inflammatory diseases substantiate the necessity of testing this 

therapeutic preparation in fungal-mediated allergy and inflammatory conditions. 

 

Most of the protective antibodies described to date recognize surface 

molecules of the fungi. Though “one antibody for all pathogenic fungi” is still elusive, 

there are experimental evidences that suggest that common cell wall component-

specific protective antibodies like β-glucan exert protection across the several species 

of fungi [51, 61]. Another option could be broad-spectrum recombinant single chain 
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fragment (ScFv) anti-idiotypic antibodies bearing the internal image of a yeast killer 

toxin (KT). These killer antibodies are lethal to yeasts and filamentous fungi 

including C. albicans, A. fumigatus and P. carinii that express specific β-1,3 D-glucan 

cell-wall receptor (KTR). These KT-scFv were reported to have fungicidal properties 

against C. albicans both in vitro and in vivo model of experimental vaginal 

candidiasis [148]. A decapeptide resulting from the variable region sequence and 

containing part of the CDR1 segment of the KT-scFv light chain also exerted 

therapeutic activity against experimental mucosal and systemic candidiasis [149]. 

Killer anti-idiotypic MAb bearing the internal image of a yeast killer toxin showed 

protection against early invasive aspergillosis in a murine model of allogenic T-cell-

depleted bone marrow transplantation [150]. In addition, natural yeast KT-like 

antibodies with candidacidal properties were also identified in the vaginal fluid of 

candida infected human vaginitis patients [151]. 
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Figure Legend: 

Fig. 1. Multi-faceted functions of antibodies in the protection against fungal 

infections and fungi-mediated inflammatory conditions. Antibodies confer protection 

against fungal infections by multiple mechanisms that include direct neutralization of 

fungi and their antigens, inhibition of growth of fungi, modification of gene 

expression, signaling and lipid metabolism, causing iron starvation, inhibition of 

polysaccharide release and biofilm formation. Antibodies promote opsonization of 

fungi and their phagocytosis, complement activation and antibody-dependent cell 

toxicity. Growing evidences also indicate that antibodies have a key role in 

immunomodulation and in preventing inflammation-mediated tissue damage.  

 

 


