Delphine Blanke 
email: delphine.blanke@univ-avignon.fr
  
Denis Bosq 
email: denis.bosq@upmc.fr.
  
EXPONENTIAL BOUNDS FOR INTENSITY OF JUMPS

Keywords: 2000 Mathematics Subject Classification. Primary 62M, 60F17 Functional linear processes, Jumps, Estimation of intensity

In this paper, we study intensity of jumps in the context of functional linear processes. The natural space for that is the space D = D[0, 1] of cadlag real functions. We begin with limit theorems for ARMAD(1,1) processes. It appears that under some conditions, the functional linear process and its innovation have the same jumps. This nice property allows us to focus on the case of i.i.d. D-valued random variables. For such variables, we estimate the intensity of jumps in various situations : fixed number of jumps, random instants of jumps, random number of instants of jumps, .... We derive exponential rates and limits in distribution.

Introduction

A lot of papers are devoted to autoregressive processes with values in separable Hilbert or Banach spaces (see [START_REF] Antoniadis | Prévision d'un processus à valeurs fonctionnelles en présence de non stationnarités. Application à la consommation d'électricité[END_REF][START_REF] Besse | Autoregressive forecasting of some climatic variation[END_REF][START_REF] Cardot | Convergence du lissage spline de la prévision des processus autorégressifs fonctionnels[END_REF][START_REF] Damon | Estimation and simulation of autoregressive hilbertian processes with exogenous variables[END_REF][START_REF] Ferraty | Nonparametric functional data analysis[END_REF][START_REF] Kargin | Curve forecasting by functional autoregression[END_REF][START_REF] Marion | Comparaison des modèles ARH(1) et ARHD(1) sur des données physiologiques[END_REF][START_REF] Mas | Consistance du prédicteur dans le modèle ARH(1): le cas compact[END_REF][START_REF] Mourid | Estimation and prediction of functional autoregressive processes[END_REF][START_REF] Pumo | Prediction of continuous time processes by C [0,1]valued autoregressive process[END_REF][START_REF] Ruiz-Medina | Spatial functional prediction from spatial autoregressive Hilbertian processes[END_REF], among many others). It is more difficult to study D-valued linear processes, where D = D[0, 1] is the space of cadlag real functions defined on [0,1]. The main reason is that, if D is equipped with the sup-norm, it becomes a nonseparable space. In order to obtain separability, it is preferable to use the Skorohod metric (cf [START_REF] Billingsley | Convergence of probability measures[END_REF]. Now, in the framework of D-valued linear processes there are not many papers (see however [START_REF] Descartes | Théorèms limites pour les processus autorégressifs à valeurs dans D[0, 1][END_REF][START_REF] El Hajj | Théorèmes limites pour les processus autorégressifs à valeurs dans D[0,1[END_REF][START_REF] Bosq | Estimating and detecting jumps[END_REF].

Here, our aim is to study continuous time random variables and to estimate the intensity of jumps at random or fixed instants. The process (X(t), t ∈ [0, 1]) is observed over [0,1], this time interval can be interpreted as one day, one week, one year... Various applications may be considered. A classical and simple example is the compound Poisson process: the holders of an insurance policy are victims of misfortunes at the instants 0 < T 1 < T 2 < • • • following a Poisson process with intensity λ. They obtain the respective payments ∆ 1 , ∆ 2 ,• • • at instants T 1 , T 2 ,• • • and one may set

X(t) = Nt n=1 ∆ n , 0 ≤ t ≤ 1
where N t = sup{n : T n ≤ t}, 0 ≤ t ≤ 1 and the convention X(t) = 0 if N t = 0. A similar example is a particle subjected to impacts at Poissonian instants T n , where ∆ n denotes the displacement of the particle at time T n . Now, another example is the wind speed [START_REF] Jacq | Le mistral. Quelques aspects des connaissances actuelles[END_REF]) associated with the mistral gust: one may construct a D-valued ARMA model and note that, under mild conditions, the model and the strong white noise have the same jumps (see Section 2). Then, since it is difficult to predict the gust intensity, one may suppose that the instants of gusts are independent, and the model is no more Poissonian. A study of that situation appears in Section 6.

Other models can be exhibited:

-In finance, it can be shown that a model with jumps is better than the Black-Scholes model (see [START_REF] Cont | Financial modelling with jump processes[END_REF]Tankov and Voltchkova, 2009, for details). -Another example of jumps is associated with electricity consumption: clearly, a jump appears early in the morning and late in the evening [START_REF] Antoniadis | Prévision d'un processus à valeurs fonctionnelles en présence de non stationnarités. Application à la consommation d'électricité[END_REF][START_REF] El Hajj | Théorèmes limites pour les processus autorégressifs à valeurs dans D[0,1[END_REF]). -The model invoking dengue is slightly different since it involves bifurcation (cf [START_REF] Garba | Backward bifurcations in dengue transmission dynamics[END_REF], it is related with dynamical systems but it contains jumps. The previous examples show that we must consider various distinct situations: they appear below.

In Section 2, we recall some properties of D and give some examples. The next section is devoted to D-valued ARMA(1,1) processes with

X n -ρ(X n-1 ) = Z n -ρ ′ (Z n-1 ), n ∈ Z
where (Z n ) is a D-strong white noise and ρ, ρ ′ are continuous linear operators. It can be shown that limit theorems hold for (Z n ) if and only if they hold for (

X n ). Now, if ρ(D) ⊂ C[0, 1] and ρ ′ (D) ⊂ C[0, 1],
it follows that Z n and X n have the same jumps. This property leads us to consider i.i.d. D-valued variables in the next section.

Section 4 is devoted to the case where the D-valued random variable X admits k distinct fixed jumps at instants t 1 , . . . , t k . The problem is to estimate the intensity of jump E(∆ j ) where ∆ j = X(t j ) -X(t - j ) , j = 1, . . . , k. Clearly, if ∆ 1,j , . . . , ∆ n,j are i.i.d. copies of ∆ j , or if they satisfy a suitable strong mixing condition, it is easy to obtain limit theorems concerning (E(∆ j ), j = 1, . . . , k) and to estimate the greatest jump. Similar results can be obtained for jumps at increasing random instants: 0 < T 1 < • • • < T k < 1 almost surely. An ordering for intensity of jumps is also available.

In Section 5, we suppose that the number K i of jumps is random and independent from the ∆

i,k = X i (t k ) -X i (t - k ) , i = 1, . . . , n, k ≥ 1. In order to estimate E(∆ k ) from the observed ∆ i,k , we set ∆ n,k = n i=1 ∆ i,k 1 {K i ≥k} n i=1 1 {K i ≥k} , k ≥ 1 with the convention ∆ n,k = 0 if n i=1 1 {K i ≥k} = 0 (k ≥ 0). Then, it may be shown that ∆ n,k -E(∆ k ) = O
ln n n a.s.. Some applications and extensions to random ordered instants are given. Finally, the last section is devoted to the non-ordered case: T 1 , . . . , T k are independent random instants, thus the scheme is not Poissonian. Each X i has k jumps (T ij , j = 1, . . . , k) which are not directly observable. Now, supposing that ∆ 1 , . . . , ∆ k are independent and noting that k j=1

x -E(∆ j ) = k j=0 a j x j = 0, one may use a trick for estimating the coefficients a 0 , . . . , a k-1 for k ≥ 2. It follows that one can obtain an equation of the form

k j=0 a j,n x j = 0, (1.1)
where lim n→∞ a j,n = a j a.s., j = 1, . . . , k. Then (1.1) can be solved at least by approximation.

Observations in discrete time and numerical applications will appear in a next paper (cf [START_REF] Blanke | Observing jumps in discrete time[END_REF].

Constructing D-valued random variables

In order to study the jumps of the real process X = X(t), 0 ≤ t ≤ 1 , it is natural to consider the space D = D([0, 1]) of cadlag real functions defined over [0,1]. If D is equipped with the sup-norm: x = sup 0≤t≤1 |x(t)|, it becomes a non-separable space. Thus, it is preferable to use the Skorohod metric defined as

d(x, y) = inf λ∈Λ |λ -I| ∨ x -yλ ; x, y ∈ D
where Λ is the class of strictly increasing continuous mapping of [0,1] onto [0,1] and I is the identity from [0, 1] to [0, 1]. Then, D equipped with the Skorohod metric is separable, we refer to [START_REF] Billingsley | Convergence of probability measures[END_REF] for a detailed study of D. Now, we denote by D the σ-algebra generated by the Skorohod metric. We only recall three useful properties of (D, D):

-If x ∈ C = C([0, 1]), then d(x n , x) ---→ n→∞ 0 ⇐⇒ x n -x ---→ n→∞ 0.
-If ρ is a bounded linear operator, i.e.

ρ L = sup x∈D, x ≤1 ρ(x) < ∞, then it is D -D measurable. -x → x(t 0 ) -x(t - 0
) is a continuous linear form on (D, • ). See [START_REF] Billingsley | Convergence of probability measures[END_REF] and [START_REF] Pestman | Measurability of linear operators in the Skorokhod topology[END_REF] for further properties. Now, let X be a (D, D)-valued random variable defined on some probability space (Ω, A, P). In this paper, we focus on estimation of the intensity of jumps in the following cases:

-a fixed number of jumps at fixed or random times, -a random number of jumps at fixed times, -a random number of jumps at random times. We give below some examples of jumps associated with X corresponding to our framework.

Example 2.1 (k fixed jumps).

X(t, w) = k j=1 Y j (t, w)1 [t j-1 ,t j [ (t), t ∈ [0, 1], w ∈ Ω where t ′ j s are fixed points with 0 = t 0 < t 1 < • • • < t k ≤ 1 and Y j is D ⊗ A -B R measurable, 1 ≤ j ≤ k.
Example 2.2 (k random jumps). Consider the k + 1 measurable processes (Z j (t, w), 1 ≤ j ≤ k + 1, 0 ≤ t ≤ 1, w ∈ Ω) with continuous sample paths and k random variables (r.v.) T 1 , . . . , T k with values in ]0,1[ and such that P(T j = T j ′ ) = 0, j = j ′ . Suppose that Z 1 , . . . , Z k+1 , T 1 , . . . , T k are globally independent. Then, we set

X(t, w) = k+1 j=1 Z j (t, w)1 [T * j-1 (w),T * j (w)[ (t), 0 ≤ t ≤ 1, w ∈ Ω
where the T * j are ordered as:

0 = T * 0 < T * 1 < • • • T * k < T * k+1 = 1, and X(1) = Z k+1 (1). Example 2.3 (Random number of jumps). Let 0 = T 0 < T 1 < • • • < T K < • • • be a strictly increasing sequence of random variables (almost surely) with K a random N-valued variable. Let us set N 1 = ∞ k=1 1 T k ≤1 and X(t, w) = k j=1 Y j (w)1 [T j-1 ,T j [ (t) if N 1 = k ≥ 1, 0 ≤ t ≤ 1 0 if N 1 = 0
where Y j is A -B R measurable. Note that an example of such a model is the compound Poisson process.

3. The case of ARMAD processes 3.1. Limit theorems for ARMAD(1,1). Consider the ARMAD(1,1) process L < 1 and ρ ′j ′ L < 1 for some integers j ≥ 1 and j ′ ≥ 1. Note that ρ and ρ ′ are D -D measurable (cf [START_REF] Pestman | Measurability of linear operators in the Skorokhod topology[END_REF]. Now, it is easy to show that

(X n -m) -ρ(X n-1 -m) = Z n -ρ ′ (Z n-1 ), n ∈ Z where (Z n ) is a D-strong white noise (i.e. (Z n ) is i.i.d., 0 < E Z n 2 < ∞, E(Z n ) = 0), m ∈ D,
X n = m + ∞ j=0 ρ j Z n-j -ρ ′ (Z n-j-1 ) , n ∈ Z
almost surely and in L 2 . Moreover (Z n ) is the innovation of (X n ) and (X n ) is equidistributed.

A classical example of linear bounded operator in D meeting all our conditions is as follows:

Example 3.1. ρ(x)(t) = 1 0 r(s, t)x(s) ds, 0 ≤ t ≤ 1, x ∈ D,
where r is continuous and max Proof. We may and do suppose that m = 0. Now, set

Y n = X n -ρ(X n-1 ) = Z n -ρ ′ (Z n-1 ), n ∈ Z (3.1)
then, we have

X n = ∆ n,X n + (I -ρ) -1 Y n , (3.2) where ∆ n,X = (I -ρ) -1 ρ(X 0 -X n ), thus, Tchebychev inequality yields ∆ n,X n a.s.
---→ n→∞ 0 then, from (3.1) it follows that

X n a.s. ---→ n→∞ 0 ⇐⇒ Y n a.s. ---→ n→∞ 0. (3.3)
Similarly, we may write

Z n = ∆ n,Z n + (I -ρ ′ ) -1 Y n with ∆ n,Z = (I -ρ ′ ) -1 ρ ′ (Z 0 -Z n ),
and using again Tchebychev inequality, one obtains

Z n a.s. ---→ n→∞ 0 ⇐⇒ Y n a.s.
---→ ---→ n→∞ 0 (cf [START_REF] Daffer | Laws of large numbers for D[0, 1[END_REF] and, since 0 is a continuous function, it is equivalent to write

Z n → 0 a.s.. In particular, if Z n (t) = N n+t -N n -λt, 0 ≤ t ≤ 1, n ≥ 1 where (N s , s ≥ 0) is a
Poisson process with intensity λ the strong law of large numbers holds.

We now apply Proposition 3.1 for obtaining consistency of jumps: suppose that X n has jumps at t 1 , . . . , t k (≥ 1) with intensity E X n (t j )-X n (t - j ) , j = 1, . . . , k. Then, we have :

Corollary 3.1. If (Z n ) satisfies the SLLN then 1 n n i=1 X i (t j ) -X i (t - j ) a.s. ---→ n→∞ E X i (t j ) -X i (t - j ) , (3.5) j = 1, . . . , k.
Proof. First, if (Z n ) satisfies the SLLN, Proposition 3.1 implies the same property for (X n ). Now, set [START_REF] Pestman | Measurability of linear operators in the Skorokhod topology[END_REF]. Then, by continuity and linearity of ϕ t 0 , (3.5) follows. Now, we make an additional assumption :

ϕ t j (x) = x(t j ) -x(t - j ), x ∈ D, j = 1, . . . , k, it is a continuous linear form on (D, • ) (cf
Assumption 3.1 (A3.1). ρ(D) ⊂ C([0, 1]), ρ ′ (D) ⊂ C([0, 1]) Then: Corollary 3.2. Under A3.1, we have X n (t j ) -X n (t - j ) = Z n (t j ) -Z n (t - j ), j = 0, . . . , k. (3.6) Proof. Write X n = U n + Z n where U n = ρ(X n-1 ) + ρ ′ (Z n-1 ), then, since U n (D) ⊂ C([0, 1]), (3.6) holds.
It follows that the jumps of (X n ) are i.i.d. ; that property entails that all results derived in the sequel for i.i.d. jumps are also satisfied by such ARMAD processes! We now turn to the central limit theorem (CLT).

Proposition 3.2. The CLT holds for (Z n ) if and only if holds for (X n ).

Proof. We suppose that m = 0 and we use again (3.1) for obtaining

√ n X n = ∆ n,X √ n + (I -ρ) -1 √ nY n , and 
√ n Z n = ∆ n,Z √ n + (I -ρ ′ ) -1 √ nY n . Recall that ∆ n,X = (I-ρ) -1 ρ(X 0 -X n ) and ∆ n,Z = (I-ρ ′ ) -1 ρ ′ (Z 0 -Z n ).
Next, as X 0 and X n are equidistributed we get, Note that conditions for the CLT can be found in [START_REF] Bloznelis | On the central limit theorem in D[0, 1[END_REF]. Concerning the CLT for jumps, let us set

P ∆ n,X √ n ≥ η ≤ E ∆ n,X η √ n ≤ (I -ρ) -1 L ρ L 2E X 0 η √ n , η > 0.
V ij = X i (t j ) -X i (t - j ) -E X i (t j ) -X i (t - j ) , i = 1, .
. . , n, j = 1, . . . , k and denote Φ the distribution function of N (0, 1). Then, we have

Corollary 3.3. Under A3.1, 1 √ n n i=1 V ij =⇒ N ∼ N 0, E(V 2 j ) , j = 1, . . . , k. If, in addition E |V ij | 3 < ∞, we have sup t∈R P 1 √ n n i=1 V ij E(V 2 ij ) ≤ t -Φ(t) ≤ E |V ij | 3 E(V 2 ij ) 3 2 √ n .
Proof. The first part of the proof is clear since one may use directly Corollary 3.2 : the CLT follows since Z n (t j ) -Z n (t - j ) are i.i.d.. Using again Corollary 3.2 we are in a position to apply Berry-Esseen theorem (see e.g. Shiryaev, 1996, p. 374) for the second part.

Let us conclude this section with some final remarks.

Remark 3.1. A special case is the model

X n (t) = a(t)X n-1 (t) + Z n (t), 0 ≤ t ≤ 1, n ∈ Z
where X n and Z n have a jump at t 0 and a is continuous at t 0 and such that |a(t 0 )| < 1. Consequently

X n (t 0 ) -X n (t - 0 ) = a(t 0 ) • X n-1 (t 0 ) -X n-1 (t - 0 ) + Z n (t 0 ) -Z n (t - 0 ) , n ∈ Z. Then, X n (t 0 ) -X n (t - 0
) is a real autoregressive process. Remark 3.2. Note that ρ(D) ⊂ C is not always satisfied in Example 3.1. For example, if r(s, t) = a(s)b(t) where 1 0 a(s)x(s) ds = 0 and b has a jump at t 0 , one obtains

ρ(x)(t 0 ) -ρ(x)(t - 0 ) = b(t 0 ) -b(t - 0 ) 1 0 a(s)x(s) ds = 0. Remark 3.3. A slight modification allows to introduce exogenous ran- dom variables. Set X n -m = ρ(X n-1 -m) + Z n -ρ ′ (Z ′ n ), then, if (Z n ) and (Z ′ n ) satisfy the SLLN, (X n ) satisfies it. 4.
A fixed number of jumps 4.1. Case of fixed times of jumps. We begin with a very simple case. Let X be a (D, D)-valued process admitting exactly k ≥ 1 distinct jumps at times 0 < t 1 < • • • < t k < 1. Now and in all the paper, we make use of the generic notation ∆ to denote the intensity of jumps. So we set ∆ j = X(t j ) -X(t - j ) , j = 1, . . . , k and one wants to estimate E(∆ j ) (supposed to be finite), 1 ≤ j ≤ k from n independent copies of ∆ j . In this case, the k jumps are observed therefore known, so one may derive the following immediate results.

Proposition 4.1.

If E( X ) < ∞ and ∆ j,n := 1 n n i=1 X i (t j ) -X i (t - j ) , j = 1, . . . , k, we get a) ∆ j,n a.s. ---→ n→∞ E(∆ j ), j = 1, . . . , k. b) If moreover E( X 2 ) < ∞, then √ n ∆ j,n -E(∆ j ) , j = 1, . . . , k d ---→ n→∞ N k (0, Σ)
where Σ is a k × k matrix with elements Σ j,j ′ = Cov (∆ j , ∆ j ′ ), j, j ′ = 1, . . . , k.

It is easy to derive an exponential bound for P( ∆ j,n -E(∆ j ) ≥ ε), j = 1, . . . , k and then, obtain an almost sure rate of convergence in Proposition 4.1-a). For this, one can make use of the following version of Bernstein's inequality: Proposition 4.2. Let ξ 1 , . . . , ξ n be independent real-valued random variables such that σ 2 i := Var (ξ i ) and Bernstein's condition holds for all i = 1, . . . , n:

E |ξ i -E(ξ i )| m ≤ (m!/2)σ 2 i H m-2 , H > 0, m = 3,• • • then for ε > 0: P n i=1 ξ i -E(ξ i ) ≥ nε ≤ 2 exp - n 2 ε 2 2 n i=1 σ 2 i + 2Hnε
.

Note that Bernstein's condition is equivalent to the existence of an exponential moment for ξ i . Indeed, it is true as soon as

|ξ i -E(ξ i )| ≤ H a.s..
If one wants to estimate the greatest jump, it is easy to prove that if

X i (T i,j ) -X i (T - i,j ) fulfills conditions of Proposition 4.2 for each j = 1, . . . , k (with values σ 2 j = Var ( X i (t j ) -X i (t - j )
) and H j ), then

P max j=1,...,k ∆ j,n -max j=1,...,k E(∆ j ) ≥ ε ≤ 2ke -nc(ε) , ε > 0 with c(ε) -1 = max j=1,...,k (2σ 2 j + 2H j ε) > 0. Actually, it suffices to note that max j=1,...,k ∆ j,n -max j=1,...,k E(∆ j ) ≥ ε =⇒ max j=1,...,k ∆ j,n -E(∆ j ) ≥ ε
and to deduce the result from Proposition 4.2 for the latter term. Also, Proposition 4.1-b) induces construction of tests for existence of jumps.

An alternative point is the estimation of

E( max j=1,...,k X(t j ) -X(t - j ) ) := E(∆ max ) (remark that max j=1,...,k E(∆ j ) ≤ E( max j=1,...,k ∆ j )). To this end, set ∆ k,n = 1 n n i=1 max j=1,...,k X i (t j ) -X i (t - j ) .
Clearly ∆ k,n a.s.

---→ n→∞ E(∆ max ) if E(∆ max ) < ∞ and one gets an exponential rate as soon as ∆ max admits an exponential moment.

Finally, Proposition 4.1 can be extended to the case of non independent copies of ∆ j , satisfying for example some strong mixing conditions (see e.g. [START_REF] Bradley | Introduction to strong mixing conditions[END_REF]. Also, recall that results can be directly applied for some particular functional linear processes considered in Section 3, cf Example 3.2 and Corollary 3.2. 4.2. Case of k random jumps. The second step consists in taking random instants 0 < T 1 < • • • < T k < 1 (a.s.) with k fixed. The intensity of jumps is given by ∆ j = X(T j ) -X(T - j ) , j = 1, . . . , k. Again, one wants to estimate E(∆ j ), j = 1, . . . , k, from i.i.d. copies of ∆ j . The instants of jumps are observed and have the form 0

< T i,1 < • • • < T i,k < 1 (a.s.), i = 1, . . . , n. Then, the estimator of E(∆ j ) is ∆ j,n = 1 n n i=1 X i (T i,j ) -X i (T - i,j ) , j = 1, . . . , k.
Clearly, all the above results remain valid: almost sure consistency, exponential rate, estimation of the greatest jump, k-dimensional central limit theorem. Details are left to the reader. Moreover, the next statement shows that it is also possible to classify the jumps according to their respective intensities.

Proposition 4.3.

Suppose that for all

i = 1, . . . , n, X i (T i,j ) -X i (T - i,j ) fulfills conditions of Proposition 4.2 for each j = 1, . . . , k. If E(∆ ℓ 1 ) > • • • > E(∆ ℓ k ) > 0 for some permutation {ℓ 1 , . . . , ℓ k } of {1, . . . , k}, then almost surely for n large enough, one gets ∆ ℓ 1 ,n > • • • > ∆ ℓ k ,n .
Proof. We begin with the study of P k-1 j=1 {∆ ℓ j ,n < ∆ ℓ j+1 ,n } . First,

P k-1 j=1 {∆ ℓ j ,n < ∆ ℓ j+1 ,n } ≤ k-1 j=1 P ∆ ℓ j ,n < ∆ ℓ j+1 ,n ≤ k-1 j=1 P ∆ ℓ j+1 ,n -∆ ℓ j ,n -E(∆ ℓ j+1 -∆ ℓ j ) > E(∆ ℓ j -∆ ℓ j+1 ) .
Next, E(∆ ℓ j -∆ ℓ j+1 ) > 0 by assumption, so we apply Bernstein's inequality with the property

Var ( X i (T i,ℓ j+1 ) -X i (T - i,ℓ j+1 ) -X i (T i,ℓ j ) -X i (T - i,ℓ j ) ) ≤ 2(σ 2 ℓ j+1 + σ 2 ℓ j )
where σ 2 j := Var ( X i (T i,j ) -X i (T - i,j ) ) for all i = 1, . . . , n. So there exist H ′ > 0 such that

P (∆ ℓ j+1 ,n -∆ ℓ j ,n ) -E(∆ ℓ j+1 -∆ ℓ j ) ≥ E(∆ ℓ j -∆ ℓ j+1 ) ≤ exp - n(E(∆ ℓ j -∆ ℓ j+1 )) 2 4(σ 2 ℓ j + σ 2 ℓ j+1 ) + 2H ′ E(∆ ℓ j -∆ ℓ j+1 )
.

Then, an uniform bound of j = 1, . . . , k can be obtained by considering max

j E(∆ ℓ j -∆ ℓ j+1 ), min j E(∆ ℓ j -∆ ℓ j+1 ) as well as the bound σ 2 ℓ j + σ 2 ℓ j+1 ≤ 2 max j σ 2 j . Next, Borel Cantelli lemma implies that P lim n→∞ k-1 j=1 {∆ ℓ j ,n < ∆ ℓ j+1 ,n } = 0 yielding in turn that a.s. for n large enough, ∆ ℓ 1 ,n > • • • > ∆ ℓ k ,n .
By this way, one may consistently estimate jump's intensities E(∆ ℓ j ) by considering the ordered jumps ∆ ℓ j ,n , j = 1, . . . , k.

A random number of fixed jumps

In this part, we consider the bit more intricate case where X takes its values in (D, D) and has K random jumps for some nonnegative r.v. K such that for k = 0,• • •:

P(K = k) = p k , p 0 < 1 and p k ≥ 0.
We suppose also that K and ∆ are independent. If K takes a positive value k then jumps occur at fixed times 0 := t 0 < t 1 < • • • < t k < 1. Then, conditionally on {K = k}, one gets X(t k 0 ) -X(t - k 0 ) = 0 for all k 0 > k. A possible construction of such a process is given in Example 2.3 in the case of degenerated times T k := t k . The intensity of the k-th jump is denoted by

∆ k := X(t k ) -X(t - k ) (5.1)
with the condition E(∆ k ) < ∞, k ≥ 1. Note that E(∆ k ) > 0 as soon as p k is positive.

5.1. Estimation of jumps intensities. We consider an i.i.d. sequence of number of jumps K 1 , . . . , K n independent from the intensities of jumps ∆ i,k :=

X i (t k ) -X i (t - k ) , i = 1, . . . , n, k ≥ 1. For a given value of k, our aim is to estimate E(∆ k ) from the observed ∆ i,k := X i (t k ) -X i (t - k ) when K i ≥ k, k ≥ 1.
Since the number of jumps is not known and varies with i, we consider the following estimator:

I k,n =      n i=1 X i (t k ) -X i (t - k ) 1 {K i ≥k} n i=1 1 {K i ≥k} , if n i=1 1 {K i ≥k} > 0 0, if n i=1 1 {K i ≥k} = 0, (5.
2) which is equivalent to

I k,n = n i=1 X i (t k ) -X i (t - k ) 1 {K i ≥k} n i=1 1 {K i ≥k} 1 { n i=1 1 {K i ≥k} >0}
for k ≥ 1, using the convention 0 0 = 0. Rates of convergence for I k,n toward E(∆ k ), k ≥ 1, are given in the following statement. 

P I k,n -E(∆ k ) ≥ ε ≤ 2 exp - c 0 2 ( i≥k p i ) nε 2 σ 2 k + 2H 2 k ; (5.3) b) lim n→∞ n ln n I k,n -E(∆ k ) ≤ √ 2σ k ( i≥k p i ) -1 2 a.s.
Proof. We have to study

P I k,n -E(∆ k ) ≥ ε = P n i=1 ∆ i,k 1 {K i ≥k} n i=1 1 {K i ≥k} 1 { n i=1 K i ≥k}>0 -E(∆ k ) ≥ ε),
ε > 0, which can be written as

P I k,n -E(∆ k ) ≥ ε = n j=0 P n i=1 1 {K i ≥k} = j × P n i=1 ∆ i,k 1 {K i ≥k} n i=1 1 {K i ≥k} 1 { n i=1 K i ≥k}>0 -E(∆ k ) ≥ ε n i=1 1 {K i ≥k} = j .
As n i=1 1 {K i ≥k} ∼ B(n, i≥k p i ) and, since n i=1 1 {K i ≥k} = j is equivalent to have exactly j indicators equal to 1, the i.i.d assumption on the ∆ i 's and independence from K give

P I k,n -E(∆ k ) ≥ ε = 1 {ε≤E(∆ k )} P n i=1 1 {K i ≥k} = 0 + n j=1 P n i=1 1 {K i ≥k} = j × P j i=1 ∆ i,k j -E(∆ k ) ≥ ε .
Now, one may use Bernstein's inequality to obtain:

P I k,n -E(∆ k ) ≥ ε ≤ (1 - i≥k p i ) n + 2 n j=1 n j (1 - i≥k p i ) n-j ( i≥k p i ) j exp - jε 2 2σ 2 k + 2H k ε so that, P I k,n -E(∆ k ) ≥ ε ≤ 2 1 - i≥k p i + i≥k p i exp - ε 2 2σ 2 k + 2H k ε n .
Since ln(1a) ≤ -a for 0 < a < 1 and 1e -a ≥ a -a 2 2 for all a ≥ 0, we successively obtain for all k such that i≥k p i > 0:

P I k,n -E(∆ k ) ≥ ε ≤ 2 exp -n i≥k p i 1 -exp(- ε 2 2σ 2 k + 2H k ε ) ≤ 2 exp - n i≥k p i ε 2 2σ 2 k + 2H k ε 1 - ε 2 4σ 2 k + 4H k ε . Next, the condition 0 < c 0 < 1 and 1 -1 2 ε 2 2σ 2 k +2H k ε ≥ c 0 entail P I k,n -E(∆ k ) ≥ ε ≤ 2 exp -c 0 n( i≥k p i ) ε 2 2σ 2 k + 2H k ε . (5.4)
Now, it is easy to verify that 0 5.2. Estimation of the maximal jump. Theorem 5.1 allows us to estimate the maximal jump of X from i.i.d. copies ∆ i . Suppose that there exists an unique integer k max such that

< ε ≤ 2H k (1 -c 0 ) is sufficient to get the condition 1 -1 2 ε 2 2σ 2 k +2H k ε ≥ c
E(∆ kmax ) > max k≥1 k =kmax E(∆ k ),
again, the difficulty is that not all observed sample paths have a number of jumps greater than k max . An estimator of E(∆ kmax ) is given by I max = max k=1,...,kn I k,n with I k,n defined by (5.2) and k n → ∞. We obtain the following result.

Proposition 5.1. Under the conditions of Theorem 5.1,

(1) If K has a finite support {0, 1, . . . , k 0 } with p 0 = 1, then

lim n→∞ I max -E(∆ kmax ) = O ln n n a.s.. (2) If K is a N-valued random variable, and if k n → ∞ such that k n = O ln n) κ for some κ > 0, then lim n→∞ I max -E(∆ kmax ) = O ln n np kn a.s.
with p kn = P(K = k n ).

Proof. Observe that max k=1,...,kn

I k,n -E(∆ k ) ≥ max k=1,...,kn I k,n -max k=1,...,kn E(∆ k ) , so, P I max -max k=1,...,kn E(∆ k ) > ε ≤ P kn k=1 I k,n -E(∆ k ) > ε ≤ kn k=1 P I k,n -E(∆ k ) > ε .
(1) First if K has a finite support {0, . . . , k 0 }, we get that I max = max k=1,...,k 0 I k,n (a.s.) for n large enough such that k n ≥ k 0 , and in this case, max k=1,...,kn

E(∆ k ) = max k=1,...,k 0 E(∆ k )
and the above summation ends at k 0 . By this way, for K with finite support, one gets under conditions of Theorem 5.1 that for all 0 < c 0 < 1 and 0 < ε < 2 min k H k (1c 0 ):

P I max -max k=1,...,kn E(∆ k ) > ε = O exp -c 0 p k 0 nε 2 2σ 2 + 2Hε
,

where σ 2 = max k σ 2 k and H = max k H k , yielding in turn that lim n→∞ I max -E(∆ kmax ) = O ln n n a.s..
(2) On the other hand, for a N-valued random variable K and n large enough such that k n ≥ k max , one has max k=1,...,kn

E(∆ k ) = E(∆ kmax )
, and the bound (5.3) gives

P I max -max k=1,...,kn E(∆ k ) ≥ ε = O k n exp -c 0 p kn nε 2 2σ 2 + 2Hε
.

The result follows with the choice ε = ε 0 ln n np kn for some large enough ε 0 > 0 as soon as k n has at most a logarithmic order.

Note that if K has a infinite support, the obtained rate of convergence depends strongly both on the choice of k n and its associated value p kn . We give below two typical examples of expected rates.

Example 5.1. (a) If p kn ≍ k -α n for some α > 0, then the choice k n ≃ ln(ln n) gives the same rate as in the finite support case, while one gets a O(n -1 2 (ln n)

1+α

2 ) for k n ≃ ln n. An example is furnished by the zeta distribution with parameter q ∈]1, +∞[ for which

P(K = k) = k -q ζ(q) , k = 1, 2,• • •. (b)
For Poisson distribution P(λ), Stirling's approximation gives that e -kn ln(kn) is predominant for p kn , it is equal to (ln n) -ln(ln(ln n)) for k n = ln(ln n) and the associated a.s. rate of convergence of

I max to E(∆ kmax ) is then of order o(n -β ) for all 0 < β < 1 2 . 5.3. Estimation of k max . Now as soon as E(∆ kmax ) > max k≥1,k =kmax E(∆ k ),
the existence and uniqueness of k max = arg max k=1,...,kn I k,n are guaranteed, at least for n large enough. Theorem 5.1 allows us to derive the following result.

Proposition 5.2. Suppose that assumptions of Theorem 5.1 are fulfilled, if k n and p kn are such that n≥0 k n exp(-C 1 np kn ) < ∞ for all C 1 > 0, one gets that almost surely for n large enough, k max = k max .

Proof. For n large enough to get k n ≥ k max , one has clearly

P( k max = k max ) ≤ kn k=1 k =kmax P I k,n -E(∆ k ) > I kmax,n -E(∆ k ) .
But for all k ≥ 0 and ε > 0, and if A = { I kmax,n -E(∆ kmax ) ≤ ε}

P I k,n -E(∆ k ) > I kmax,n -E(∆ k ) = P I k,n -E(∆ k ) > I kmax,n -E(∆ k ), A + P I k,n -E(∆ k ) > I kmax,n -E(∆ k ), A c . Next on A, the event { I kmax,n -E(∆ k ) ≥ E(∆ kmax -∆ k ) -ε} holds, so P( k max = k max ) ≤ kn k=1 k =kmax P I k,n -E(∆ k ) > E(∆ kmax -∆ k ) -ε + P I kmax,n -E(∆ kmax ) > ε , the choice ε = 1 2 E(∆ kmax -∆ k ) now implies that P( k max = k max ) ≤ kn k=1 P I k,n -E(∆ k ) > a 2
with a a positive real such that min

k≥1,k =kmax E ∆ kmax -∆ k ≥ a > 0.
Finally if k n and p kn are such that n≥0 k n exp(-C 1 np kn ) < ∞ for all C 1 > 0, then replacing respectively σ 2 k and H k by σ 2 = max k σ 2 k and H = max k H k in the bound (5.3), yields together with Borel Cantelli lemma that almost surely for n large enough, k max = k max .

6. The case of random jumps 6.1. The ordered case. It is noteworthy that all the results of Section 5 remain true if one considers again i.i.d. copies of ∆ k with an arbitrary number of ordered random jumps T k . A typical case is given in Example 2.3. To this ends, one may consider

I k,n = n i=1 X i (T k,i ) -X i (T - k,i ) 1 {K i ≥k} n i=1 1 {K i ≥k} 1 { n i=1 1 {K i ≥k} >0}
to get a strongly consistent estimator of E X(T k ) -X(T - k ) , the continuous time framework guaranteeing that ( |X i (T k,i )-X i (T - k,i )|, K i ), i = 1, . . . , n is well observed. Details are left to the reader. 6.2. The non-ordered case. In this part, we rather suppose that X admits k, k ≥ 2, independent jumps at independent random instants T 1 , T 2 , . . . , T k on ]0,1[ (so that the T ′ k s are not necessarily ordered) with E(∆ 1 ) > • • • > E(∆ k ) and ∆ j := X(T j ) -X(T - j ) , j = 1, . . . , k. Our aim is to estimate E(∆ j ), j = 1, . . . , k, from n i.i.d. copies of ∆ j on the basis of X(T * ji ) -X(T * - ji ) , j = 1, . . . , k, i = 1, . . . , n , where 0 < T * 1i < • • • < T * ki < 1 (a.s.). In this part, we suppose also that ∆ 1 , . . . , ∆ k are independent variables. Clearly, the difficulty is here to identify the jumps. To this end, we follow Bosq (2014)'s methodology for k = 2 jumps and generalize it for any arbitrary value of k.

6.2.1. Case k = 2. Since only strong consistency is established in [START_REF] Bosq | Estimating and detecting jumps[END_REF], we begin with the case k = 2 and make use of Bernstein's inequality to obtain almost sure rates of convergence. The methodology is the following. First remark that E(∆ 1 ) and E(∆ 2 ) are solutions of the quadratic equation 2 j=1 (x -E(∆ j )) = 0, which can be written as

x 2 -sx + p = 0 with s = E(∆ 1 ) + E(∆ 2 ) and p = E(∆ 1 )E(∆ 2 ) = E(∆ 1 ∆ 2 ) by independence of ∆ 1 from ∆ 2 . Solutions x 1 > x 2 are given by x 1 = 1 2 (s + s 2 -4p) and x 2 = 1 2 (s -s 2 -4p).
The next result shows that one may consistently estimate the intensities E(∆ 1 ) > E(∆ 2 ) without the knowledge of their corresponding times of arrival and even, without ordering jumps according to their observed intensity! First to estimate E(∆ 1 ) and E(∆ 2 ), we set

∆ 1 = 1 2 ( ∆ 1n + ∆ 2n ) + ( ∆ 1n + ∆ 2n ) 2 -4 ∆ 1:2,n ∆ 2 = 1 2 ( ∆ 1n + ∆ 2n ) -( ∆ 1n + ∆ 2n ) 2 -4 ∆ 1:2,n
with the observed

∆ 1n + ∆ 2n = 1 n n i=1 X i (T * 1i ) -X(T * - 1i ) + X i (T * 2i ) -X(T * - 2i ) ∆ 1:2,n = 1 n n i=1 X i (T * 1i ) -X(T * - 1i ) X i (T * 2i ) -X(T * - 2i ) .
We may derive the following result:

Proposition 6.1. Suppose that X i (T 1i ) -X i (T - 1i ) , X i (T 2i ) -X i (T - 2i ) and X i (T 1i ) -X i (T - 1i ) X i (T 2i ) -X i (T - 2i 
) fulfill conditions of Proposition 4.2 for all i = 1, . . . , n. Then for j = 1, 2, we get

∆ j -E(∆ j ) = O ln n n a.s..
Proof. We establish the result for ∆ 1 , the proof being the same for ∆ 2 . First, remark that

∆ 1n + ∆ 2n ≡ 1 n n i=1 X i (T 1i ) -X(T - 1i ) + X i (T 2i ) -X(T - 2i )
and

∆ 1:2,n ≡ 1 n n i=1 X i (T 1i ) -X(T - 1i ) X i (T 2i ) -X(T - 2i ) .
So, we study the a.s. behaviour of

2 ∆ 1 = ∆ 1n + ∆ 2n + (∆ 1n + ∆ 2n ) 2 -4∆ 1:2,n
where the ∆ jn and ∆ 1:2,n are built on the r.v.'s X i (T ji ) -X i (T - ji ) . Note that as ∆ 1 and ∆ 2 are independent, we have

2E(∆ 1 ) = E(∆ 1 + ∆ 2 ) + (E∆ 1 + E∆ 2 ) 2 -4E(∆ 1 )E(∆ 2 ) = E(∆ 1 ) + E(∆ 2 ) + (E∆ 1 + E∆ 2 ) 2 -4E(∆ 1 ∆ 2 ).
So for ψ n = n ln n , we get the bound

ψ n ∆ 1 -E(∆ 1 ) ≤ ψ n 2 ∆ 1,n -E∆ 1 + ∆ 2,n -E∆ 2 + (∆ 1n + ∆ 2n ) 2 -4∆ 1:2,n -(E∆ 1 + E∆ 2 ) 2 -4E(∆ 1 ∆ 2 ) .
For j = 1, 2, we handled the terms P( ∆ j,n -E∆ j ≥ ε 0 ψ -1 n ) with Bernstein's inequality and Borel Cantelli's lemma for large enough positive ε 0 . For the square-root term, remark that it may be written as

ψ n 2 (∆ 1n + ∆ 2n ) 2 -(E∆ 1 + E∆ 2 ) 2 -4(∆ 1:2,n -E(∆ 1 ∆ 2 )) (∆ 1n + ∆ 2n ) 2 -4∆ 1:2,n + (E∆ 1 + E∆ 2 ) 2 -4E(∆ 1 ∆ 2 )
.

The denominator converges almost surely to the positive limit 2(E∆ 1 -E∆ 2 ). Next, to treat the last term, just observe that

ψ n 2 (∆ 1n + ∆ 2n ) 2 -(E∆ 1 + E∆ 2 ) 2 -4(∆ 1:2,n -E(∆ 1 ∆ 2 )) ≤ ψ n 2 (∆ 1n + ∆ 2n ) 2 -(E∆ 1 + E∆ 2 ) 2 + 2ψ n ∆ 1:2,n -E(∆ 1 ∆ 2 )
and that x -E(∆ j ) = 0 = k j=0 a j x j , where a k = 1 and for j = 1, . . . , k, Viète's formula gives:

ψ n 2 (∆ 1n + ∆ 2n ) 2 -(E∆ 1 + E∆ 2 ) 2 = ψ n 2 (∆ 1n + ∆ 2n ) -(E∆ 1 + E∆ 2 ) ∆ 1n + ∆ 2n + E∆ 1 + E∆ 2 .
a k-j = (-1) j 1≤ℓ 1 <...<ℓ j ≤k E(∆ ℓ 1 ) • • • E(∆ ℓ j ).
Next, roots can be computed by finding the eigenvalues λ j of the k × k matrix [START_REF] Pan | Solving a polynomial equation: some history and recent progress[END_REF]. This eigenvalue method can be computationally expensive, but it is known to be fairly robust.

A =       -a 1 a 0 -a 2 a 0 -a 3 a 0 . . . -a k-1
Concerning estimation in the case k ≥ 3, we require independence between the ∆ j 's as it allows to write the coefficients a k-j under the more convenient form:

a k-j = (-1) j 1≤ℓ 1 <...<ℓ j ≤k E ∆ ℓ 1 • • • ∆ ℓ j Next, one 'estimates' E ∆ ℓ 1 • • • ∆ ℓ j by 1 n n i=1 X i (T ℓ 1 ,i ) -X i (T - ℓ 1 ,i ) • • • X i (T ℓ j ,i ) -X i (T - ℓ j ,i ) .
Since these quantities are not observed and all summations are complete in Viète's formula, the trick is again to use observed D ℓ j i = X(T * ℓ j ,i ) -X(T * - ℓ j ,i ) for T * 1i < • • • < T * ki (a.s.), i = 1, . . . , n, j = 1, . . . , k. So the matrix A can be estimated by

A =       
a 1n a 0n -a 2n a 0n -a 3n a 0n . . . - . . . a k-ℓ,n = (-1) ℓ 1≤j 1 <...<j ℓ ≤k D j 1 :j ℓ ,n . . . a 0,n = (-1) k k j=1 D j,n . where

D j 1 :j ℓ ,n = 1 n n i=1 X i (T * j 1 ,i ) -X i (T * - j 1 ,i ) • • • X i (T * j ℓ ,i ) -X i (T * - j ℓ ,i ) .
First note that positivity of the D j,n 's and Descartes' rule of signs (1637) imply that the polynomial k-1 j=0 a j,n x j +x k has 0 negative and at most k positive roots. Also, almost surely for n large enough, a 0,n > 0 which guarantees the existence of A. Moreover, the following proposition shows that we obtain strongly consistent estimators of the coefficients. Proposition 6.2. Under the assumption that the (∆ ij , i = 1, . . . , n, j = 1, . . . , k) are globally independent, we have k-1 j=0 a j,n x j + x k a.s.

---→ n→∞ k-1 j=0 a j x j + x k = 0.

Proof. Clearly, one has for each ℓ = 1, . . . , k: ---→ n→∞ 1≤j 1 <...<j ℓ ≤k

E(∆ j 1 • • • ∆ j ℓ ).
Then, one gets for ℓ = 1, . . . , k,

1≤j 1 <...<j ℓ ≤k E(∆ j 1 • • • ∆ j ℓ ) = 1≤j 1 <...<j ℓ ≤k E(∆ j 1 ) • • • E(∆ j ℓ ) = (-1) ℓ a k-ℓ
and the result follows from k j=0 a j x k = 0 with a k = 1.

  and ρ : D → D, ρ ′ : D → D are linear bounded operators such that ρ j

  t)| < 1. In addition, one has ρ(D) ⊂ C = C([0, 1]). Now, we state the law of large numbers. Proposition 3.1. (X n ) satisfies the strong law of large numbers (SLLN) if and only if (Z n ) satisfies it. The same statement holds for the L 2 law of large numbers.

  and (3.4) give the result. The proof concerning the L 2 law of large numbers is similar. Details are omitted.Example 3.2. If (Z n ) is convex tight or if it takes its values in the cone of nondecreasing functions over D, then d(0, Z n ) a.s.

  Suppose in addition that for k ≥ 1 and i = 1, . . . , n, ∆ i,k fulfills conditions of Proposition 4.2 with variance σ 2 k and constant H k . Then, for all k = 1,• • • , such that i≥k p i > 0, one obtains a) for each c 0 ∈]0, 1[ and all 0 < ε ≤ 2H k (1c 0 ):

  0 and the bound (5.3) is deduced from (5.4) as one has also ε ≤ 2H k . Finally, the rate of convergence is derived from (5.4) with the choice ε = c p i and application of Borel-Cantelli lemma.

  taking E(∆ j ) = λ * -1 j , j = 1, . . . , k, with λ * 1 < • • • < λ * k (see e.g.

         a k-1,n = -k j=1 D j,n a k-2,n = 1≤j 1 <j 2 ≤k D j 1 :j 2 ,n

  1≤j 1 <...<j ℓ ≤k D j 1 :j ℓ ,n ≡ 1≤j 1 <...<j ℓ ≤k ∆ j 1 :j ℓ ,n a.s.

  Again Bernstein's inequality and Borel Cantelli's lemma allow us to control the terms ψ n ∆ 1:2,n -E(∆ 1 ∆ 2 ) and ψ n ∆ jn -E∆ j , j = 1, 2 and the result follows since ∆ 1n + ∆ 2n + E∆ 1 + E∆ 2 The general case. For arbitrary k ≥ 2, E(∆ 1 ), . . . , E(∆ k ) are again solutions of

	E∆ 2 ).	a.s. n→∞ ---→	2(E∆ 1 +
	6.2.2. k		
	j=1		

Consequently, one may expect to recover estimators of the k real roots, at least by approximation.