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Abstract Degree peeling is used to study complex net-

works. It is a decomposition of the network into ver-

tex groups of increasing minimum degree. However, the

peeling value of a vertex is non-local in this context

since it relies on the number of connections the vertex

has to groups above it. We explore a different way to de-

compose a network into edge layers such that the local

peeling value of the vertices on each layer does not de-

pend on their non-local connections with the other lay-

ers. This corresponds to the decomposition of a graph

into subgraphs that are invariant with respect to degree

peeling, i.e. they are fixed points.

We introduce a general method to partition the edges

of an arbitrary graph into fixed points of degree peel-

ing, called the iterative-edge-core decomposition. Infor-

mation from this decomposition is used to formulate

a novel notion of vertex diversity based on Shannon’s

entropy. We illustrate the usefulness of this decomposi-

tion on a variety of social networks including weighted

graphs. Our method can be used as a preprocessing step

for community detection and graph visualization.
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1 Introduction

The peeling value of a vertex v is the minimum value

k at which v is removed from the network during the

iterative removal of vertices of degree lower or equal to

k [27]. In social networks, maximal induced subgraphs

with peeling value at least k may be interpreted as

some form of equilibrium for “a model of user engage-

ment”. In this scenario, “each player incurs a cost to re-

main engaged but derives a benefit proportional to the

number of engaged neighbors” [11]. The peeling value

was studied for random graphs [24] generated with the

Erdös-Rényi model [16]. The maximum peeling value of

a graph (also called degeneracy) relates to other graph

theoretical measures such as the coloring number [29])

and arboricity. In [14], a peeling ordering of the vertices

is used to improve the running time of an algorithm for

the maximal cliques problem. Degree peeling or con-

cepts related to it are useful in network analysis. It has

been used to evaluate the relevance of communities in

co-authorship networks [17]. The authors proposed a

reformulation of peeling that takes into account edge

weights. Some graph decompositions based on degree

peeling have been used in [4] and [10] as an aid to pro-

vide layered visualizations of graphs. Some aspects of

internet topology [12] have been addressed also in this

context.

One of the interesting aspects of degree peeling is

the unravelling of a network hierarchy. This hierarchy is

obtained by partitioning the vertices of the network into

groups according to their peeling value (in increasing

order). The group with highest peeling value is called

the core of the graph. The unique group that a vertex

belongs to depends not only on the number of connec-

tions it has to vertices in its group but also on its con-
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nections to vertices in upper groups.

Contribution: In this work we exploit the inher-

ent locality of vertex peeling to efficiently obtain not

only a partition of the vertex set but more importantly

a partition of the edge set of any network. The algo-

rithm’s complexity is O(k|E|) where k is the maximum

peeling value and |E| is the number of edges.

The obtained edge partition, called here the iterative

edge core decomposition, provides simultaneously dis-

tant and close readings of a network. It can be used

to examine a network at different levels of granularity

without loosing sight of the underlying vertex partition

determined by the peel values. Each subset of edges,

in the iterative edge core decomposition, defines a sub-

graph all of whose vertices have “local peeling value”

= minimum subgraph degree. Equivalently, these sub-

graphs are fixed points of degree peeling (see Figure 2 for

an example). We call each of them an edge layer. Since

a vertex can be shared among different layers we use

this information to record a vertex peeling profile. This

profile is an indicator of the vertex role in the network.

Its Shannon’s entropy measures the degree of involve-

ment in the different edge layer structures determined

by peeling. We exemplify our findings on a sample of

social networks.

The rest of the paper is organized as follows. No-

tational conventions and the basic concepts used are

presented in Section 2. It also illustrates some of the

main characteristics of graphs that are fixed points of

degree peeling. In Section 3, we introduce the iterative-

edge-core decomposition, its main properties, and an

efficient algorithm to compute it. Section 4 indicates

how to use the edge core decomposition to filter and

analyse a network at different scales and it proposes a

measure of vertex diversity based on Shannon’s entropy.

Applications of the proposed edge decomposition on a

sample of social networks is the main subject of Section

5. We close with a discussion of possible future research

directions in Section 6.

2 Peeling Values and Fixed Points

We provide here the notations and definitions used in

this paper. In particular we introduce the concept of

fixed point of degree peeling graphs. We use the term

network interchangeably with graph. We concentrate on

undirected graphs even though peeling based concepts

are generalizable. We will discuss the case of weighted

graphs later on.

In this section, we use the co-appearance network of

Les Misérables [20] to illustrate the different concepts

used (see Figure 1). The vertices correspond to charac-

ters of the novel of Victor Hugo and an edge connects

two characters if they are found together in at least one

chapter.

We denote by G an undirected graph with vertex set

V (G) and edge set E(G). A partition of V (G) is called

a vertex decomposition. Similarly a partition of E(G) is

called an edge decomposition. The degree of a vertex u

in G and the minimum degree are denoted by dG(u) and

d−(G) respectively. The subgraph induced by a subset

of vertices S is G[S]. For a given subset of edges L ⊆ E,

the layer of G determined by L is the subgraph G(L) =

(V ′, L) where V ′ = {u ∈ V (G),∃(u, v) ∈ L}.

Definition 1 (Peeling Value) The peeling value of a

vertex u ∈ V (G) denoted peelG(u) is the largest i ∈
[1, dG(u)] such that u belongs to a subgraph of G of

minimum degree i. The peeling value of an edge e ∈
E(G) denoted peelG(e) is the minimum peeling value

of its endpoints.

In Figure 1, the peeling value of each character is

mapped to the vertex color. For example, the main

character “Valjean” has a peeling value of 8. The max-

imum peeling value of this network is 9 (red vertices).

For RAM resident graphs, the peeling value of all

vertices can be computed efficiently in O(|E(G)|) [8].

For graphs that do not fit in RAM, an I/O efficient

external-memory algorithm that computes an approxi-

mation to the peeling values has been recently proposed

by [19] .

The peeling value of G, denoted peel(G), is the max-

imum peel value of all its vertices. The peeling value

of G is also called the degeneracy of G [21]. For a

graph of peeling value k, its vertices can be ordered

in a sequence (v1, . . . , vn) called the Erdős-Hajnal se-

quence [15] such that there are at most k edges go-

ing from vi to (vi+1, . . . , vn). An easy but fundamental

property of peel values is that they are a local manifes-

tation of a global graph connectivity phenomenon. The

following result states this precisely.

Theorem 1 (Peeling Value Locality [23]) A vertex

u ∈ V has at least peelG(u) neighbours with a peeling

value at least peelG(u) and at most peelG(u) neighbours

with a peeling value at least peelG(u) + 1.

The authors of the previous theorem exploit these

local relations between the peeling value of a vertex and

the peeling values of its neighbours to compute peeling

values by a distributed algorithm.
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Fig. 1 The network Les Misérables. The peeling value is color coded. The edge coloring corresponds to our new edge decom-
position (see Section 3). The 5 most diverse characters (see Section 4) are explicitly labelled.

Definition 2 (Peel Decomposition) The vertex peel

decomposition of a graph G is the partition induced by

the peeling values of the vertices of G.

Definition 3 (Graph Core) The core of G, core(G),

is the maximal subset of vertices of G whose peeling

value is maximum, i.e. equal to the peeling value of G.

In Figure 1, the vertex peel decomposition is color

coded by assigning the same color to all characters (ver-

tices) with the same peeling value. This vertex partition

contains 8 groups. The core of this network corresponds

to the group of red characters.

Definition 4 (Local Peeling Values) Let P be a

partition of V (G). The local peeling value of a vertex

u ∈ G is peelP(u) = peelG[P (u)](u) where P (u) is the

set in P that contains u. Similarly, if L is a partition

of E(G), the local peeling value of an edge e ∈ E(G)

is peelP(e) = peelG(L(e))(e) where L(e) is the set in L
that contains e.

Definition 5 (Fixed Point) A graph F is a fixed

point of degree peeling k if core(F ) = V (F ) and the

peeling value of F is k. Equivalently, a graph F is a

fixed point of degree peeling if the vertex peel decompo-

sition of F has only one class and its peeling value is

equal to its minimum degree.

Note that if F is a fixed point of degree peeling, the

local peeling values of elements in F do not depend on

elements with higher local peeling values. Our quest is

therefore to partition the edge set of a graph G into a

union of fixed points of degree peeling. Among all pos-

sible edge partitions of G into fixed points of degree

peeling, the one we propose is maximal (a precise defi-

nition of maximality is given in Section 3).

For the network Les Misérables, the edge coloring in

Figure 1 corresponds to this decomposition. Each set

of edges with the same color forms a layer of the net-

work and this layer is a fixed point of degree peeling.

The subgraph determined by the brown edges corre-

sponds for example to a fixed point of peeling value 7.

Fig. 2 An example of a random geometric subgraph in FP5.

We denote by FPk the class of graphs that are fixed

points of degree peeling k. They are also called strongly

k-degenerate graphs in [9]. FPk includes well-known

classes of graphs. For example, the class FP1 corre-

sponds to forests (without isolated vertices), cliques of

size n are in FPn−1, k-regular graphs are in FPk, and

one can easily exhibit less obvious graph classes (see

Figure 2). For fixed points F ∈ FPk, the peel value lo-
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cality property captured by theorem 1 can be re-stated

as: “a vertex u ∈ V (F ) has at least k neighbours of

peeling value k”. The size of the maximum clique in

F ∈ FPk is bounded above by k + 1. Bounds on the

minimum and maximum number of edges of F are given

in the following proposition.

Proposition 1 (E(F ) Size) If F ∈ FPk a fixed point

of degree peeling with n vertices then

kn

2
≤ |E(F )| ≤ kn−

(
k + 1

2

)
(1)

The lower bound of inequality (1) is the number

of edges in a k-regular graph with n vertices. The up-

per bound is the number of edges in edge-maximal FPk

graphs with n vertices i.e. graphs such that an edge can

not be added between two independent vertices without

increasing the maximum peeling value [9]. Graphs gen-

erated using the Barabási-Albert model [6] model with

a clique of size k as seed are examples of edge max-

imal FPk graphs. More generally, the construction of

any “edge-maximal” FPk graph goes as follows: from a

clique of size k iteratively add (n−k) vertices linked to

exactly k vertices. This property indicates that the ave-

rage degree of an FPk graph with n vertices is αk with

1 ≤ α ≤ 2. Any k-connected subgraph or connected

component of an FPk graph is a fixed point with peel-

ing value k.

3 Decomposition into Fixed points of Degree

peeling

In this section we present two different decompositions

of a graph into fixed points of degree peeling. In prin-

ciple, a peeling based vertex decomposition into fixed

points can be obtained by first partitioning the vertex

set into groups, according to their peeling values, and

then recursively applying the peel decomposition to the

subgraphs induced by each set in the partition. Since

the peeling value can not increase one can stop the re-

cursion when the peeling value remains the same. In

other words, the recursion will end when fixed points

are reached (see an example in Figure 3(a)). This di-

visive decomposition is just one possible partition into

fixed points.

Observe however that the partition may not be max-

imal, in the sense that some of the obtained fixed points

could be merged to obtain fixed points of higher peeling

value. Notice that the same idea could be used to par-

tition the edges. The resulting decomposition can also

be non-maximal. Among all possible vertex or edge de-

compositions into fixed points of degree peeling, the two

we propose respect the following maximality property.

Definition 6 (Maximal FP decomposition) For a

graph G, a vertex or edge decomposition P into fixed

points is said to be maximal iff for any subgraph G′

of G that is FPk one of the following two conditions is

met

i. k < maxe∈G′ peelP(e)

ii. ∀e ∈ G′, peelP(e) = k

The maximality of an FP decomposition implies

that the merging of layers in the decomposition will

always result in a subgraph with peeling value equal

to the maximum peeling value of its layers. If P is a

maximal vertex (resp. edge) decomposition then there

is no subset of vertices (resp. edges) whose local peel

values can be increased without lowering the local peel

values of some others vertices (resp. edges). As an il-

lustration, in Figure 3(b), we can find a larger FP4 by

adding to the red set the two vertices labelled 4 that are

not in the set. This vertex decomposition is therefore

not maximal. In Figure 3(c) the vertex decomposition

is maximal. For example, one could increase the local

peel value of the two vertices in the fixed point of peel-

ing value 0 to form a tree with their neighbour labelled

3. However, the local peeling value of this vertex will

decrease from 3 to 1.

It is worthwhile to mention that maximal vertex

decompositions have the property that any vertex with

local peeling value ki has at most (kj − 1) connections

to a fixed point Pj of peeling value kj > ki. Similarly, in

maximal edge decompositions, any edge in a layer with

peel value ki have at least one of its endpoints with at

most (kj−1) connections to vertices in a layer with peel

value kj > ki. This is a local peeling edge analogue to

the local peeling vertex property stated in Theorem 1.

A simple and efficient approach to obtain a maxi-

mal partition into fixed points is to iteratively remove

the core vertices and all its connections or alternatively

remove just the edges with both end points on the core.

In the first case we obtain a vertex partition into max-

imal fixed points and in the second case we obtain a

novel edge partition into fixed points.

In both cases, we are iteratively peeling vertices or edges

in the core starting with the initial graph core. We refer

to both of these methods as “backward peeling”. Back-

ward vertex peeling produces what we call an “iterative

vertex core decomposition” and backward edge peeling

produces our desired “iterative edge core decomposi-

tion”. These methods are formally stated below as Al-

gorithm 1 and 2. Their complexity is O(k|E|) where

k is the maximum peeling value of G. Their correct-

ness follows directly from the first principle properties



Network Decomposition into Fixed Points of Degree Peeling 5

(a) Recursive peeling vertex decomposi-
tion (non-maximal).

(b) Another non-maximal vertex decom-
position.

(c) Iterative Vertex Core decomposition (d) Iterative Edge Core decomposition

Fig. 3 Four different decompositions of a graph into fixed points of degree peeling. The induced subgraphs formed by taking
all vertices in a hull is a fixed point of degree peeling. Pale yellow represents the lowest peeling value 0 and red represents the
highest peeling peeling value 4. Vertices are labelled according to their peeling value. The decomposition a) is not maximal
since the subgraph induced by the union of the yellow sets has a peeling value of 2. b) is not maximal since two vertices labelled
4 have 4 connections to a FP4 fixed point.

of the peel values stated in Section 2. Since the main fo-

cus of this paper is the edge partition into fixed points,

we discuss further the properties of the iterative edge

core decomposition although similar statements can be

proved for the iterative vertex core decomposition. Fig-

ure 3(c) and 3(d) illustrate the differences between the

iterative vertex core decomposition and the iterative
edge core decomposition. We present the generalisation

of the later method to weighted graphs in Section 3.3.

3.1 Iterative Vertex Core Decomposition via Backward

Peeling

Algorithm 1 computes a vertex decomposition of G into

fixed points of degree peeling. It relies on the fact that,

for any graph G, core(G) is a fixed point of degree peel-

ing. After the removal of core(G), the peeling value of

the remaining vertices will directly drop if they were

connected to the core. This operation can affect other

vertices due to the iterative computation of peeling val-

ues. This means that in each obtained fixed point F of

peeling value k, all vertices in F have a local peeling

value lower or equal to their global peeling value in G.

Notice that this iterative vertex core decomposition

discards the connections between the different groups in

Algorithm 1: Iterative Vertex Core decomposi-

tion of G.
Input: G = (V,E)
Output: C = (C1, . . . , Cl), each Ci is a fixed point.

1 G′ ← G;
2 C ← ∅;
3 while V (G′) > 0 do
4 C ← C ∪ {core(G′)};
5 G′ ← G′[V (G′)− core(G′)];

6 end
7 return C;

the graph. This is one of the main reasons we introduce

the following iterative edge core decomposition.

3.2 Iterative Edge Core Decomposition via Backward

Peeling

The iterative edge core decomposition (see Algorithm

2) assigns to each edge a value that corresponds to the

peeling value of its endpoints at the first time they be-

long to the core. In the example given in Figure 3(d),

removing the edges within the red hull leaves most of

the vertices in the core isolated. Three of them have

connections to the rest of the graph. The leftmost one

has actually enough connections to be part of the next
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core (of peeling value 3) but after that it is also isolated.

The idea here is that all the vertices that belong to a

fixed point will not be similar, in the sense that some

of them can actually be part of other fixed points.

Algorithm 2: Iterative Edge Core decomposition

of G.
Input: G = (V,E)
Output: L = (L1, . . . , Lp), each Li is a fixed point.

1 G′ ← G;
2 L ← ∅;
3 while E(G′) > 0 do

4 A = {(u, v) ∈ E(G′), u ∈ core(G′) ∧ v ∈ core(G′)}
L ← L ∪ {A};

5 E(G′)← E(G′)−A;

6 end

7 return L;

The maximum number of iterations of Algorithm 2

is bounded by k. Indeed, removing the edges of the core

reduces the peeling value by at least 1. The size of the

resulting partition is therefore at most k. The peeling

value of vertices is computed at each iteration and this

operation can be done in O(|E(G)|). This decomposi-

tion is maximal according to Definition 6 (see Theorem

2).

Theorem 2 For a non-empty graph G, the edge de-

composition L computed by Algorithm 2 is maximal (see

Definition 6).

Proof Let L = (L1, L2, . . . , Lp) denote the ordered edge

decomposition computed by Algorithm 2. If p = 1 then

that decomposition is maximal since L1 = G[core(G)]

is a fixed point. Indeed, there is not subgraph of L1 of

higher peel value than the peel value of L1 and every

edge in L1 have the same peel value.

Assume the result is true for edge decompositions

Lk in k ≥ 1 layers. We will argue the maximality for

edge decompositions with k + 1 layers. If we assume

now that Lk+1 is not maximal according to Definition

6 then it must exist a subgraph G′ ∈ FPj such that

j ≥ maxe∈E(G′)peelLk+1
(e) and peelLk+1

(e) 6= j for

some e ∈ E(G′).

We argue first that E(G′) ∩ G[core(G)] = ∅. In-

deed, the subgraph G[core(G)] has the maximum peel-

ing value therefore we would have j = peel(G). How-

ever, it does not exist an edge e ∈ G[core(G)] with

peelLk+1
(e) < j. Moreover, since core(G) is the max-

imal subgraph of edges of maximum peel value j, for

every e ∈ (G−G[core(G)], peelLk+1
(e) < j. So E(G′)∩

G[core(G)] = ∅ therefore the subgraph G′ is actually a

subgraph of (G−G[core(G)]). The edge decomposition

of (G−G[core(G)]) has strictly less layers than the edge

decomposition of G because the core of G is non-empty.

Therefore, the edge decomposition of (G−G[core(G)])

produced by the algorithm is maximal. This edge de-

composition plus G[core(G)] is the maximal edge de-

composition of G produced by the algorithm.

The iterative edge core decomposition is maximal.

Notice that this is only true for edge decompositions

into fixed points with the same local peeling values that

our decomposition. Therefore every maximal decompo-

sition could be obtained by partitioning the edges of

each layer into fixed points of the same peeling value.

In other words, every maximal edge decomposition is a

refinement of the iterative edge core decomposition.

3.3 Generalisation to weighted graphs

The concept of peeling value can be adapted for graphs

whose edges are weighted [17]. Suppose we have a graph

G = (V,E,w) where w assigns a positive real value to

every edge. We define the weighted degree of a ver-

tex u denoted dw(u) as the sum of the weights of the

edges adjacent to u. In this case, the weighted peel value

of a vertex u, denoted peelw(u), is the maximum k in

[0, dw(u)] such that u belongs to a subgraph of G with

minimum weighted degree k.

The concepts detailed in section 2 and 3.2 are nat-

urally extensible to weighted graphs. In particular, the

Algorithm 2 can be modified to select the weighted core

of the graph at each iteration. This leads to an edge par-

tition of the graph into fixed points of weighted degree

peeling.

Some of the fixed points properties we detailed earlier

do not hold when taking edge weights into account. In

particular, a fixed point of weighted peeling value k can

contain only one edge with w(e) = k. This affects the

complexity of Algorithm 2. Indeed, the degeneracy of a

weighted graph is unbounded according to our defini-

tions. However, for non-empty graph G, since the core

of G contains at least one edge the number of layers in

the final decomposition is at most |E|.

Notice that the proposed decomposition of G =

(V,E,w) will be the same as that of G = (V,E) in

the case that w assigns the same value α to each edge.

Indeed, in this situation the peeling value of edges is

simply multiplied by α. In practice (see experiments in

Section 5.4 and 5.5), we observe that the weighted it-

erative edge core decomposition produces more layers

than the unweighted decomposition.
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4 Uses of the Iterative Edge Core

Decomposition

In this section, we indicate how to use the edge core de-

composition to filter and analyse a network at different

scales. We also propose a measure of vertex diversity

based on Shannon’s entropy.

4.1 Network Analysis at Different Scales

The iterative edge decomposition focuses on local peel

values and since it is maximal each edge gets assigned

to its highest possible layer. Each layer locality is cap-

tured by the fact that it is a fixed point of degree peel-

ing. The usual peel decomposition fails to incorporate

locality since the vertices of peeling value k could very

well form an independent set. The peel decomposition

tends to produce more layers than our iterative edge

core decomposition.

The differences between the two decompositions can

be expressed using the following metaphor: The net-

work hierarchy according to peeling can be viewed as

a terrain. In this case, a “plateau” (or tableland) could

be seen as an intermediate level i.e. an almost flat area

that would be qualified as top if we discard everything

above. In a network, this would correspond to subset

of vertices with different peeling values but high local

peeling values.

The k-cores decomposition will go through this land-

scape from the top to the bottom meter per meter. The

process will reach every mountains tops but it will also

go through everything in between. Some post-process

are required to differentiate a plateau or a mountain top

from any other part of the mountain at the same height.

The iterative edge core decomposition follows a top-

down approach. Its computation jumps from the over-

all maximum to subsequent levels of local “plateaux”.

They would therefore be easier to identify at the end.

Note however, that this process will discard an impor-

tant information which is the height of every part of the

mountains (the peeling value of the vertices). For this

reason, we shall keep track of this information during

the analysis.

4.2 Network Filtering and Community Structure

Peeling values can be used to filter out vertices with few

connections. In the iterative edge core decomposition,

vertices of peeling value k are present in layers with

peeling value at most k. The lowest layer Lp may con-

tain vertices of peeling value 1 but also their sparse con-

nections between vertices from layer p or above. As an

illustration, consider a network formed by two cliques of

different sizes linked by an edge. This bridge edge will

fall into the lowest layer of the decomposition. Some lay-

ers can be filtered out to make the community structure

(if any) more apparent. Even though there is no univer-

sally accepted notion of communities, the class of fixed

points may include some “patterns” that are intuitively

accepted as communities in some other works [26,22].

This is illustrated on a real-world example in Section

5.2. However, it is worth to notice that our method is

not directly aimed at finding the community structure

of a network.

By associating with each vertex the first time that

it appears in the iterative edge core decomposition, we

can keep track of the proportion of recently added ver-

tices to any layer. Sudden proportion changes between

consecutive levels are an indicator of a possible com-

munity structure. Notice that the iterative edge core

decomposition is more likely to detect overlapping com-

munities than the vertex peel decomposition since edge

partitioning inherently allows vertex overlaps between

communities [3].

4.3 Assessing Vertices Diversity

For a given vertex u, the edges adjacent to u in G can be

partitioned into different classes given by the iterative

edge core decomposition. We associate with each ver-

tex a profile vector containing its peeling information

according to the iterative edge core decomposition.

Definition 7 For a graph G and its iterative edge core

decomposition L = (L1, . . . , Lp), the profile of a vertex

u ∈ V (G) denoted profile(u) is a sequence of integers

(l1, . . . , lp) where each li indicates the number of edges

adjacent to u that are part of the layer Li.

Notice that the number of times a vertex u is detected

as part of a layer, in the iterative edge core decompo-

sition, corresponds to the number of non-zero entries

in the vector profile(u). The sum of the entries in the

profile vector of u is equal to the degree of u. Vertex

profiles are used next to assess the diversity of a ver-

tex i.e. how the degree of a vertex is evenly distributed

across the layers.

Definition 8 (Vector Majorization [5], Shannon’s

Entropy [28] and Vertex Diversity) For a vector u

in Rk, let p(u) = (p1(u), p2(u), . . . , pk(u)) denote the

vector obtained by sorting the entries of u from largest

to smallest. A vector v in Rk is said to be majorized
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by a vector u in Rk iff for 1 ≤ l < k,
∑l

j=1 pj(v) ≤∑l
j=1 pj(u) and

∑k
j=1 pj(v) =

∑k
j=1 pj(u).

Let H(profile(u)) be the Shannon’s entropy of the

profiles normalized by the degree.

H(profile(u)) = −
p∑

i=1

li
dG(u)

log2

(
li

dG(u)

)
(2)

For two vertices u and v, if profile(v) is majorized by

profile(u) then H(profile(v)) ≥ H(profile(u)) since

H(.) is a Schur-concave function. Therefore, we can

rank vertices using the entropy of their profiles. We

call this measure vertex diversity. Namely, the diver-

sity of vertex u is H(profile(u)). The diversity of a

vertex does not solely depends on its peeling value or

its highest layer in the iterative edge core decomposi-

tion. A vertex that is not part of the core of the graph

can still have a bigger diversity than vertices from the

core.

This measure can also be defined in the case of the

weighted edge core decomposition introduced in Section

3.3. In this case, the diversity denoted Hw captures how

the total weight of the edges adjacent to a vertex is

uniformly spread among the different layers.

5 Network Samples

We illustrate the application of the iterative edge core

decomposition on five networks with different charac-

teristics. The last two can be viewed as weighted net-

works. We use node-link diagrams generated using Tulip

software [1].In most cases, the peeling values of the ver-

tices are color coded. The color of an edge correspond

to the peeling value of its layer in the iterative edge

core decomposition. Both vertices and edge values use

the same color scale. The diversity of a vertex (see Eq.

2) is encoded by the size of the vertex.

We also provide 3D z-ordered visualizations of the net-

works by mapping into the z-axis the edge core decom-

position numbers. This method is inspired by [10].

5.1 A Co-Appearance Network: Les Misérables

We start with the co-appearance network of the novel

Les Misérables (see Section 2). The network contains

77 vertices and 254 edges. The peel decomposition con-

tains 8 groups. The core of the graph (red vertices) cor-

responds to the “revolutionary student club” appearing

during the Paris uprising in the novel. While some of

them are very important in the novel (like “Marius”),

Table 1 Statistics for the iterative edge core decomposition
of the Manufacture network.

Layers # Vertices % New vertices Clust. Coef.

16 24 100 % 0.89

11 12 100 % 1

10 11 100 % 1

8 17 88 % 0.80

5 45 31 % 0.23

2 28 4 % 0.03

1 38 0 % 0

most of them are not and the reason they have the max-

imum peeling value is because of the size of the group.

We can differentiate them by looking at their connec-

tions to vertices of lower peeling value and this is ex-

actly what the iterative edge core provides (see Figure

1).

The second layer of the iterative edge core decom-

position (brown edges) contains characters such as the

Thenardier family. Their son, “Gavroche”, was part of

the core but he actually has enough connections to be

grouped with them at this level. Each layer seems to

correspond to a community in the novel. For example,

the blue edges layer determines a subgraph with 6 ver-

tices, its density is maximum as fixed point of peel-

ing value 4 according to Property 1. It corresponds to

the group formed by Marius along with members of his

family, his fiance “Cosette” and the tutor of Cosette,

“Valjean”.

The labels displayed in Figure 1 correspond to the

names of the five most diverse characters: Valjean, Ga-

vroche, Cosette, Marius, and Javert. Notice that Co-

sette which is a main character in the novel appears

here even if her peeling value is relatively low when

compared to the others. However, in the iterative edge

core decomposition, she is well connected in the layers

she belongs to.

5.2 A Social Interaction Network: The Manufacture

Network

The example we now discuss is an intra-organizational

network [13] where the vertices represent 77 employ-

ees and an edge links two employees when one of them

indicates that the other provides him useful informa-

tion (at least somewhat infrequently). The employees

work in four different locations: Paris, Frankfurt, War-

saw and Geneva (see Figure 4).
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(a) Highest four layers. (b) Lowest three layers.

Fig. 4 Results of the iterative edge core decomposition for the Manufacture network. The graph is drawn using a force-direct
layout algorithm. The positions between a) and b) are preserved. The shape of the vertices corresponds to the different locations:
Frankfurt (circles), Paris (squares), Geneva (pentagons) and Warsaw (triangles). The edges of the graph are separated here
according to the decomposition. The union of a) and b) gives the complete network.

This example illustrates the usefulness of our de-

composition for graph filtering (see Section 4). Observe

a transition between the layers 8 and 5 in terms of

their proportion of new vertices found and their ave-

rage clustering coefficient (see Table 1). The first four

layers (see Figure 4(a)) separate the core of the com-

munities induced by the locations even if they have dif-

ferent global peeling value. Two vertices in the center

have also enough connections to be part of the layer

of peeling value 8 that groups vertices from Warsaw.

Notice that those vertices have also a high diversity.

If we assume the community structure is given by the

locations, our decomposition is able to extract “com-

munities cores” since they have different connectivity

characteristics. Notice also that they form dense sub-

graphs. The vertices that are isolated in those layers

correspond to vertices whose number of connections is

too low or is too split between the different locations.

The last three layers (see Figure 4(b)) also bring

relevant information. The blue edges determine a fixed

point of peeling value 5. This subgraph contains a sub-

stantial number of vertices from higher layers. It sug-

gests that even without the connections between peo-

ple from the same location, the graph structure still

allows the diffusion of information in the company. No-

tice that most of the employees from Warsaw do not

belong to this subgraph. This suggests that connectiv-

ity is “stronger” between people working in Frankfurt,

Paris and Geneva.

5.3 The Political Blogosphere Network

This network represents the undirected links between

political blogs before the 2004 US election [2]. The 1222

blogs are divided into two groups: liberals or conserva-

tives (see Figure 5). The peel decomposition contains 35

clusters (the maximum peeling value in the network).

The core of the network contains liberals blogs, ver-

tices of peeling value between 32 and 34 are other lib-

eral blogs connected to the core. A substantial change

happens when looking at vertices with peeling value 31
since a large proportion of them are conservative blogs.

Subsequent groups in the peel decomposition contain

both liberal and conservatives blogs.

On the other hand, a quite different picture emerges

using the 10 layers of the iterative edge core decompo-

sition of this network (see Figure 5(a)). Indeed, either

liberal or conservative blogs are over-represented in the

layers detected (see the statistics provided in Table 2).

A 3D z-oderered visualization (see Figure 5(b)) reveals

this phenomenon. Notice however, that an edge layer

can contain blogs from the “opposite” side. This sug-

gests that the local peeling values of the blogs mostly

come from blogs with the same affiliation. Observe that

the average clustering coefficient of the layers decreases

heavily. This can be explained by the fact that each

layer contains an important proportion of vertices al-

ready detected in the previous layers.
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(a) Plain view obtained using a force-direct algorithm. (b) 3D z-ordered view.

Fig. 5 Results of the iterative edge core decomposition for the Political Blogs network. The graph is drawn using a force-direct
layout algorithm. The shape of the vertices corresponds to the politic orientation: liberal (circle) or conservative (square). The
labels on the color scale indicate the peeling values of the edge layers found.

Table 2 Statistics for the iterative edge core decomposition of the Political Blogs network.

Layer # Blogs % Liberals % New Blogs Clustering Coefficient

33 66 100 % 100 % 0.72

29 95 4 % 99 % 0.5

24 120 99 % 68 % 0.26

18 186 5 % 65 % 0.14

13 206 93 % 44 % 0.09

9 315 6 % 55 % 0.05

5 383 77 % 42 % 0.03

3 382 2 % 35 % 0.02

2 373 64 % 34 % 0.02

1 706 45 % 25 % 0

Table 3 Statistics for the first ten diverse cities in the airport network.

City Hw (Rank) degw Occurrencesw First layerw H (Rank) deg Occurrences First layer

Paris 3.4 (1) 3925 22 370 2.92 (2) 368 9 36

Sao Paulo 3.37 (2) 1167 16 170 2.73 (6) 108 7 22

London 3.28 (3) 4635 22 370 2.82 (4) 407 9 36

Papeete 3.27 (4) 339 11 42 1.52 (122) 36 3 4

Tokyo 3.25 (5) 1529 13 273 2.53 (10) 125 7 22

Jeddah 3.18 (6) 1407 16 170 2.92 (1) 144 8 22

Stockholm 3.15 (7) 1781 16 370 2.4 (17) 172 7 36

Santiago de Chile 3.14 (8) 723 14 138 2.33 (22) 72 6 14

Frankfurt 3.11 (9) 3530 17 370 2.82 (3) 331 9 36

New York 3.08 (10) 2318 13 370 2.8 (5) 199 9 36

5.4 The Air Transport Network

The Air transport network is an undirected graph where

each vertex represents the airports of a city and edges

represent a direct flight from one city to the other [25].

The network contains 1490 nodes and 12353 edges. The

size of the peel decomposition is equal to the maximum
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peeling value in this network which is 36. However, the

iterative edge core decomposition provides a partition

of the edges into 12 layers (see Figure 6(a)). European

cities appear in many layers although the third and

sixth layers (of peeling value 17 and 8) contain a ma-

jority of Asian cities. The fact that the local peeling

value is high between those airports is difficult to spot

using the peel decomposition.

In this case, we notice two interesting aspects when

looking at the results of the iterative edge core decom-

position. The backward peeling procedure leaves a few

cities isolated at each step. As a case in point, the net-

work remaining after the removal of all edges of local

peeling value greater than 4 contains a giant connected

component with 1380 airports.

A second interesting aspect is observed when looking at

airports diversity (see Table 3). The most diverse air-

port is Jeddah in Saudi Arabia. This may because this

city has a distinctive role being very close to the Islam’s

holy city of Mecca. The next most diverse airports are:

Paris, Frankfurt, London, New York City, Sao Paulo

and Beijing.

We illustrate here the generalisation of our method

for the analysis of edge-weighted networks. We use the

natural extension of the iterative edge core decomposi-

tion described in section 3.3. As edge weight, we take

the rounded logarithmic transform of the number of

passengers. This is done to consider the magnitude of

a link, the distribution of the number of passengers is

indeed heavily skewed even if the data contain only the

connections taken by at least 500 people in the year

2000.

This weighted edge core decomposition contains 46 lay-

ers. Looking at Figure 6 we can see that the upper edge

layers of the weighted and unweighted decompositions

are very similar. This similarity indicates that the dis-

tribution of the weights and the topology of the network

are intricate. It can be explained by the fact that the

density of airline connections in an area is somehow

correlated to the traffic within this area.

We also computed the diversity of each city taking

the weights into account. The top 10 cities are shown

in Table 3. Some big cities are still present in this

list (Paris, London, Frankfurt, New York). The city of

Jeddah is also here even if its rank is lower. The di-

versities of Sao Paulo, Santiago de Chile and Papeete

(French Polynesia) are surprisingly high. The case of

Papeete illustrates well the information gained by using

the weights of the connection. The airport is actually

highly central and the other airports in this area (that

is composed by a large amount of small islands) have

Table 4 Statistics for the first ten diverse authors in the col-
laboration network.

Name Hw degw Occurw 1st layerw

R. E. Tarjan 3.29 151 12 21

K. Mehlhorn 3.21 233 12 32

D. T. Lee 3.11 138 10 23

M. Sharir 3.1 697 15 99

J. S. Vitter 3.1 138 11 38

J.-R. Sack 3.03 184 12 28

J. O’Rourke 3.01 222 11 38

J. Urrutia 3.01 209 11 38

R. Tamassia 2.99 388 12 56

D. P. Dobkin 2.96 163 10 38

only few connections. The high diversity of this airport

suggests however that its impact in the region is com-

parable to its impact outside.

5.5 Co-authorship network

We now illustrate our iterative edge core decomposition

in the case of a co-authorship network among computer

scientists that have published in the field of computa-

tional geometry [7]. This network was extracted from

the Computational Geometry Database bibliography.

The edges in the network are weighted by the number

of common published works (articles, books etc.). We

focus here on the biggest connected component which

contains a total of 3621 authors, 9461 relations and the

mean weighted degree is 10.9.

The weighted edge core decomposition contains 34

layers while the vertex weighted peel decomposition has

57 vertex sets. A plain view of the decomposition as

well as the z-ordered 3D view of all layers can be found

in Figure 7. The highest layers may contain only few

authors. For example, the second, fifth and sixth lay-

ers contain only one edge. Some layers exhibit some

interesting common features. For instance, the seventh

layer contains mostly Italian authors. The reader may

be curious about commonalities in other layers. When

looking at the weighted diversity of the authors (see Ta-

ble 4), we observe a phenomenon similar to the airport

network. The authors with the highest rank in diversity

are not necessarily those with the highest peel value or

who occur in the first layers. In this case, it is R. E.

Tarjan which is ranked first.
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(a) Unweighted

(b) Weighted

Fig. 6 Small multiples view of the first ten layers of (a) the iterative edge core decomposition and (b) the weighted decom-
position of the Airport network. Each box contains a small view of the network and corresponds to an edge layer (red edges).
The peeling value of the layer is indicated at the top of each box. The vertices coordinates correspond to the geographical
positions to the airports.
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(a) Plain view obtained using force-directed algorithm (b) First 12 layers (from peel 99
to 28)

(c) Next 11 layers (from peel 24 to 12) (d) Last 11 layers (from peel 11 to 1)

Fig. 7 Results of the iterative edge core decomposition for the collaboration network in computational geometry. Only the
names of the 10% most diverse authors are shown. The whole z-ordered 3D view is here split into three part (Figures 7(b),
7(c) and 7(d)).
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6 Conclusions

We introduced an efficient graph edge partition into

fixed points of degree peeling. Each layer in the decom-

position has a unique local peel value. We used a proce-

dure called “backward peeling” to produce a partition

where the local peeling values are maximal. This par-

tition is unique and the complexity of the algorithm is

O(k|E|). The presented algorithms and techniques are

generalized to weighted networks. Information from the

decomposition allowed us to formulate a novel notion

of vertex diversity with an associated measure based on

Shannon’s entropy. We illustrated graph filtering and

analysis at different scales using 3D z-ordered node-link

diagrams. We illustrated the usefulness of our decom-

position on a variety of networks.

We are currently studying the mathematical prop-

erties of fixed points of degree peeling. which may be

useful in the understanding of some fundamental graph

streaming computations. The concept of graph peeling

can be extended in different directions. For example, in

directed graphs, one can peel the graph according to in-

coming degrees or outgoing degrees [18]. We also want

to investigate the use of our decomposition as a prepro-

cessing step for a variety of graph drawing algorithms

and visualisations.
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