P. S. Heckbert and M. Garland, Optimal triangulation and quadric-based surface simplification, Computational Geometry, vol.14, issue.1-3, pp.1-3, 1999.
DOI : 10.1016/S0925-7721(99)00030-9

URL : http://doi.org/10.1016/s0925-7721(99)00030-9

W. Huang, Mathematical principles of anisotropic mesh adaptation, Commun. Comput. Phys, vol.1, pp.276-310, 2006.

T. Coupez, Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing, Journal of Computational Physics, vol.230, issue.7, pp.2391-2405, 2011.
DOI : 10.1016/j.jcp.2010.11.041

URL : https://hal.archives-ouvertes.fr/hal-00579536

A. Loseille and F. Alauzet, Continuous Mesh Framework Part II: Validations and Applications, SIAM Journal on Numerical Analysis, vol.49, issue.1, pp.61-86, 2011.
DOI : 10.1137/10078654X

J. C. Aguilar and J. B. Goodman, Anisotropic mesh refinement for finite element methods based on error reduction, Journal of Computational and Applied Mathematics, vol.193, issue.2, pp.497-515, 2006.
DOI : 10.1016/j.cam.2005.05.036

M. Randrianarivony, Anisotropic finite elements for the Stokes problem: a posteriori error estimator and adaptive mesh, Journal of Computational and Applied Mathematics, vol.169, issue.2, pp.255-275, 2004.
DOI : 10.1016/j.cam.2003.12.025

J. Remacle, X. Li, M. S. Shephard, and J. E. Flaherty, Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods, International Journal for Numerical Methods in Engineering, vol.107, issue.7, pp.899-923, 2005.
DOI : 10.1002/nme.1196

X. Jiao, A. Colombi, X. Ni, and J. Hart, Anisotropic mesh adaptation for evolving triangulated surfaces, Engineering with Computers, vol.25, issue.3, pp.363-376, 2010.
DOI : 10.1007/s00366-009-0170-1

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Kunert and R. Verfürth, Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes, Numerische Mathematik, vol.86, issue.2, pp.283-303, 2000.
DOI : 10.1007/PL00005407

E. Creusé, G. Kunert, and S. Nicaise, ERROR ESTIMATION FOR THE STOKES PROBLEM: ANISOTROPIC AND ISOTROPIC DISCRETIZATIONS, Mathematical Models and Methods in Applied Sciences, vol.14, issue.09, pp.1297-1341, 2004.
DOI : 10.1142/S0218202504003635

V. Dolej?sídolej?sí, Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes, Comput. Vis. Sci, vol.1, pp.165-178, 1998.

F. Alauzet and P. Frey, Anisotropic mesh adaptation for CFD computations, Comput. Methods Appl. Mech. Engrg, vol.194, pp.48-49, 2005.

W. Cao, On the Error of Linear Interpolation and the Orientation, Aspect Ratio, and Internal Angles of a Triangle, SIAM Journal on Numerical Analysis, vol.43, issue.1, pp.19-40, 2005.
DOI : 10.1137/S0036142903433492

E. D. Azevedo and R. Simpson, On optimal triangular meshes for minimizing the gradient error, Numerische Mathematik, vol.16, issue.1, pp.321-348, 1991.
DOI : 10.1007/BF01385784

M. J. Castro-díaz, F. Hecht, B. Mohammadi, and O. Pironneau, Anisotropic unstructured mesh adaption for flow simulations, International Journal for Numerical Methods in Fluids, vol.59, issue.4, pp.475-491, 1997.
DOI : 10.1002/(SICI)1097-0363(19970830)25:4<475::AID-FLD575>3.0.CO;2-6

W. Cao, An Interpolation Error Estimate on Anisotropic Meshes in ${\mathcalR}^{n}$ and Optimal Metrics for Mesh Refinement, SIAM Journal on Numerical Analysis, vol.45, issue.6, pp.2368-2391, 2007.
DOI : 10.1137/060667992

F. Hecht, Estimation d'erreur d'interpolation anisotropes pour des éléments finis de Lagrange, in: Numerical Analysis and Scientific Computing for Partial Differential Equations and their Challenging Applications, pp.978-84, 2008.

J. Mirebeau, Optimal Meshes for Finite Elements of Arbitrary Order, Constructive Approximation, vol.59, issue.6, pp.339-383, 2010.
DOI : 10.1007/s00365-010-9090-y

F. Hecht and O. , Pironneau, Freefem++, language for finite element method and PDEs, Laboratoire Jacques-Louis Lions

P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, p.520174, 2002.

M. Picasso, An Anisotropic Error Indicator Based on Zienkiewicz--Zhu Error Estimator: Application to Elliptic and Parabolic Problems, SIAM Journal on Scientific Computing, vol.24, issue.4, pp.1328-1355, 2003.
DOI : 10.1137/S1064827501398578

P. Frey and P. George, Maillages: Applications aux Elements Finis, Hermès Science, 1999.

R. Kuate, Anisotropic metrics for finite element meshes using a posteriori error estimates: Poisson and Stokes equations, Engineering with Computers, vol.223, issue.1, 2012.
DOI : 10.1007/s00366-012-0276-8

F. Hecht, The mesh adapting software: bamg, INRIA report, 1998.