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Abstract 22 

Since the 1990’s, drastic melting of sea ice and continental ice in the Arctic region, 23 

triggered by global warming, has caused substantial freshening of the Arctic Ocean. While 24 

several studies attempted to quantify the magnitude of this freshening, its consequences on 25 

primary producers remain poorly documented. In this study, we evaluate the impact of the 26 

freshwater content (FWC) of the upper Arctic Ocean on phytoplankton across the Pacific 27 

sector, from the Bering Strait (65°N) to the North Pole (86°N), during summer 2008. We 28 

performed statistical analyses on the physical, biogeochemical and biological data acquired 29 

during the CHINARE 2008 cruise to investigate the effect of sea-ice melting on the Arctic 30 

phytoplankton. We found that the strong freshening observed in the Canada Basin had a 31 

negative impact on primary producers as a result of the deepening of the nitracline and the 32 

establishment of a subsurface chlorophyll maximum (SCM). In contrast, regions with lower 33 

freshening, such as the Chukchi shelf and the marginal ice zone (MIZ) over the Chukchi 34 

Borderland, exhibited a shallower nitracline sustaining relatively high primary production and 35 

biomass. Our results imply that the predicted increase freshening in future years will likely 36 
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cause the Arctic deep basin to become more oligotrophic because of weaker surface nutrient 37 

renewal from the subsurface ocean, despite higher light penetration.  38 

 39 

1. Introduction 40 

The recent unprecedented decline of Arctic sea-ice cover and ice thickness minimum 41 

recorded in September 2007 (Comiso et al., 2008; Perovich, 2011; Stroeve et al., 2011) 42 

attracted attention of the international scientific community. With the acceleration of ice 43 

melting, environmental factors that are important to primary producers have changed 44 

(Wassmann and Reigstad, 2011) with consequences for marine resources and the carbon cycle 45 

(Anderson et al., 2010; Bates et al., 2006; Cai et al., 2010; Longhurst, 1991). Among them, 46 

the decrease in salinity of the upper Arctic Ocean was particularly notable (Mauritzen, 2012). 47 

Freshening was mostly exceptional in the Canada Basin where the freshwater volume 48 

increased by 8500 km3 over the last 10 years due to higher sea ice melting, river runoff and 49 

stronger Ekman pumping associated with the Beaufort Gyre (McPhee et al., 2009; Rabe et al., 50 

2011). The predicted increase of sea-ice melting and river discharge in the coming years will 51 

most likely intensify freshening of the Arctic Ocean (Peterson et al., 2006; Yamamoto-Kawai 52 

et al., 2009). One consequence of enhanced freshening is the deepening of the nitracline and 53 

chlorophyll maximum, as recently reported by McLaughlin and Carmack (2010) in the 54 

interior Canada Basin. According to these authors, on the long-term increased stratification 55 

and stronger Ekman pumping would reduce winter nutrient renewal in the euphotic layer and 56 

summer primary production. In contrast, the shallow Chukchi shelf waters could become 57 

more productive because of a longer productive season (Arrigo et al., 2008; Pabi et al., 2008) 58 

and intensification of shelf-break upwellings (Carmack and Chapman, 2003; Lee and 59 

Whitledge, 2004). Contrasted responses of phytoplankton inhabiting shelves and deep basins 60 

were found by modeling results of cyclone activity in the Pacific Arctic using a coupled 61 

biophysical model (Zhang et al., 2014). A biological gain was observed over the shelf while 62 

the deep basin showed a loss. However, Yun et al. (2014) showed that in 2009 primary 63 

production in the Chukchi shelf waters was negatively affected by freshwater accumulation 64 

from Siberian Coastal Current. These results underline that the response of phytoplankton to 65 

environmental changes differs spatially owing to bathymetry, sea-ice dynamics, freshwater 66 

accumulation and nutrient availability (Ardyna et al., 2011; Carmack and Wassmann, 2006; 67 

Poulin et al., 2010). Whether primary production in the shelves and deep basin waters will 68 

increase or decrease as a result of ongoing changes in Arctic is still being debated. In this 69 

study, we investigate the effects of freshening on chlorophyll-a distribution and primary 70 



  

 
 
 
production in the Pacific Arctic Ocean in summer 2008.71 

data were acquired in a wide area from the Chukchi shelf to the central Arctic, encompassing 72 

the Canada Basin and the Chukchi Borderland. This research work is part of the Chinese 73 

National Arctic Research Expedition (CHINA74 

Xuelong. 75 

 76 

2. Material and Methods  77 

2.1. The CHINARE 2008 cruise78 

 The CHINARE 2008 cruise (179 

the large decline of the summer sea80 

2011). The study area, extending from 65°N to 86°N, includes the shallow Chukchi shelf 81 

(depth < 100 m) and deep basins (depth 82 

Shelf, Barrow Canyon, Canada Basin, Northwind Ridge and the Alpha Ridge 83 

August 2008, while the Mendeleev Abyssal Plain, Chukchi Cap and Chukchi Abyssal Plain 84 

were sampled on the way back in September 85 

86 
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Figure 1. Station number occupied during the CHINARE 2008 cruise aboard the icebreaker 87 
XueLong, from August 1

rst
 to September 8

th
, 2008. Stations where nutrients and chlorophyll-a 88 

(Chla) were both measured are indicated by black and white dots. Stations where primary 89 
production (PP) was also measured are shown by the white dots. The black dashed line 90 
represents the ship track. The color scale features the bathymetry and distinguishes the shelf 91 
(< 100 m) from the deep basins (> 100 m). The dotted and plain white lines represent the 92 
15% and 80% isolines of sea ice cover, respectively, used as lower and upper boundaries of 93 
the Marginal ice zone (MIZ). 94 
 95 

2.2. Hydrography and sea ice cover 96 

Temperature and salinity profiles were acquired at each of the 60 stations of the cruise 97 

using a CTD Sea-Bird SBE 911 Plus. Surface sea-ice concentrations were obtained from daily 98 

satellite data (level-2 products at 12.5 km spatial resolution) with the spatial sensor 99 

microwave imager (SSM/I). Satellite data for sea ice concentration determination were 100 

extracted at each station with the best time and space matching using NASA's SeaDAS image 101 

processing software (SeaWiFS Data Analysis System). The freshwater content (FWC) of the 102 

upper ocean was calculated to assess the surface water freshening due to sea ice melting and 103 

river discharges (McPhee et al., 2009) using the following equation: 104 

��� =	� �1 − 
��
������
�
����

 

where S(z) is the salinity measured at z depth, Sref the reference salinity value, and zlim the 105 

depth at which S equals Sref.  The latter value is taken at 31, which is the salinity minimum of 106 

the Pacific Waters entering the Arctic Ocean through the Bering Strait (Woodgate and 107 

Aagaard, 2005). This Sref value therefore precludes freshening caused by the Pacific Waters 108 

inflow and allows estimating the freshening due to sea-ice melting (S = 4) and rivers 109 

discharge (S= 0) only. Overall, the FWC (in m) represents the amount of water needed to 110 

account for the negative salinity anomaly relative to 31. 111 

To determine the influence of the Beaufort gyre and associated Ekman transport, we 112 

calculated the dynamic height � (in m) between the 0 and 800 m depth. The reference depth 113 

of 800 m was chosen to reflect the maximum thickness of the water column affected by 114 

Ekman transport. The dynamic height between 0 and 800 m is defined as follows by Thomson 115 

and Emery (2001) by: 116 

��0,800 = 	� ���, 
, ������
�

 

δ(T,S,p)dp is the specific volume anomaly corresponding to the difference between in situ 117 

density and standard density at the p depth. The standard density is calculated at a salinity of 118 

35 and of temperature of 0°C. 119 
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The stratification of the upper layer was estimated by the stratification index (kg m-3), 120 

calculated as the density difference between the surface and 100 m depth (Codispoti et al., 121 

2005). The polar mixed layer depth  (in m) was defined as the depth where density (<sigma>t) 122 

is 0.05 kg m-3 higher than the surface density. 123 

The euphotic depth was determined using three different methods: satellite data, Secchi disk 124 

measurements and multispectral data of irradiance. The satellite data were obtained from daily 125 

Level 3 Euphotic zone depth products (9 km) of Aqua MODIS ocean color measurements 126 

(http://oceancolor.gsfc.nasa.gov) along the CHINARE 2008 ship track with the best time and 127 

space matching using SeaDAS. In the second method, the euphotic depth was calculated as the 128 

depth of 1% of surface light based on Secchi disk measurements in open waters performed on 129 

board. The third estimate of the euphotic depth is the depth corresponding to 1% of surface light 130 

values based on Photosynthetically Available Radiation (PAR) calculated from multispectral data 131 

(Jinping et al., 2010). The three methods provide similar euphotic depth estimates (not shown). In 132 

this study, we used the mean values calculated from these estimates. 133 

2.3. Nutrients 134 

Nutrients were measured at all stations (black and white dots in Fig. 1). Four to 10 135 

depths were sampled in the water column with a minimum of 4 levels in the upper 100 m. 136 

Nutrient concentrations were determined on board using a scan++ Continuous Flow 137 

AutoAnalyzer (SKALAR). Nitrate concentrations (NO3
-) were calculated following Wood et 138 

al. (1967). Orthosilicic acid (Si(OH)4) was measured according to Grasshoff and Ehrhardt 139 

(1983) and phosphate (PO4
3-) as described by Gordon et al. (1993). Primary standards and 140 

reagents were prepared according to the World Ocean Circulation Experiment (WOCE) 141 

protocol. Analytical precision was ± 0.02 µM for phosphates and ± 0.1 µM for nitrates and 142 

silicates. To determine the nutrient depletion of the surface layer, we calculated the depth of 143 

the nitracline because nitrates are usually the limiting nutrients in the Arctic Ocean (Tremblay 144 

et al., 2006). We identified the shallowest depth layer at which the nitrate gradient is higher 145 

than 0.1 µM m-1. We then calculated the depth of the nitracline as the mid-depth point of this 146 

layer. This parameter indicates the availability of nitrates for primary production.  147 

2.4. Chlorophyll-a and primary production 148 

Chlorophyll-a concentrations (Chla in mg m-3) were measured at all stations (black and 149 

white dots in Fig. 1) by high-performance liquid chromatography (HPLC) performed at the 150 

Second Institute of Oceanography, Hangzhou, China (SOA) following the method described 151 

in Coupel et al. (2012). The detection limit for Chla is estimated to be 0.0001 mg m-3. The 152 

sub-surface chlorophyll maximum (SCM) was determined as the depth of fluorescence 153 
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maximum based on CTD profiles. 154 

 In situ hourly primary production (PP in mg C m-3 h-1) was determined at 23 stations (white 155 

dots in Fig. 1). Six depths were sampled based on PAR values at 100%, 50%, 30%, 12%, 5% 156 

and 1% attenuation. The analytical procedure to estimate PP is described by Lee et al. (2010). 157 

Briefly, 13C isotope-enriched (98–99%) H13CO3 was added to the samples to reach a 158 

concentration of ~0.2 µM 13CO2 and incubated with running surface seawater. The 13C 159 

enrichment was about 5–10% of the total inorganic carbon in ambient water, as determined by 160 

titration with 0.01N HCl (Anderson et al., 1999). The PP values were linearly interpolated 161 

every meter using the six discrete depth measurements and integrated over the euphotic depth 162 

to calculate the integrated daily PP (mg C m-2 d-1). The production of carbon by unit Chla 163 

(PP/Chla in gC gChla-1 h-1) was calculated by dividing hourly PP by the Chla concentration. 164 

A high PP/Chla ratio indicates efficient carbon fixation by phytoplankton while low index 165 

values reflect a poorly efficient carbon fixation. 166 

 167 

2.5. Data multivariate analysis 168 

Principal component analysis (PCA) is an exploratory statistical method often used to 169 

describe a wide array of individuals and variables (Legendre and Legendre, 2012). When 170 

individuals are described by a large numbers of variables, simple graphical representation of 171 

the correlations existing between variables is not possible. PCA provides a representation in a 172 

lower-dimensional space, defined by eigenvectors, of the maximum variance between data. 173 

Each eigenvector (PC factor) is a linear combination of variables and is associated with a % 174 

of explained variance. 175 

In this study, PCA was applied on the normalized dataset to evaluate the correlation between 176 

physical, chemical and environmental variables such as the bathymetry (in m), FWC, depth of 177 

the Pacific Winter Water (PWW), stratification, dynamic height, temperature, sea ice 178 

concentration, polar mixed layer, euphotic depth, nitracline depth and the nitrate 179 

concentrations in the euphotic depth. The following biological variables, PP, surface Chla, 180 

SCM and depth of the SCM, were added as supplementary variables in the analysis. 181 

Eigenvectors of similar and opposite directions indicate positive and negative correlation 182 

between variables, respectively. These multivariate analyses were performed using the ade4 183 

package for R (Chessel et al., 2004). 184 

 185 

3. Results 186 
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3.1. The physical environment  187 

3.1.1. Ice cover and euphotic depth 188 

During the CHINARE 2008 cruise, the ice cover in the Pacific Arctic Ocean was 189 

strongly reduced following the minimum multiyear ice coverage on record, in 2007. The 190 

Chukchi shelf was free of ice except for its northern part, which was partially ice-covered 191 

(40% sea ice, Fig. 2a). The ice-free zone (IFZ < 15% of sea ice) was found as far North as 192 

76°N over the Canada Basin in mid-August, and 78°N over the Chukchi Cap, end of August. 193 

The marginal ice zone (MIZ) extended North of the ice-free waters and up to 84°N, in areas 194 

where sea ice cover ranged from 15% to 80%, following the criteria of Strong and Rigor 195 

(2013). The heavy ice zone (HIZ > 80% of sea ice) lied North of 84°N, over the Alpha Ridge. 196 

The euphotic depth was two times shallower over the shelf (34 ± 10 m) than over the 197 

deep basins (62 ± 14 m; Fig. 2b) and was particularly shallow over the Chukchi Cap and 198 

Mendeleev Abyssal plain region (about 40 m) while deepest (> 80 m) in heavily sea ice 199 

covered areas. However, in sea ice covered areas where satellite data were missing, the 200 

euphotic depth was obtained by the shipside measurements, therefore light penetration does 201 

not account for the effect of the sea ice. However, our light data indicate that these sea ice-202 

covered waters were the most transparent of the cruise. 203 
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 204 

Figure 2. Environmental parameters during the CHINARE cruise in 2008. a. Co-localized sea 205 
ice concentration obtained from daily spatial sensor microwave imager data (in %). The % 206 
sea ice is used to distinguish between the ice-free zone (IFZ, ice < 15%), the marginal ice 207 
zone (MIZ, 15% < ice <80%) and the heavy ice zone (HIZ, ice > 80%); b. Euphotic depth (in 208 

m); c. Surface salinity; d. Fresh Water Content (FWC in m). The black line represents the 209 
dynamic height, indicative of the influence of the Beaufort Gyre (BG). e. Stratification index 210 
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(in kg m
-3

); f. Polar mixed layer (in m). 211 

 212 

3.1.2. Freshening and stratification 213 

 In 2008, the freshening and stratification were high and exhibited significant regional 214 

variability. The surface salinity was relatively high over the Chukchi shelf (30.7 ± 0.7; Fig. 215 

2c) compared to the deep basins (26.8 ± 1.7) with surface salinity 2 units lower in the ice-free 216 

basins (26.0 ± 1.4) than in the ice-covered basins. The lowest surface salinity values (24-25) 217 

were found in the southern Canada Basin strongly influenced by the Beaufort Gyre 218 

circulation. 219 

 The FWC, which provides an integrated view of the freshening, revealed a slightly 220 

different distribution than the surface salinity that reflects primarily surface freshening. The 221 

Chukchi shelf showed the lowest freshwater accumulation (FWC = 0.4 ± 0.3 m; Fig. 2d). i.e. 222 

one order of magnitude lower than over the deep basins. Freshwater strongly accumulates in 223 

the center of Beaufort Gyre (FWC = 5-10 m) and decreases sharply moving away from the 224 

gyre. A FWC value higher than 5 m was also found North of 83°N, thus far from the Beaufort 225 

Gyre, in a region covered by sea ice. In contrast, the FWC was rather low in the Chukchi Cap 226 

region (FWC = 1-2 m).  227 

 Stratification tended to be high in areas where surface salinity was low and FWC high. 228 

Indeed, highest stratification was observed in the ice-free deep basins (5.5 ± 0.8 kg m-3; Fig. 229 

2e) and peaked in the center of the Beaufort Gyre (6-7 kg m-3). In contrast, low stratification 230 

was found over the Chukchi shelf (1.7 ± 0.7 kg m-3) and in the MIZ (3.6 ± 1 kg m-3).  The 231 

polar mixed layer was thinner than 25 m in the entire study area (Fig. 2f). In the ice-free 232 

zones, the mixed layer was less than 10 m thick. Surface mixing increased in the ice-covered 233 

deep basins and reached 20 - 25 m when sea ice cover was over 70%.  234 

 235 

3.2. Water masses and nutrient content 236 

 The thickness of the upper ocean layer affected by river discharge and sea ice melting 237 

(S < 31) varied regionally, from several meters over the shelf to more than 50 m in the 238 

Beaufort Gyre (Fig. 3a). This freshwater layer exhibited a wide range of temperature from 239 

North to South (-1.6 to 7°C, Fig. 3b) and a depletion of nitrates (NO3
- < 2 µM, Fig. 3c), 240 

silicates (Si < 5µM, Fig. 3d) and phosphates (PO4
3- < 1µM, not shown). 241 
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Figure 3. Vertical sections of the upper 300243 
station numbers indicated on the X244 
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Vertical sections of the upper 300 m along the CHINARE 2008 ship track

station numbers indicated on the X-axis are those where primary production has been 
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measured (white dots in Fig.1). a. salinity; b. temperature (in °C); c. nitrate concentration (in 245 
µM), the dotted white line represents the 1µM isoline; d. silicate concentration (in µM); e. 246 
bathymetry (in m). Waters with temperature < -1.4°C (dotted white line in panel b) and 247 
salinity in the range of 31 - 33.5 (black line in panel a and b) are associated with PWW. 248 
Panel e. indicate the ice conditions (IFZ: Ice free zone; MIZ: Marginal ice zone; HIZ: Heavy 249 
ice zone) and geographic locations (CS: Chukchi Shelf; BC: Barrow Canyon; CB: Canada 250 
Basin; NR: Northwind Ridge; AR: Alpha Ridge; MAP: Mendeleev Abyssal Plain; CC: 251 
Chukchi Cap; CAP: Chukchi Abyssal Plain). The black arrows and overlying red area show 252 
the region of influence of the Beaufort Gyre. 253 

 254 

Freshwater accumulation in the upper layer created a strong salinity gradient from the 255 

bottom of the mixed layer down to 250 m (Fig. 3a). Nitrate concentration increase with depth 256 

to reach maximum values at the depth of the Pacific Winter Waters (PWW, NO3
-  > 10  µM, 257 

Fig. 3c). PWW are usually traced by T values  < –1.4°C, (Fig. 3b), salinity values lying 258 

between 31 and 33.5 (Fig. 3a) and a silicate maximum (20-60 µM, Fig. 3d). The nutrient pool 259 

associated with the PWW was found close to the surface over the Chukchi Shelf (20-50 m) 260 

and deeper over the basins (100–200 m) (Fig. 3c, 3d). The Pacific Summer Waters (PSW), 261 

characterized by –1.0°C < T < –0.5°C (between 50 and 100 m; Fig. 3b), had two times lower 262 

nutrient content than the PWW. The silicate fingerprint of the PWW was observed at all 263 

stations up to 85°N, whereas that of the PSW was only observed over the shelf and in the 264 

southern Canada Basin (Fig. 3d). Thus, during summer the upper Arctic waters were 265 

characterized by a freshwater layer depleted in nutrients, overlying the sub-surface PWW, the 266 

major nutrient source for the Arctic basin. The nutrient availability for phytoplankton thus 267 

depends on physical processes bringing PWW to the surface. 268 

 269 

3.3. Chlorophyll-a and primary production 270 

3.3.1. Chlorophyll-a concentration 271 

Despite a shallow euphotic depth (Fig. 2b), the Chukchi Shelf exhibited the highest 272 

phytoplankton biomasses observed during the cruise, with mean Chla concentrations of 273 

0.88 ± 0.76 mg m-3 in surface waters (Fig. 4a) and 1.49 ± 1.41 mg m-3 in the SCM (Fig. 4b). 274 

Chla concentration reached a maximum of 4.94 mg m-3 at 20 m in the Central Canyon (Fig. 275 

4b). Rather high values, 2.83 mg m-3 were also observed in surface waters, North of the 276 

Bering Strait (Fig. 4a). Lowest numbers (~0.2 mg m-3) were found in shelf waters along the 277 

Alaskan coast, presumably reflecting the nutrient-depleted waters of the Alaskan Coastal 278 

Current. 279 
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 280 

Figure 4. Chlorophyll-a concentration in mg m
-3

 a. in Surface and b. in the sub-surface 281 
chlorophyll maximum (SCM). 282 

 283 

Over the deep basins, Chla concentrations were extremely low in surface waters 284 

(0.09 ± 0.08 mg m-3, Fig. 4a, 5a) but relatively high in the SCM (0.42 ± 0.28 mg m-3, Fig. 4b, 285 

5a) compared to mean values found in the oligotrophic subtropical gyre waters (~ 0.1 mg m-3, 286 

(Sarmiento and Gruber, 2006)). Chla concentrations in the SCM of the basin were highly 287 

variable, ranging from 0.05 mg Chla m-3 over the Alpha Ridge to 1.43 mg Chla m-3 at the 288 

mouth of Barrow Canyon. Surface Chla at some stations of the continental slope and over the 289 

Chukchi Cap - Mendeleev Abyssal Plain region were quite remarkable with concentrations 2 290 

to 5 times higher than found at other stations of the deep basin. 291 

The depth of the SCM varied regionally (Fig. 5a). The SCM depth was, on average 2 292 

times deeper over the basins (47 ± 17 m) than over the Chukchi shelf (24 ± 8 m). The SCM 293 

was deeper in the Canada Basin (53 ± 13 m), on the northern transit in August, than in the 294 

Mendeleev Abyssal Plain, Chukchi Cap and Chukchi Abyssal Plain (38 ± 11 m), occupied on 295 

the way back, in early September. The SCM was about shallower at the edge of the Beaufort 296 

Gyre than in the ice-free regions of the Canada Basin. Finally, offshore Central Canyon and 297 

Barrow Canyon the SCM was relatively deep (about 40 m) with a high Chla content (> 1 mg 298 

m-3).  299 
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FWC: Fresh Water Content; Zeu: euphotic zone depth; DH: Dynamic Height; PWW depth: 356 
depth of the Pacific Winter Water; SI: stratification index; Nitracline: depth of the nitracline; 357 
Bathymetry: bottom depth; Nitrate: mean nitrate concentration over the euphotic depth; 358 
Depth SCM: depth of the sub-surface chlorophyll maximum; Chla surf: chlorophyll-a 359 
concentration in surface waters; Chla SCM: chlorophyll-a concentration in the sub-surface 360 
chlorophyll maximum; PP: Primary Production integrated over the euphotic depth; c. FWC 361 
versus PWW depths; d. FWC versus the nitracline depths (blue dots) and FWC versus SCM 362 
depths (black dots); e. FWC versus SI. The determination coefficient corresponding to the 363 
linear fit of each sub-dataset is also shown. 364 

 365 

4. Discussion 366 

4.1. The freshening as a control of the nutrient availability 367 

The multivariate method PCA is used here to discuss the relationship between variables 368 

presumably important to phytoplankton production. As can be seen from Figure 7b, PP and 369 

Chla concentrations were not directly affected by either sea ice concentration or the 370 

temperature and depth of the mixed layer, as reflected by the orthogonal direction of PC1 and 371 

PC2. This supports the idea that phytoplankton was not light-limited in summer 2008 in 372 

contrast to icy years when offshore phytoplankton was restrained by a shallow light 373 

penetration (Gosselin et al., 1997; Hill and Cota, 2005). We observed than most of the Pacific 374 

sector of the Arctic Ocean was free of ice and that the euphotic depth was deeper than the 375 

mixed layer. Satellite data indicate that 2008 was the year of minimum multiyear ice coverage 376 

on record (Maslanik et al., 2011) in agreement with in situ sea-ice observations during the 377 

cruise showing prevailing first-year ice and the omnipresence of melt ponds (Lu et al., 2010). 378 

Given that first-year sea ice transmits 3-fold more light than multiyear sea ice (Frey et al., 379 

2011; Nicolaus et al., 2012), it is likely that the light penetration was also high in waters 380 

covered by sea ice (MIZ and HIZ). The high transparency of sea ice covered waters (Fig. 2b) 381 

may have favored light transmission in the water column. 382 

The PCA shows that the highest PP and Chla concentrations were related to high nitrate 383 

concentrations and a shallow nitracline. This relationship highlights that under reduced sea ice 384 

cover, PP would be primarily controlled by nutrient availability in the euphotic layer as 385 

reported by several studies (Tremblay and Gagnon, 2009; Tremblay et al., 2002; Tremblay et 386 

al., 2006). The nutrient-rich regions with high PP and Chla were observed at low FWC, weak 387 

stratification, deep PWW and both shallow euphotic layer and bathymetry. In contrast, 388 

nutrient-poor regions with low PP and Chla were associated with high FWC, strong 389 

stratification, shallow PWW and both deep euphotic layer and bathymetry. We suggest that a 390 

high FWC, resulting from increased thickness of the freshwater surface layer, deepened the 391 

sub-surface nutrients reservoir of PWW (Fig. 7c) and strengthened stratification (Fig. 7e). 392 
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Such stratified conditions then reduce vertical mixing and subsequently the renewal of 393 

nutrients from PWW. Consequently, regions with high FWC exhibit stronger surface water 394 

nitrate depletion and a deeper nitracline and SCM (Fig. 7d). Moreover, the nitrate depletion of 395 

the surface layer may be enhanced by the low nutrient content of sea-ice meltwater. Melnikov 396 

et al. (2002) reported mean summer silicate and phosphate concentrations in sea ice that are 397 

below 1 and 0.5 µM, respectively. The observed impact of freshening on the nitracline and 398 

SCM depth is consistent with earlier observations in the Canada Basin, between 2002 and 399 

2009, and confirm the effect of freshening on PP and Chla, as hypothesized by McLaughlin 400 

and Carmack (2010). 401 

The negative impact of FWC on primary production appeared to be linked to the influence 402 

of the nitracline depth on the SCM. Despite relatively high Chla concentrations, deep SCM 403 

exhibit very low rates of carbon fixation as shown by the exponential decrease of the PP/Chla 404 

ratio with depth (Fig. 6a). In fact, the deep communities under light-limited conditions need to 405 

produce more Chla to absorb light. This is illustrated by the depth difference between the 406 

SCM and PP maximum. The more productive stations (Fig. 8d) had shallow nitraclines (Fig. 407 

8b) and SCM depths close or associated with the PP maximum (Fig. 8c). Conversely, poorly 408 

productive stations coincide with a deep nitracline and much deeper SCMs than the PP 409 

maximum. This was particularly true for the southern Canada Basin where, due to the 410 

influence of the Beaufort Gyre on nitracline depth, the SCM was deeper than 60 m while 411 

maximum PP was found at approximately 15 m. 412 
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Figure 8. Environmental and biological parameters 414 

the 60 stations of the CHINARE 2008 415 
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zone; HIZ: Heavy ice zone) and geographic locations, CS: Chukchi Shelf; BC: Barrow 421 
Canyon; CB: Canada Basin; NR: Northwind Ridge; AR: Alpha Ridge; MAP: Mendeleev 422 
Abyssal Plain; CC: Chukchi Cap; CAP: Chukchi Abyssal Plain. The black arrows and 423 
overlying red area show the region influenced by the Beaufort Gyre. 424 
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area. Although the FWC distribution is thought to reflect sea ice cover and melting, high 429 

FWC was found in heavily ice-covered regions, and lower FWC in the ice-free Chukchi shelf 430 

(Fig. 8a, 8b). In fact, a large fraction of the freshwater input to the upper Arctic Ocean is of 431 

riverine origin (Jones et al., 2008). This amount of freshwater is redistributed by the ocean 432 

circulation (i.e. the Pacific inflow, the Beaufort Gyre spin up and the transpolar drift) leading 433 

to regional differences of the FWC depth (Giles et al., 2012; Morison et al., 2012). In the 434 

following, we investigate regional causes of FWC and its impact on primary producers. 435 

4.2.1. Intense freshening in the ice-free basins reinforces oligotrophy  436 

The ice-free southern Canada Basin was the region most affected by freshening due to 437 

influenced of the Beaufort Gyre circulation. Stronger freshening led to thinnest mixed layer (< 438 

10 m), strongest stratification (> 5 kg m-3) and deepest PWW nutrient pool (about 150 m, 439 

Table 1). The Beaufort Gyre region was characterized by a marked nitrate depletion down to 440 

60 m (Fig. 3c, 3d) and a deep SCM (59 ± 16 m) (Fig. 8c). The very low PP/Chla ratios at the 441 

SCM (0.01 ± 0.01 g C gChla-1 h-1, Table 1) point out slow-growing communities and their 442 

adaptation to reduced light intensity rather than active production of carbon biomass. The 443 

integrated PP values over the ice-free Canada Basin (24 ± 15 mg C m-2 d-1, Table 1) were 3 to 444 

5 times lower than those found in the same area in August 1993, when the region was covered 445 

by sea-ice and less affected by freshening (123 mg C m-2 d-1 (Cota et al., 1996)) or in July 446 

2005 (60 mg C m-2 d-1 (Lee et al., 2010)). These features may, in part, also reflect seasonal 447 

effects. Indeed, the earlier sea-ice retreat in recent years could explain earlier nutrient 448 

depletion and subsequent lower primary production rates at this time of the year. 449 

The ice-free Chukchi Abyssal Plain was also associated with a strong stratification and 450 

weak vertical mixing driving low surface water Chla concentration (0.09 ± 0.07 mg Chla m-3, 451 

Table 1). The weaker influence of the Beaufort Gyre was likely responsible for lower FWC 452 

(3.2 ± 0.8 m) and a 15 m shallower nitracline and SCM than found in the southern Canada 453 

Basin. However, the Chukchi Abyssal Plain waters were sampled 2 weeks after those of the 454 

Canada Basin, allowing for more nutrient consumption by phytoplankton. The PP values in 455 

this area (24 mg C m-2 d-1) were similar as those of the ice-free Canada Basin but the PP/Chla 456 

ratio was slightly higher, emphasizing better carbon fixation efficiency by primary producers. 457 

The large dominance of nanoplankton in these two poorly-productive ice-free basins (Coupel 458 

et al., 2012) support earlier observations of Li et al. (2009) showing that small cell algae 459 

flourish as the Arctic Ocean freshens. 460 

 461 
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Table 1: The mean values of physical and biogeochemical parameters are presented for the 462 
stations located over the shelf (depth < 100m) and over deep basisn (depth > 100m). Sub-463 
provinces of the basin are clustered according to geographical location and sea-ice 464 
conditions, i.e. the ice-free zone (IFZ, ice < 15%); the marginal ice zone (MIZ, 15% < ice 465 
<80%) and the heavy ice zone (HIZ, ice > 80%). The Chukchi Shelf, Canada Basin and Alpha 466 
Ridge were visited in August 2008 while the Chukchi Abyssal Plain, the Chukchi Cap (CC) 467 
and the Mendeleev Abyssal Plain (MAP) were visited during the way back, in September. 468 
FWC: Freshwater Content; SI: Stratification Index; the Pacific Winter Water (PWW) depth is 469 
determined with three criteria: T < -0.5°C; 31 < S < 33.5; PPeu is the daily primary 470 
production integrated over the euphotic depth. The ratio PP/Chla is given for surface waters 471 

and subsurface Chlorophyll a maximum (SCM). 472 
 473 

 Ice cover 

(%) 

FWC (m) SI 

(kg m
-3

) 

PWW 

depth 

(m) 

Nitracline 

(m) 

SCM 

depth 

(m) 

Chlorophyll a 

(mg m
-3

) 

PPeu 

(mg C m
-2

 d
-1

) 

PP/Chla 

(gC gChla
-1

 h
-1

) 

       Surface SCM  Surface SCM 

SHELF (n = 11) 

(z < 100m) 

6 ± 15 0.4 ± 0.3 1.7 ± 0.6  39 ± 11 22 ± 15 24 ± 8 0.88 ± 0.76 1.49 ± 1.41 1380 ± 1628 3.6 ± 2.7 0.2 ± 0.2  

BASIN (n = 49) 

(z > 100m) 

22 ± 31 4.3 ± 2.0 4.4 ± 1.9  134 ± 39 53 ± 17 47 ± 17 0.09 ± 0.08 0.45 ± 0.34 51 ± 37 0.8 ± 0.5  0.06 ± 0.06  

IFZ (74-78°N) 

(Canada Basin)  

2 ± 5 5.5 ± 1.8 5.9 ± 0.6 150 ± 30 59 ± 16 55 ± 17 0.08 ± 0.07 0.47 ± 0.39 24 ± 15 0.6 ± 0.2 0.01 ± 0.01 

IFZ (75-78°N) 

(Chukchi 

Abyssal Plain) 

0 ± 0 3.2 ± 0.8 4.9 ± 0.7 134 ± 44 45 ± 6 42 ± 10 0.09 ± 0.07 0.44 ± 0.23 24 0.8 0.03 

MIZ (78-83°N) 

(Canada Basin) 

56 ± 23 4.5 ± 1.5 4.0 ± 1.0 136 ± 52 52 ± 17 48 ± 9 0.05 ± 0.03 0.39 ± 0.15 32 ± 19 0.5 ± 0.2 0.08 ± 0.08 

MIZ (78-83°N) 

(CC +MAP) 

46 ± 24 2.4 ± 1.8 2.6 ± 0.8 100 ± 0 43 ± 26 33 ± 11 0.20 ± 0.11 0.55 ± 0.28 111 ± 29 0.7 ± 0.3 0.15 ± 0.04 

HIZ (83-86°N) 

(Alpha Ridge) 

78 ± 8 6.1 ± 0.3 3.8 ± 0.2 95 ± 27 64 ± 2 47 ± 12 0.05 ± 0.01 0.22 ± 0.11 26 0.4 0.02 

 474 

4.2.2. Heavily ice-covered basins also affected by freshening 475 

High freshening was also observed in the heavily ice covered Alpha Ridge zone (HIZ, 476 

Table 1). Freshwater at such high latitudes result from sea-ice meltwater and water discharges 477 

from the Siberian Rivers as previously reported (Johnson and Polyakov, 2001; Jones et al., 478 

2008; Semiletov et al., 2000; Serreze et al., 2006). Enhanced freshening is associated with a 479 

nutrient depleted layer as deep as 64 ± 2 m. However, it is difficult to disentangle the effect of 480 

freshening and phytoplankton consumption. Considering the high transparency of the waters 481 

(Fig. 2b) and the presence of first-year ice and melt ponds (Lu et al., 2010), nutrients may 482 

have been consumed by phytoplankton as deep as 64 m. Although biomasses are very low at 483 

the surface (0.05 ± 0.05 mg Chla m-3) and in the SCM (0.22 ± 0.11 mg Chla m-3), the only 484 

available integrated PP at these high latitudes (26 mg C m-2 d-1) indicate values close to those 485 

found in the ice-free basins. Note that sea ice algae were not considered and therefore primary 486 

production is likely be underestimated. Nevertheless, nutrient depletion at such high latitudes 487 

could also be a permanent feature due to low mixing rates, amplified by summer freshening. 488 

Another possible explanation for low primary production, is the limited northern expansion of 489 

nutrient-rich PWW over the Alpha Ridge zone, resulting in 3 times lower silicate and nitrate 490 
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concentrations in the subsurface layer than found in the southern basin (Fig. 3c, 3d). 491 

4.2.3. Enhanced productivity in regions with low freshening 492 

The highest PP values in the deep basins (111 ± 29 mg C m-2 d-1) were found in the 493 

MIZ over the Mendeleev Abyssal Plain characterized by the lowest FWC. At these stations, 494 

surface and SCM Chla were highest (Table 1). The SCM were relatively shallow and 495 

occurred at the same depth than PP maxima (Fig. 8c). The phytoplankton in the SCM was 20 496 

times more efficient in carbon fixation (PP/Chla = 0.15 ± 0.04 gC gChla-1 h-1) than in the ice-497 

free and heavy ice-covered regions. High abundances of penate diatoms Niztchia sp. and 498 

Fragilariopsis sp. in this area (Coupel et al., 2012) indicate that new production was 499 

stimulated by high light and nutrient availability.  500 

Lower freshening in the MIZ could result from the interaction between wind and ice-501 

edge, promoting vertical mixing and upwelling of nutrient-rich deep waters (Mundy et al., 502 

2009; Tremblay and Gagnon, 2009; Tremblay et al., 2011), and a weak stratification (Fig. 2e, 503 

Table 1). In addition, the sea ice data show that the Mendeleev Abyssal Plain experienced a 504 

50% decrease in sea ice cover during the preceding week (ice D-7 in Fig. 8a), allowing for 505 

increasing light penetration and phytoplankton to reach a “new” pool of nutrients. Enrichment 506 

in the MIZ is usually observed over the continental shelf but can extend over the deep basins 507 

as sea ice melting proceeds during the summer season. However, production and biomass in 508 

the offshore MIZ remained one order of magnitude lower than typical spring ice edge blooms 509 

over the Arctic shelves (Niebauer and Alexander, 1985). 510 

Enhanced PP was less clear in the MIZ of the Canada Basin, with values 3 times lower 511 

than in the MIZ of the Mendeleev Abyssal Plain. The higher initial FWC and deeper PWW 512 

nutrient reservoir caused by the Beaufort Gyre circulation could explain the lower 513 

phytoplankton growth in the MIZ of the Canada Basin. Although reduced vertical mixing 514 

could have prevented replenishment from the deeper nutrient reservoir, we cannot rule out 515 

earlier nutrient consumption by phytoplankton. Indeed, two weeks prior the station 516 

occupation, sea ice had receded in the MIZ of the Canada Basin providing favorable 517 

conditions for phytoplankton growth. Nevertheless, we found relatively high PP values at 518 

stations 39 (32 mg C m-2 d-1) and 41 (51 mg C m-2 d-1), while sea ice cover was on the order 519 

of 60% (Fig. 8d). Owing to their position at the edge of the Beaufort Gyre, FWC was lower at 520 

the northern sites than in the southern Canada Basin. Lower FWC was associated with a 521 

shallower nitracline and SCM (Fig 8b), the latter coinciding with the PP maximum depth (Fig. 522 

8c). Our results also indicate that phytoplanktonic communities in the SCM were as efficient 523 

to fix carbon (PP/Chla = 0.12 ± 0.06 gC gChla-1 h-1) as those of the MIZ over the Mendeleev 524 
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Abyssal Plain. 525 

4.2.4. A productive shelf weakly affected by the freshening 526 

The FWC was generally low over the shelf, presumably, because of the short residence 527 

time of shelf waters (Weingartner et al., 2005; Woodgate et al., 2005). Low FWC and weak 528 

stratification favor the replenishment of nutrients from the deeper water layer and surface 529 

sediments. The Pacific waters entering through Bering strait is another source of nutrient 530 

supply (Sambrotto et al., 1984; Springer and McRoy, 1993). The high PP and biomass of 531 

surface waters in the southern Chukchi shelf support the hypothesis of a nutrient supply from 532 

Bering Strait even in late summer. While highest PP values were found in the southern shelf 533 

waters, highest biomasses were encountered in the SCM of the northern shelf waters (close to 534 

5 mg Chla m-3, Fig. 4b). The low temperature (T < -1°C) (Fig. 3b) and high silicate content of 535 

the surface waters of the northern shelf (Si > 50 µM) (Fig. 3d) suggest that biomass 536 

production could have been promoted by upwelling cells due to the retreat of the ice cover 537 

from 80% to less than 20% in one week (Fig. 8a). Biomasses and integrated PP over the 538 

Chukchi shelf in 2008 (1469 ± 2040 mg C m-2 d-1, Table 1) were within the range of previous 539 

summer season data over the Chukchi shelf (170–1940 mg C m-2 d-1 (Hameedi, 1978); 500–540 

4700 mg C m-2 d-1 (Springer and McRoy, 1993); 750 mg C m-2 d-1 (Cota et al., 1996); 541 

2570 mg C m-2 d-1, (Gosselin et al., 1997); 780 mg C m-2 d-1, (Hill and Cota, 2005); 1000 mg 542 

C m-2 d-1, (Tremblay et al., 2012)). These values were also close to those reported in the MIZ 543 

of the central Barents Sea (500–1400 mg C m-2 d-1 (Reigstad et al., 2002)). The fact that our 544 

data are within the range of previous observations indicates that the recent freshening of the 545 

Arctic Ocean does not significantly affect the Chukchi shelf water primary production. 546 

Nevertheless, the comparison with earlier studies should be considered with caution because 547 

of the high spatial and temporal variability of primary production in the region, the difference 548 

in sampling period and changes in the phenology of Arctic ecosystems (Melnikov and 549 

Kolosova, 2001). 550 

4.3. Towards an increase or decrease of primary production in Arctic? 551 

Our results reveal that phytoplankton biomass and primary production in summer were 552 

primarily controlled by freshening and sea ice conditions. While sea ice can stimulates 553 

phytoplankton growth by modifying light availability, freshening acts on the nutrient reservoir 554 

and its replenishment from deeper waters. The combined effect of sea ice and freshening on 555 

the nutrient availability and primary producers is conceptualized in Figure 9. 556 
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Figure 9: Conceptual model showing558 
affected by sea-ice (IFZ, MIZ and HIZ), 559 
the Beaufort Gyre circulation (BG)560 
the nutrient-depleted upper layer561 
reservoir. The dashed yellow line indicates the euphotic zone depth. 562 
phytoplankton biomass. The black arrows 563 
primary production (PP) mean 564 
provinces at the bottom of the figure565 
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therefore nutrient repletion of the upper layer (Rainville et al., 2011). Longer ice-free 579 

conditions during autumn also contribute to favor vertical mixing by winds. Yet, ice-free 580 

basins were most strongly nutrient depleted. Stronger winds will thus be needed for deeper 581 

nutrient-rich layer to replenish surface waters. Nutrient depletion reached deeper layers in the 582 

ice-free Canada Basin than in the ice-free Chukchi Abyssal Plain because of higher 583 

freshening. Consequently, phytoplankton communities developed deeper in the ice-free 584 

Canada basin and displayed lowest carbon production values because of nutrient limitations. 585 

In the context of global warming, ice melting and freshening of the Arctic Ocean is predicted 586 

to intensify in the future (Peterson et al., 2006; Yamamoto-Kawai et al., 2009). The 587 

subsequent environment changes in this polar region are likely to have strong implication on 588 

the marine ecosystem, in particular in the deep basins. 589 

 590 

5. Conclusion 591 

Primary production and chlorophyll-a vertical distributions in the Pacific sector of the 592 

Arctic Ocean in summer 2008 were tightly linked to the FWC in the upper surface layer. 593 

Regions strongly affected by freshening, such as ice-free basins (73°-77°N) and heavily ice-594 

covered areas (83°-86°N) displayed the lowest PP, lowest surface Chla (nutrient limitation) 595 

and a deep and weakly productive sub-surface chlorophyll-a maximum (nutrient and light 596 

limitations). In contrast, "hot spots", with 2 to 5 times higher Chla and PP values than 597 

generally found in the deep basins, were observed across the offshore marginal ice zone 598 

(MIZ) over the Chukchi Borderland (77°- 82°N). The recent break-up of sea ice at the higher 599 

most latitudes allowed phytoplankton to thrive on the nutrient deeper pool. These transition 600 

zones between ice-covered and ice-free waters experienced lower FWC and nutrient 601 

replenishment of surface waters from the underlying Pacific waters. Nevertheless, stimulation 602 

of the primary producers of the MIZ was not significant in the Canada Basin, more affected 603 

by the freshening than the Chukchi Borderland due to Beaufort Gyre. Similarly, the ice-free 604 

Canada Basin experienced a 15 m deeper nutrient depletion than the ice-free Chukchi Abyssal 605 

Plain, less affected by the Beaufort Gyre. The Chukchi shelf, with the lower FWC, was the 606 

most productive area of the cruise with biomasses and primary production values in the range 607 

of those reported in previous summer studies in that area. The highest Chla values in the 608 

northern shelf were associated to upwelling cells of nutrient-rich waters at the shelf break 609 

while the highest PP observed in the south were sustained by nutrient-rich Pacific waters 610 

entering the Bering Strait. 611 

 While ice cover seems to play a key role in triggering phytoplankton growth, the FWC 612 
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appears to be a crucial factor of the phytoplankton response to summer sea ice retreat, by 613 

acting on the nutrient reservoir depth. Overall, our results suggest that in the context of future 614 

global warming, the reduction of nutrient availability due to increase FWC could counteract 615 

the expected phytoplankton response to sea ice retreat, i.e. an increase of biomass and PP due 616 

to enhanced light penetration and a longer growing season. 617 
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• The freshwater content (FWC) appears to be a crucial factor of the 
phytoplankton response to summer sea ice retreat, by acting on the 
nutrient reservoir depth. 

 
• The strong freshening observed in the Canada Basin had a negative 

impact on primary producers. 
 

• Biomasses accumulation and relatively high primary production were 
observed across the offshore marginal ice zone. 

 
• The Chukchi shelf, with the lower FWC, was the most productive area of 

the cruise with biomasses and primary production values in the range of 
previous studies. 


