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aSystématique, Adaptation et Evolution (UMR 7138), UPMC Univ Paris 06, CNRS,
MNHN, IRD, Paris, France
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Abstract

Several variations of the Watterson estimator of variability for Next Gen-
eration Sequencing (NGS) data have been proposed in the literature. We
present a unified framework for generalized Watterson estimators based on
Maximum Composite Likelihood, which encompasses most of the existing
estimators. We propose this class of unbiased estimators as generalized Wat-
terson estimators for a large class of NGS data, including pools and trios.
We also discuss the relation with the estimators that have been proposed in
the literature and show that they admit two equivalent but seemingly differ-
ent forms, deriving a set of combinatorial identities as a byproduct. Finally,
we give a detailed treatment of Watterson estimators for single or multiple
autopolyploid individuals.

Keywords: Site frequency spectrum, Population genetics, Summary
statistics, Maximum likelihood, Composite likelihood

1. Introduction

The rescaled mutation rate per base θ plays an important role in pop-
ulation genetics models. Its definition is θ = 2pNeµ where µ denotes the
mutation rate per base, Ne the effective population size and p the ploidy of
the species. In the context of the Standard Neutral Model (SNM) at low
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mutation rate, commonly used estimator include the Watterson estimator
[1], based on the number of segregating sites S in a sample from the pop-
ulation, and the pairwise nucleotide diversity Π [2], defined as the average
number of differences per base between two individual sequences. Despite its
simple interpretation and its popularity, Π is an inconsistent estimator of θ,
while the Watterson estimator is a good estimator since it is unbiased and it
corresponds to the Maximum Composite Likelihood estimator for θ. Further-
more, as shown in [3], it is a sufficient statistics for θ for large sequences. For
unequal mutation rates between different alleles, the Watterson estimator
actually measures the net rate of mutation towards different alleles, rescaled
by population size.

Today, variability analyses on a genome-wide scale can be easily done
by Next Generation Sequencing (NGS) technologies. NGS technologies can
sequence a single complete genome at relatively high redundancy, but the se-
quencing of many samples increases substantially the cost of the experiment.
Several strategies have been used to obtain sequence data from many individ-
uals, from restriction reduced libraries to pooled samples. These strategies
may reduce substantially the coverage across the genome (i.e. how many
regions are sequenced) and the sequence redundancy per nucleotide base
(i.e. how many sequences cover each position). From this point of view,
the study of variability on NGS data can be seen as a missing data problem,
where information about several samples is missing at covered positions. The
Watterson θ estimator has been generalized to missing data by Ferretti et al.
[4], but it covers just a limited number of cases.

Estimators of variability based on NGS data should take into account the
relatively high probability of sequencing errors in order not to overestimate
the number of variants. Sequence redundancy at a given position is fun-
damental for detecting and removing errors but also for detecting correctly
homozygote or heterozygote positions in diploid individuals. NGS estimators
of variability were first proposed by Lynch [5] for a single diploid individual
using the sequence error rate and the number of reads observed at each
variant. Hellmann et al. [6] and Jiang et al. [7] proposed Watterson estima-
tors for multiple individuals taking into account the combinatorics of reads
from different individuals and homologous chromosomes. Later, Futschik
and Schlötterer [8] and Ferretti et al. [9] developed variability estimators for
pooled sample data using Method of Moments (MM) and Maximum Com-
posite Likelihood (MCL) methods, respectively. We observe that for the
analysis of a single diploid individual, they all reduce to the same estima-
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tor except for [8] (the differences between this estimator and the MCL have
been detailed in [9]). In this work, we study the relations between these es-
timators and present a common framework for estimators of variability. We
develop new Watterson estimators for other kinds of NGS data, like trios or
autopolyploids.

In our framework, we deal with all these cases as special instances of a
general, unified approach. Data are represented by NGS or Sanger sequences
coming from several units. Units can be haploid, diploid or polyploid individ-
uals or pools, each one containing a different number of lineages. In section
2, we derive Maximum Composite Likelihood estimators for a generic class
of data. These MCL estimators are not unbiased, but we show that they can
be well approximated by unbiased estimators that share the same functional
form as the Watterson estimator. In section 3, we propose these unbiased
estimators as generalized Watterson estimators for a large class of NGS data,
such as multiple haploid/diploid/polyploid individuals, pools, trios, inbred
lines, and combinations of them. We present explicit formulae for these esti-
mators in section 4. We discuss their relation with other estimators that have
been proposed in the literature, showing in section 5 that many of our esti-
mators admit two equivalent but seemingly different forms. As a byproduct,
this equivalence implies a set of combinatorial identities. Finally, in section
6 we treat in details the case of single and multiple autopolyploid individuals
and we provide the Watterson estimator for autopolyploids.

2. General Watterson estimators

2.1. Maximum Composite Likelihood estimators

Composite Likelihood Estimation of parameters has been extensively used
in population and quantitative genetics for estimating the linkage disequilib-
rium among positions [10, 11] and for estimating evolutionary parameters as
the level of variation [6], the recombination rate [12], [13], the strength of pos-
itive selection [14, 15] or demographic parameters [16]. Maximum Composite
Likelihood is an appropriate method to estimate the nucleotide variability
across large regions because it has minimum mean squared error for large
recombining regions, since in this case the Composite Likelihood is a good
approximation for the exact likelihood and therefore the estimator is approx-
imately asymptotically efficient. Furthermore, it turns out to be based on the
same statistics as the Watterson estimator (the total number of segregating
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sites S) and it actually reduces to the Watterson estimator if the data are
represented by complete sequences.

In this paper, we consider allelic variants represented by segregating sites,
or Single Nucleotide Polymorphisms (SNPs), but the methods can be applied
to generic variants with low mutation rate.

For each site, there are features that depend on an eventual SNP (for
example, allele frequencies) and features that do not depend on the allelic
content (for example the read depth, i.e. the number of sequences that
contain data for a given site). We summarize the SNP features with the
index ξ ∈ Ξ and the features of each site that do not depend on the allelic
content with the index ϕ ∈ Φ. Both indices indicate mutually exclusive,
collectively exhaustive features.

We denote by pϕ,ξ(θ) the probability that a site with features ϕ contains
an observed SNP with features ξ for the sample studied. For small values of
θ (that is, in the infinite site model), we can expand it in Taylor series and
using the fact that there are no SNPs without mutations, i.e. pϕ,ξ(0) = 0, we
find that these probabilities are proportional to θ multiplied by a quantity
that depends on the population model and the sequencing setup:

pϕ,ξ(θ) ' θZϕ,ξ . (1)

We denote by Sϕ,ξ the number of segregating sites with features ξ in positions
with features ϕ, and by Lϕ the number of sites with features ϕ. We also
define the quantities Sϕ =

∑
ξ∈Ξ Sϕ,ξ and Zϕ =

∑
ξ∈Ξ Zϕ,ξ, the total number

of segregating sites S =
∑

ϕ∈Φ Sϕ and total length L =
∑

ϕ∈Φ Lϕ.
Under the composite approximation, all sites are independent. The Com-

posite Likelihood is therefore the simple product of probabilities:

CL(θ) =

[∏

ϕ∈Φ

∏

ξ∈Ξ

pϕ,ξ(θ)
Sϕ,ξ

]
·


∏

ϕ∈Φ

(
1−

∑

ξ∈Ξ

pϕ,ξ(θ)

)Lϕ−Sϕ

 . (2)

Substituting eq. (1) for pϕ,ξ(θ) and taking the log, we obtain

log(CL(θ)) = S log(θ) +
∑

ϕ∈Φ

∑

ξ∈Ξ

Sϕ,ξ log(Zϕ,ξ) +
∑

ϕ∈Φ

(Lϕ − Sϕ) log(1− θZϕ) .

(3)
For S > 0, the loglikelihood is always negative and tends to −∞ both for θ →
0 and θ → 1/maxϕ∈Φ(Zϕ), so the maximum can be obtained from the zeros
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of the first derivative of the log(CL) in equation (3). After rearrangements,
we obtain the equation that defines the Maximum Composite Likelihood
Estimator (MCLE):

L =
∑

ϕ∈Φ

Lϕ − Sϕ
1− θ̂MCLEZϕ

, (4)

which is valid for all values of θ < 1/maxϕ∈Φ(Zϕ) since the second derivative

in θ = θ̂MCLE is negative if
∑

ϕ∈Φ(Lϕ − Sϕ)Zϕ/(1 − θ̂MCLEZϕ)2 > 0, which
is always verified.

For the simplest case of the original Watterson estimator [1], all sites are
equivalent and there is no site feature ϕ, so the above MCLE equation (4)
can be easily rewritten as L = (L − S)/(1 − θ̂MCLEZ), i.e. θ̂MCLE = θ̂W =
S/(LZ). The SNP features Ξ correspond simply to the derived allele counts
i = 1 . . . n−1 and the probability of a SNP of frequency i/n is related to the
expected frequency spectrum ξi - defined as the count of SNPs of frequency
i/n in the sample - by pi(θ) = E(ξi)/L. For the standard neutral model,
pi(θ) = θ/i, therefore Z =

∑n−1
i=1 Zi =

∑n−1
i=1 pi(θ)/θ is given by the harmonic

number an =
∑n−1

i=1 1/i. Then the MCLE in this case corresponds precisely

to the unbiased Watterson estimator θ̂W = S/(L
∑n−1

i=1 1/i) = S/(Lan).
The estimator (4) is defined implicitly, so it is not easy to use. An explicit,

approximate MCL estimator can be derived in two equivalent ways: either
(i) by expanding equation (4) at first order in the small parameters θ and
Sϕ/Lϕ with constant ratio Sϕ/(θLϕ), or (ii) by taking the small θ, large L
limit of the likelihood (2) with θL and Lϕ/L constant; in this limit, the Sϕ,ξ
are Poisson distributed random variables with mean LϕθZϕ,ξ

CL(θ) '
∏

ϕ∈Φ

∏

ξ∈Ξ

(LϕθZϕ,ξ)
Sϕ,ξ

Sϕ,ξ!
e−LϕθZϕ,ξ = θSe−θ

∑
ϕ∈Φ LϕZϕ

[∏

ϕ∈Φ

∏

ξ∈Ξ

(LϕZϕ,ξ)
Sϕ,ξ

Sϕ,ξ!

]

(5)
and since the dependence on θ lies in the first term which is a function of
the statistics S only, S is a sufficient statistics for θ by the Fisher-Neyman
factorization theorem, as already observed in [3].

Both ways lead to the same estimator. We define the resulting approxi-
mate MCL estimator as the generalized Watterson estimator:

θ̂W =
S∑

ϕ∈Φ LϕZϕ
. (6)
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This estimator depends only on the total number of segregating sites, like
the original Watterson estimator, since S is a sufficient statistics for small
θ. Furthermore, it is unbiased. In fact, E(S) =

∑
ϕ∈Φ

∑
ξ∈Ξ E(Sϕ,ξ) =∑

ϕ∈Φ

∑
ξ∈Ξ Lϕpϕ,ξ(θ) =

∑
ϕ∈Φ θLϕZϕ.

Both the implicit estimator in equation (4) and the formula (6), which is
unbiased, can be used. The relative error of the Watterson estimator (6) with
respect to the MCLE (4) is very small. By expanding eq. (4) at first order
in θ̂MCLE − θ̂W and at first nonzero order in θ̂W and Sφ/(LφZφ), we obtain
an error estimate of order θ multiplied by a weighted covariance between Z
and the relative fluctuations of θ̂W for different ϕs:

θ̂MCLE − θ̂W
θ̂W

' −θ̂W
∑

ϕ∈Φ

LϕZϕ∑
ϕ′∈Φ Lϕ′Zϕ′

(
Zϕ −

∑
ϕ′∈Φ Lϕ′Zϕ′

L

)(
Sϕ/(LϕZϕ)− θ̂W

θ̂W

)

(7)
up to terms of order (θ̂W , Sφ/(LφZφ))2. This error is usually negligible, since
the r.h.s. is suppressed by a factor of θ � 1; furthermore it has mean 0, since
it correlates the fluctuations of the mutation process with the fluctuations of
the sequencing process, but the two processes are independent.

The only information needed to compute (4) or (6) are the factors Zϕ =∑
ξ∈Ξ pϕ,ξ/θ, which depends both on the model and on the sequencing setup.

In the rest of the paper, we will specialize these factors for several combina-
tions of NGS data.

3. Application to NGS and sequence data

3.1. The data: sequences aligned to a reference genome

In this section we deal with combinations of complete sequences, geno-
types and NGS data from different sources in a unified way. Our data are
represented by reads, sequences or genotypes1, aligned to a reference genome.
Each read/sequence/genotype originates from a single unit: units can be in-
dividuals of different ploidy, or pools of individuals. Complete sequences are
considered as sequences coming from an haploid unit, so the two complete
sequences of the two homologous chromosomes from a diploid organism are
equivalent to two different haploid units.

1Some genotyping methods (like DNA microarrays) preselect the possible SNPs or the
positions containing a segregating site. These methods give biased estimates of variability
and cannot be meaningfully combined with unbiased methods like Sanger or NGS.
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We denote by U the number of units. The features associated to the units
are (i) the number of copies of homologous chromosomes present in each
unit and (ii) the evolutionary relationships between the units. We denote
the number of copies of homologous chromosomes in the ith unit by ci, i =
1 . . . U . Diploid individuals will have ci = 2, polyploid individuals will have ci
equal to their ploidy and pools will have ci equal to the number of individuals
in the pool multiplied by their ploidy. We denote the set of numbers {ci}i=1...U

by {c}.
The evolutionary relationships (denoted here by the generic symbol χ) in-

clude all the available information relevant for the probabilities that some of
the sequenced chromosome derived by the same lineage, either because they
are actually from the same individual or because are identical by descent.
For example, two different pools could contain two genetically identical indi-
viduals, or two individuals could be parent and offspring, or a single diploid
individual could originate from a single inbred line with given inbreeding
coefficient, and so on.

We assume that the number of NGS reads covering each position depends
only on the sequencing process and not on the allelic composition of the
sequence. In this case, we associate to each position x the read depth of
the ith unit ri(x), i = 1 . . . U , i.e. the number of reads or sequences from
the ith unit that cover position x. For Sanger sequences and genotyping, we
define an “effective read depth’ ri(x) = 0 for positions with missing data and
ri(x) = +∞ otherwise. We denote the set of read depths {ri}i=1...U by {r}.

An example of the data is given in Table 1.

3.2. Estimators for Next Generation Sequencing

We consider NGS data like the ones described above. We can derive the
general Watterson estimator for this case by using the definition (6) with
ϕ = {r} = {ri}i=1...U , the set of read depths of the different units at a given
site. We use the short form {r} = {ri}i=1...U and {c} = {ci}i=1...U for the
information about the site features. Z can be computed by conditioning on
the number of unrelated homologous chromosomes or lineages which actually
contribute to the data, denoted by j, and then averaging over j:

∑

ξ∈Ξ

p{r},ξ = θZ{r} =
∞∑

j=2

P (SNP|χ, {c}, {r}, j) · Pc(j|χ, {c}, {r}) (8)

where P (SNP| . . .) is the probability of observing a SNP among j independent
lineages and Pc(j| . . .) is the distribution of j, which depends also on {c}
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Reference A C A C G T A A T C G C
Sanger: (unit 1) A C A C G T T A A C G C

(unit 2) A C A C C T - A T C G C

Genotyping: (unit 3) A
A

C
C

- C
C

C
G

T
T

T
T

A
A

T
T

C
C

G
G

C
G

NGS reads: (unit 4) A C G T T A
(unit 4) A C A C C
(unit 4) C C T T A A
(unit 5) T A A C G C

Read depths:
unit 1: c1 = 1 r1 = ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
unit 2: c2 = 1 r2 = ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞
unit 3: c3 = 2 r3 = ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
unit 4: c4 = 2 r4 = 1 1 2 3 3 2 2 2 1 0 0 0
unit 5: c5 = 2 r5 = 0 0 0 0 0 0 1 1 1 1 1 1

Table 1: Example (not real) of data from five sequencing units from different sources and
technologies. The data come from four diploid individuals, of which two are parent and
child. The data are aligned to the reference genome (the sequence at the top). There are
two complete Sanger sequences (units 1 and 2) with a missing base in the 7th position, one
sequence of genotypes (unit 3) with a missing genotype at the 3rd position, and four NGS
read (three coming from unit 4 and one from unit 5). The allelic content of the positions
with SNPs is shown in bold red. At the bottom, we report the “effective’ read depths for
all units. All units are diploid individuals (therefore c = 2). Units 1 and 2 are the two
homologous sequences of the parent (hence c1 = c2 = 1) and unit 5 comes from the child
(c5 = 2), while units 3 and 4 come from unrelated individuals (c3 = c4 = 2).
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and on their relationships χ. The probability of observing a SNP among
j independent lineages depends just on j, not on the redundancy of each
lineage in the sequences, and on the expected site frequency spectrum E(ξk|j)
of the model, being equal to P (SNP|j) =

∑j−1
k=1 E(ξk|j)/L. In the case of the

standard neutral Wright-Fisher model we have E(ξk|j) = θL/k and therefore
P (SNP|j) = θ

∑j−1
k=1 1/k = θaj.

The general Watterson estimator for the Standard Neutral Model (SNM)
is then

θ̂W =
S∑

{r} L{r}
∑∞

j=2 Pc(j|χ, {c}, {r}) · aj
. (9)

This form was found by [6] and [17, 9] in specific cases, but it holds for
a very large class of data as shown. In the next section we will find the
expression of Pc(j| . . .) for the most common sequencing setups. Note that
this estimator does not take into account sequencing errors. The treatment
of sequencing error will be presented in the Discussion.

Complete sequences and genotyping data can be also analyzed by the
above formulae, provided that an effective read depth r = +∞ is considered
for positions with data, and r = 0 for positions with missing data. In fact, if
there are missing data, the information is equivalent to the absence of NGS
data (r = 0), while presence of data means that the genotype is known with
certainty, as it would be with large read depth for NGS data (r =∞).

Finally, the general Watterson estimator for an arbitrary model with spec-
trum E(ξk|j) = θLξ̄k,j is

θ̂W =
S∑

{r} L{r}
∑∞

j=2 Pc(j|χ, {c}, {r})
∑j−1

i=1 ξ̄i,j
. (10)

3.3. A simple example: data from a single diploid individual

In this section we present the case of a single diploid individual [Lynch].
The single individual represents a single unit U = 1, and being diploid
(assuming unrelated parents) we have two homologous sequences, therefore
c1 = 2. Assuming that each read is extracted at random from one of the two
homologous sequences, the estimator is specified by the probabilities

Pc(j = 1|c1 = 2, r1) = 2−r1+1 (11)

Pc(j = 2|c1 = 2, r1) = 1− 2−r1+1 (12)
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Reference A G A C C A T
NGS reads: A C C T T

G C C C A T
A G C C

Read depths: r1 = 1 2 3 3 2 2 2

Table 2: Example (not real) of data from a single diploid individual. The reads are aligned
to the reference genome (the sequence at the top). Positions with SNPs are shown in bold
red.

since the probability of extracting all r1 reads from a given sequence is 2−r1 .
Therefore the estimator from equation (9), taking into account the relevant
harmonic factors a1 = 0 and a2 = 1, is

θ̂W =
S∑∞

r1=2 Lr1(1− 2−r1+1)
. (13)

As an example, consider the sequences in Table 2. In the sequence of
length L = 7 there are S = 2 segregating sites. There are bases with read
depth 1, 2 and 3 and their numbers are L1 = 1, L2 = 4 and L3 = 2 respec-
tively. The value of the Watterson estimator for this sequence is therefore
θ̂W = 2/(1 · 0 + 4 · 1/2 + 2 · 3/4) = 4/7 ' 0.57.

4. Distributions of the number of sequenced lineages

As discussed in the previous sections, the distribution of the number
of sequenced lineages Pc(j| . . .) is actually enough to define the Watterson
estimator. Before deriving its expression for a number of cases, we introduce
some notation.

We denote the Stirling numbers of second kind for j sets from r objects
by S(r, j). We define the probability distribution

P ∗(j|c, r) =
c! S(r, j)

(c− j)! cr (14)

that corresponds to the probability of extracting exactly j different objects
with r extractions (with repetitions) from a set of c objects [9]. In fact, the
number of possible extractions from a set of c objects is cr, while the number
of extractions of precisely j objects is given by the product of the number
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of ordered choices of j objects out of c, that is c!/(c− j)!, multiplied by the
number of ways to distribute the j objects across r extractions S(r, j). Since
all extractions are equiprobable, the ratio gives the the probability (14). This
equation will often appear in the formulae for the distribution of the number
of lineages.

We denote by I(x) the indicator function that takes the value 1 if x is
true and 0 otherwise. We also denote by δi,j the Kronecker delta, that is, the
identity matrix δi,j = I(i = j). Note that P ∗(j|c, 0) = δj,0.

4.1. General case: independent lineages

Assume that all lineages in these units are independent. This corresponds
to sequencing many unrelated individuals in a population without inbreeding.
If there are U units, ci is the number of lineages/homologous chromosomes
in the ith unit, and ri is the number of reads/sequences coming from the ith
unit, the probability Pc(j|{c}, {r}) in the Watterson estimator is

Pc(j|{c}, {r}) =

c1∑

i1=0

. . .

cU∑

iU=0

I

(
j =

U∑

p=1

ip

)
U∏

q=1

P ∗(iq|cq, rq) (15)

which is a product of probabilities for each unit of sequencing i1 . . . iU chromo-
somes respectively, summed over all combinations resulting in j independent
chromosomes.

In Section 5 we will present an alternative form for these Watterson es-
timators. In the rest of this section we specialize the expression (15) to the
most common scenarios.

4.1.1. Multiple haploid individuals

In this case all individuals have ci = 1, therefore P ∗(iq|cq = 1, rq) =
I(iq = I(rq > 0)) and the estimator reduces to the one proposed for missing
data in [4], which is equivalent to

Pc(j|c = n, {r}) = I

(
j =

n∑

i=1

I(ri > 0)

)
. (16)

This choice was implicitly suggested also in [3].
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4.1.2. Multiple diploid individuals

In this case all individuals have ci = 2 and the MCLE was already derived
by Hellmann et al. [6]:

Pc(j|c = 2n, {r}) =
2∑

i1=0

. . .

2∑

in=0

I

(
j =

n∑

p=1

ip

)
n∏

q=1

P ∗(iq|cq = 2, rq) . (17)

4.1.3. Pools

In this case, there is a single unit of c chromosomes. The probability was
derived by Ferretti et al. [9]

Pc(j|c, r) = P ∗(j|c, r) (18)

but see also Section 5 for a simpler formula.
For multiple pools, the probability follows closely equation (15) where

c1 . . . cU are the numbers of (haploid) individuals inside each pool and r1 . . . rU
are the read depths of the pools at the position considered.

4.2. Related lineages

Sequencing unrelated individuals (either pooled together or sequenced
separately) is the most common experimental setup for variability studies as
described in the previous section, but it is not the only one. There are several
cases where lineages in different units are related by identity (for example, the
same individual sequenced both alone and in a pool with other individuals)
or identity-by-descent, like for trios or inbred lines from a population. In this
section we develop estimators for these cases.

4.2.1. Trios

A trio is a (diploid) family of mother, father and child that are sequenced
separately. We assume that father and mother are two unrelated individuals
from the same population. We restrict our analysis to autosomes, where the
two alleles of the child are the copies of one paternal and one maternal allele.
For complete sequences, the probability is just P (j) = δj,4 since there are
four independent lineages.

For NGS data, we denote by rM , rF and rC the read depths of mother,
father and child respectively. We obtain Pc(j|rM , rF , rC) by conditioning on
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the number of lineages j′ sequenced in the parents. We can rewrite it in
terms of the probability Pc(j

′|c = 4, rM , rF ) of the parents alone (eq.(17)):

Pc(j|rM , rF , rS) =
4∑

j′=0

pt(j|j′, rM , rF , rC)Pc(j
′|c = 4, rM , rF ) (19)

where pt(j|j′, rM , rF , rC) is the probability of sequencing j independent lin-
eages in the trio given the number of independent lineages j′ sequenced from
the parents. pt(j|j′, rM , rF , rC) is obtained case by case depending on the
probability that the sequences of the child could contain new alleles with
respect to the parental sequences and the probability to detect them. For
example, consider the case j′ = 3. Then there is only a single allele in the
parents that has not been sequenced. This allele is absent in the child with
50% probability (in this case j = 3 because no new alleles are sequenced in
the child) or it could be present with 50% probability, but not sequenced
(then j = 3 with probability 2−rc) or could be sequenced (then j = 4 with
probability 1− 2−rc).

The complete probability is

pt(j|j′ = 0, rM , rF , rC) =P ∗(j|2, rS) (20)

pt(j|j′ = 1, rM , rF , rC) =
1

2
P ∗(j − 1|2, rS) +

1

2
(δj,12−rS + δj,2(1− 2−rS))

pt(j|j′ = 2, rM , rF , rC) =
1

2
(1 + I(rMrF = 0))(δj,22−rS + δj,3(1− 2−rS))+

+
1

4
I(rMrF > 0) (δj,2 + P ∗(j − 2|2, rS))

pt(j|j′ = 3, rM , rF , rC) =
1

2
δj,3 +

1

2
(δj,32−rS + δj,4(1− 2−rS))

pt(j|j′ = 4, rM , rF , rC) =δj,4 .

Multiple unrelated trios can be dealt with by replacing the probability
P ∗(iq| . . .) in equation (15) with the probability (19) and replacing cq with 4.

4.2.2. Pooled trios

A pooled trio is a family of mother, father and child that are pooled
together and sequenced. We consider n unrelated families, each family se-
quenced separately from the others, and denote by ri the total read depths.
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Pc(j|{ri}i=1...n) is given by

Pc(j|{ri}i=1...n) =
4∑

i1=0

. . .

4∑

in=0

I

(
j =

n∑

p=1

ip

)
n∏

q=1

Ppt(iq|rq) (21)

where Ppt(i|r) is the probability of sequencing i homolog chromosomes for a
single pooled trio. It can be derived case-by-case conditioning on the number
i′ of sequenced chromosomes (identical or not) for a pool, obtaining

Ppt(i|r) =
∑

i′

ppt(i|i′)P ∗(i′|c = 6, r) . (22)

ppt(i|i′) can be found by conditioning on the number of non-inherited chro-
mosomes sequenced, obtaining

ppt(i|i′) = δi,i′
4
(

2
i′−2

)
+ 4
(

2
i′−1

)
+
(

2
i′
)

(
6
i′
) + δi,i′−1

4
(

2
i′−3

)
+ 2
(

2
i′−2

)
(

6
i′
) + δi,i′−2

(
2

i′−4

)
(

6
i′
)

(23)

and finally

Ppt(i|r) =

[
4

(
2

i− 2

)
+ 4

(
2

i− 1

)
+

(
2

i

)]
P ∗(i|6, r)(

6
i

) + (24)

+

[
4

(
2

i− 2

)
+ 2

(
2

i− 1

)]
P ∗(i+ 1|6, r)(

6
i+1

) +

(
2

i− 2

)
P ∗(i+ 2|6, r)(

6
i+2

) .

4.2.3. Pools and complete sequences with overlapping individuals

A potentially useful setup is the combination of complete sequences of few
individuals and a pool of several individuals from the same population. In
this situation, there could be individuals in the pool for which the complete
sequence is also available.

Here we deal with the haploid case, but the results can be easily adapted
to the diploid case by considering a diploid individual as a pair of haploids.
Denote by m the number of individuals completely sequenced, by n the num-
ber of individuals pooled, and by o the overlapping between the two groups
of individuals, i.e. the individuals in the pool that have also been sequenced
separately. Denote by r the read depth of the pool. The distribution of j
can be obtained by conditioning on the number l of pooled reads that come
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actually from the n − o individuals exclusive to the pool. The distribution
of l is a binomial with probability o/n and r extractions, therefore

Pc(j|r) =
r∑

l=0

P ∗(j −m|n− o, l)
(
r

l

)(
1− o

n

)l ( o
n

)r−l
= (25)

=
(n− o)!

nr(n− o− j +m)!

r∑

l=0

(
r

l

)
or−lS(l, j −m) .

See also Section 5 for a simpler formula.

4.2.4. Inbred lines

Consider a population from which n inbred lines are derived. We de-
note the initial heterozygosity by H and the final heterozygosity by Hinbred.
The degree of inbreeding is measured by the inbreeding coefficient F =
(H − Hinbred)/H, that is the relative decrease in heterozygosity H due to
inbreeding, and is assumed to be known. F is also equal to the probability of
identity by descent for the inbred line. For each line, a diploid individual is
sequenced. Our aim is to estimate the heterozygosity of the initial population
from the sequences of individuals from the inbred lines.

If complete sequences are available, since each individual has an indepen-
dent probability F of being homozygote because of inbreeding, the distribu-
tion of the number of homozygotes is just a binomial. But the number of
sequenced chromosomes is 2n minus the number of homozygotes, therefore

Pc(j|c = 2n) =

(
n

2n− j

)
F 2n−j(1− F )j−n . (26)

If instead we have NGS reads, the distribution of sequenced chromosomes
should account for the “ effective homozygote probability” F +(1−F )2−rq+1

due to sampling:

Pc(j|c = 2n, {r}) =
2∑

i1=0

. . .

2∑

in=0

I

(
j =

n∑

p=1

ip

)
·
n∏

q=1

[
I(rq = 0)δiq ,0+ (27)

+I(rqiq > 0)
(
F + (1− F )2−rq+1 + (iq − 1)

(
2(1− F )(1− 2−rq+1)− 1

))]
.

Note that in this case, the formula (6) with (26), (27) can be inverted
to give the expected variability E(S) for individuals from inbred lines with a
given inbreeding coefficient F .
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5. An equivalent form for Watterson estimators

5.1. Equivalence between the estimator of Jiang et al. and the Watterson
estimator for pools

An unbiased estimator of θ based on S was proposed in [7] for NGS data
of multiple diploid individuals, even if this is not the most appropriate setup,
as we will see immediately. The estimator is

θ̂J =
S∑∞

r=2 Lr
∑c−1

k=1
1
k

(
1−

(
k
c

)r −
(
1− k

c

)r) (28)

where c is twice the sample size (for diploids) and r is the total read depth.
This estimator is unbiased since the mean of S is given by the probability
θ/k of a SNP of frequency k in the sample multiplied by the probability of
detecting it in a random extraction of r alleles, that is 1−

(
k
c

)r −
(
1− k

c

)r
.

A first observation is that this estimator is not actually unbiased for reads
coming from multiple individuals sequenced separately. In fact, it takes into
account only the total number of reads, while an unbiased estimator would
depend on how they are distributed among individuals. However, it is an
unbiased estimator of θ for pooled sequences, since in that case information
about the origin of the reads is lost.

Furthermore, there is only a single unbiased estimator proportional to S,
since the proportionality constant is fixed by the bias of S. This means that
the estimator θ̂J is actually the Watterson estimator θ̂W for pools proposed in
[9]. The two different forms derive from different intermediate conditioning
for Z: on the allele frequency k in the sample in the first case, on the number
of lineages actually sequenced j in the second.

Note that in the light of this equivalence, the conclusions of [7] about
the differences between their estimator and Hellmann’s one when applied
to individual data are at least doubtful. They found both estimators to
be biased and the variance of Hellmann’s one to be significantly larger, but
theory suggests that they are unbiased and the variance of Hellmann’s one
should be lower. In fact, numerical simulations performed in [9] showed
almost no bias, no sensible difference in variance and a very good correlation
between them.

From the mathematical point of view, the equality between θ̂J and θ̂W
for pools and the related equalities that we will present in the next section
depend on a family of combinatorial identities. The identity of the two es-
timators θ̂J and θ̂W for pools implies identity of their denominators. The

16



reasoning in this section is equivalent to a double counting proof of the com-
binatorial identity

min(c,r)∑

j=1

c!

(c− j)!S(r, j)aj =
c−1∑

k=1

cr − kr − (c− k)r

k
(29)

valid for all pairs of integers (c, r) such that c ≥ 1 and r ≥ 1. The identity
involves Stirling numbers S(r, j) and harmonic numbers aj in a nontrivial
way. Note that both sides of the identity are integers. This identity can also
be proved directly [M.Mamino, persona communication]. This identity is a
combination of a family of related identities for a general spectrum, presented
in Appendix A.

5.2. General alternative form for the Watterson estimators

The above form of [7] for the Watterson estimator for pools can be gen-
eralized to the whole family of estimators for units of independent lineages,
described by equations (9) and (15). We follow the same notation as before,
but we denote the total number of lineages by c =

∑U
i=1 ci. The general form

for these estimators is

θ̂W =
S∑

{r} L{r}
∑c−1

k=1
1
k
Πk({c}, {r})

, (30)

Πk({c}, {r}) =

c1∑

k1=0

. . .

cU∑

kU=0

I

(
k =

U∑

i=1

ki

) ∏U
i=1

(
ci
ki

)
(
c
k

)
[

1−
U∏

i=1

(
ki
ci

)ri
−

U∏

i=1

(
1− ki

ci

)ri]

where the multi-hypergeometric distribution
∏U

i=1

(
ci
ki

)
/
(
c
k

)
describes how the

alleles are assigned to the different units and the term
∏U

i=1

(
ki
ci

)ri
+
∏U

i=1

(
1− ki

ci

)ri

is the probability of extracting just one of the two alleles. All the estima-
tors of section 4.1 can be rewritten in this form. This form is often more
convenient computationally than the combinatorics in equations (9), (15).

For a generic frequency spectrum E(ξk|n) = θLξ̄k,n, equation (30) should
be replaced by

θ̂W =
S∑

{r} L{r}
∑c−1

k=1 ξ̄k,nΠk({c}, {r})
. (31)

We can also find an estimator similar to (28) for a combination of a
pool of n (haploid) individuals and m complete sequences, o of which are
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overlapping. In this case simple combinatorial reasoning on the probability
of detecting a SNP of frequency k among the n+m−o individuals (the SNP
is detected unless all complete sequences share the same allele) leads to the
unbiased estimator

θ̂W =
S

∑∞
r=2 Lr

∑n+m−o−1
k=1

(
1− (n−ok )

(n+m−o
k )

(
1− k

n

)r − (n−ok−m)
(n+m−o

k )

(
k−m+o

n

)r
)

1
k

(32)
that is equivalent to the case (25) of estimator (9).

6. Watterson estimators for autopolyploids

A particularly interesting and challenging set of data is represented by
polyploid genomes. Species with ploidy greater than 2 are highly interesting
from an evolutionary point of view, as well as economically in agrobiotech
and breeding since it involves many commercial species of plants (e.g. potato,
sugar cane) and fishes (e.g. Salmonidae).

Polyploid species are difficult both to sequence and to analyze, due to
the complex homology/paralogy relation between the constituent genomes.
However, some polyploids can be treated by the methods developed here. In
particular, autopolyploids are polyploid organisms with different homologous
chromosomes from the same species. Autotetraploid populations follow the
standard coalescent as shown by [18], and this can be extended to autopoly-
ploids that have similar transition probability matrices. Here we present
estimators of variability for populations of autopolyploid species.

Polyploids can be considered as pools with number of lineages equal to
their ploidy. Multiple polyploids can then be considered as combinations of
pools, but they can be pooled themselves. We consider a species with ploidy
p. The estimators for autopolyploids are given by

θ̂W =
S

∑∞
r=2 Lr

∑p−1
k=1

1
k

(
1−

(
k
p

)r
−
(

1− k
p

)r) (33)

for a single polyploid individual, where r is the read depth, and by the formula

θ̂W =
S∑

{r} L{r}
∑np−1

k=1
1
k
Πk(n, p, {r})

, (34)

Πk(n, p, {r}) =

p∑

k1=0

. . .

p∑

kn=0

I

(
k =

n∑

i=1

ki

) ∏n
i=1

(
p
ki

)
(
np
k

)
[

1−
n∏

i=1

(
ki
p

)ri
−

n∏

i=1

(
1− ki

p

)ri]
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for sequences from n polyploid individuals, where {r} = {ri}i=1...n are the
read depths per individual. This is also equivalent to the formula (9) for θ̂W
with

Pc(j|{r}) =

p∑

i1=0

. . .

p∑

in=0

I

(
j =

n∑

l=1

il

)
n∏

q=1

P ∗(iq|p, rq) . (35)

The estimator for a pool of polyploid individuals is the same as in the
general case for pools with c = np, where n is the number of individuals in
the pooled sample:

θ̂W =
S

∑∞
r=2 Lr

∑np−1
k=1

1
k

(
1−

(
k
np

)r
−
(

1− k
np

)r) . (36)

7. Discussion

In this paper we have presented a large family of generalized Watterson
estimators that are suited for different types of NGS data, from haploids to
polyploids, pools and trios, or a mix of NGS/Sanger data. These estimators
are built on the Maximum Composite Likelihood approach; furthermore they
are unbiased and depend linearly on S, which is a sufficient statistic for small
θ. The general theory presented here includes all these estimators and many
others. Existing estimators are assigned to the proper place in this unified
framework.

We pay special attention to estimators for single and multiple autopoly-
ploid individuals. Sequencing of these species has proved to be hard, but
more and more projects will soon be devoted to some of the more inter-
esting polyploid species from a commercial point of view, especially among
domesticated plants [19, 20, 21]. Autopolyploids without a strong inbreeding
follow the dynamics of the usual coalescent, so our theory is applicable to
these species. On the other hand, allopolyploids (whose genome derives from
different species) cannot be studied by the same technique since the differ-
ences between homologous chromosomes from different constituent species
are much stronger and the divergence time between them is often of order of
the divergence between species. Specific methods have to be developed for
the analysis of variability in allopolyploids [22, 19]. A simple approach could
be the study of the variability of each constituent genome and, independently,
the genetic differentiation between them.
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We did not discuss an important issue with NGS data, that is, base errors.
Sequencing errors and misalignments occur at an high rate in NGS data. The
bases with lower quality can be removed from the reads or the sequences,
however sequencing errors or similar effects can often generate false SNPs
at low frequency and it could be difficult to distinguish them from true low
frequency alleles. In this case, filtering or SNP calling is usually applied to
the data, resulting in an unknown Zϕ,ξ for these alleles. Denote by (Φ,Ξ)ε
the set of features {ϕ, ξ} strongly affected by sequencing errors. In some
cases it is possible to estimate Zϕ,ξ or to correct Sϕ,ξ based on quality scores
for called SNPs or known error rates. On the other hand, if it is not possible
to estimate the contribution of the errors, a good practice is to discard the
corresponding Sϕ,ξ, {ϕ, ξ} ∈ (Φ,Ξ)ε and to work with the approximate MCL
estimator for this case, that is

θ̂W =

∑
{ϕ,ξ}/∈(Φ,Ξ)ε

Sϕ,ξ∑
{ϕ,ξ}/∈(Φ,Ξ)ε

LϕZϕ,ξ
(37)

as proposed in [23] for sequence data and [8],[9] for pooled reads. The only
alternative is to estimate Zϕ,ξ by heuristic methods.

Generalizing equation (37), it is also possible to extend the results of this
paper to generic sums of the frequency spectrum, for example estimators of
the form

∑k
i=1 ξk/

∑k
i=1 1/k which consider only the lowest frequencies.

The estimator proposed here assume the standard Wright-Fisher neutral
model for the allele frequency spectrum. However, an arbitrary expected
frequency spectrum E(ξk|n) = θLξ̄k,n could be used in the place of the neutral
spectrum θL/k. It is sufficient to replace aj by

∑j−1
i=1 ξ̄i,j in the denominator

of equation (9) or to replace 1/k by ξ̄k,c in the denominator of equation (30).
This extends previous adaptations of the original Watterson estimator to null
scenarios with demography or varying population size (e.g. [24], [25]).

In this paper we used the composite likelihood approximation to derive
the estimators of variability. However, the variance of these Watterson esti-
mators depends on recombination. The usual formulae for ML work only for
unlinked sites. In this case, in the limit θ → 0 and θL constant, Sϕ,ξ is Poisson

distributed, i.e. Var(Sϕ,ξ) = E(Sϕ,ξ) and therefore Var(θ̂W ) = θ/
∑

ϕ∈Φ LϕZϕ.

In the same limit, the variance for linked sites contain a term θ2L2 coming
from the covariances between sites [26, 4, 9]. An exact formula for this term of
the variance is available only for a few cases: complete sequences, sequences
with missing data [4] and pooled NGS reads [9]. In the case of completely
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linked sites and known variance, these estimators could be improved [27],
also by shrinkage methods [28]. Note that the variance of the MCLE could
be estimated by the bootstrapping methods described in [29].

Finally, the theoretical framework developed in this paper allowed to
obtain an interesting set of combinatorial identities. This is another example
of the way research on theoretical population genetics is highly connected to
some fields of mathematics, e.g. combinatorics [30] and could lead to further
mathematical insights.

Acknowledgments

We thank A. Fonseca Amaral, M. Pérez-Enciso, W. Burgos, B. Nevado
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Appendix A. Combinatorial identities

We can extend the previous identity (29) to a set of identities derived from
the same equivalence of estimators but for an arbitrary frequency spectrum.
The fundamental identities are obtained by double counting technique.

We considering a frequency spectrum concentrated around a single fre-

quency f̃ in the population (i.e. ξ(f) = δ
(
f − f̃

)
, or ξk =

(
n
k

)
f̃k
(

1− f̃
)n−k

for the sample spectrum). By double counting, the two Watterson estimators
of the form (10) and (31) should be equal, and therefore we can equal their
denominators. By computing the Taylor expansion in the variable f̃ of both
sides and equating the coefficients of the lth power, we obtain:

min(c,r)∑

j=2

c!

(c− j)!S(r, j)

j−1∑

k=1

(−1)k
(

j

k, l − k, j − l

)
=

c−1∑

k=1

(−1)k
(

c

k, l − k, c− l

)
(cr − kr − (c− k)r) (A.1)
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for integers (r, c, l) with r ≥ 1 and 1 ≤ l ≤ c. They involve Stirling numbers
and multinomials. Any other identity in this family (including (29)) can be
obtained as a linear combinations of these ones. Note that since the l.h.s. is
0 for l > r, these identities reduce to

l∑

k=1

(−1)k
(

c

k, l − k, c− l

)
(cr − kr − (c− k)r) = 0 (A.2)

for r < l ≤ c.
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