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Abstract. In this paper, we study intensity of jumps in the con-
text of functional linear processes. The natural space for that is
the space D = D[0, 1] of cadlag real functions. We begin with limit
theorems for ARMAD(1,1) processes. It appears that under some
conditions, the functional linear process and its innovation have
the same jumps. This nice property allows us to focus on the case
of i.i.d. D-valued random variables. For such variables, we esti-
mate the intensity of jumps in various situations : fixed number of
jumps, random instants of jumps, random number of instants of
jumps, .... We derive exponential rates and limits in distribution.

1. Introduction

A lot of papers are devoted to autoregressive processes with values in
separable Hilbert or Banach spaces (see Antoniadis et al., 2012; Besse
et al., 2000; Cardot, 1998; Damon and Guillas, 2005; Ferraty and Vieu,
2006; Kargin and Onatski, 2008; Marion and Pumo, 2004; Mas, 2004;
Mourid, 2002; Pumo, 1998; Ruiz-Medina, 2012, among many others).
It is more difficult to study D-valued linear processes, where D =
D[0, 1] is the space of cadlag real functions defined on [0,1]. The main
reason is that, if D is equipped with the sup-norm, it becomes a non-
separable space. In order to obtain separability, it is preferable to use
the Skorohod metric (cf Billingsley, 1999). Now, in the framework
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2 D. BLANKE AND D. BOSQ

of D-valued linear processes there are not many papers (see however
El Hajj, 2011; El Hajj, 2013; Bosq, 2014).

Here, our aim is to study continuous time random variables and
to estimate the intensity of jumps at random or fixed instants. The
process (X(t), t ∈ [0, 1]) is observed over [0, 1], this time interval can
be interpreted as one day, one week, one year...

Various applications may be considered. A classical and simple ex-
ample is the compound Poisson process : the holders of an insurance
policy are victims of misfortunes at the instants 0 < T1 < T2 < · · · fol-
lowing a Poisson process with intensity λ. They obtain the respective
payments ∆1,∆2,· · · at instants T1, T2,· · · and one may set

X(t) =

Nt∑

n=1

∆n, 0 ≤ t ≤ 1

where Nt = sup{n : Tn ≤ t}, 0 ≤ t ≤ 1 and the convention X(t) =
0 if Nt = 0. A similar example is a particle subjected to impacts
at Poissonian instants Tn, where ∆n denotes the displacement of the
particle at time Tn.

Now, another example is the wind speed (Jacq et al., 2005) associated
with themistral gust : one may construct aD-valued ARMA model and
note that, under mild conditions, the model and the strong white noise
have the same jumps (see Section 2). Then, since it is difficult to
predict the gust intensity, one may suppose that the instants of gusts
are independent, and the model is no more Poissonian. A study of that
situation appears in Section 6.

Other models can be exhibited:

- In finance, it can be shown that a model with jumps is bet-
ter than the Black-Scholes model (see Cont and Tankov, 2004;
Tankov and Voltchkova, 2009, for details).

- Another example of jumps is associated with electricity con-
sumption: clearly, a jump appears early in the morning and
late in the evening (Antoniadis et al., 2012; El Hajj, 2013).

- The model invoking dengue is slightly different since it involves
bifurcation (cf Garba et al., 2008), it is related with dynamical
systems but it contains jumps.

The previous examples show that we must consider various distinct
situations: they appear below.

In Section 2, we recall some properties of D and give some examples.
The next section is devoted to D-valued ARMA(1,1) processes with

Xn − ρ(Xn−1) = Zn − ρ′(Zn−1), n ∈ Z

where (Zn) is a D-strong white noise and ρ, ρ′ are continuous linear
operators. It can be shown that limit theorems hold for (Zn) if and
only if they hold for (Xn). Now, if ρ(D) ⊂ C[0, 1] and ρ′(D) ⊂ C[0, 1],
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it follows that Zn and Xn have the same jumps. This property leads
us to consider i.i.d. D-valued variables in the next section.

Section 4 is devoted to the case where the D-valued random variable
X admits k distinct fixed jumps at instants t1, . . . , tk. The problem is
to estimate the intensity of jump E(∆j) where ∆j =

∣∣X(tj)−X(t−j )
∣∣,

j = 1, . . . , k. Clearly, if ∆1,j, . . . ,∆n,j are i.i.d. copies of ∆j , or if
they satisfy a suitable strong mixing condition, it is easy to obtain
limit theorems concerning (E(∆j), j = 1, . . . , k) and to estimate the
greatest jump. Similar results can be obtained for jumps at increasing
random instants: 0 < T1 < · · · < Tk < 1 almost surely. An ordering
for intensity of jumps is also available.

In Section 5, we suppose that the number Ki of jumps is random and
independent from the ∆i,k =

∣∣Xi(tk)−Xi(t
−
k )
∣∣, i = 1, . . . , n, k ≥ 1. In

order to estimate E(∆k) from the observed ∆i,k, we set

∆n,k =

∑n

i=1∆i,k1{Ki≥k}∑n

i=1 1{Ki≥k}

, k ≥ 1

with the convention ∆n,k = 0 if
∑n

i=1 1{Ki≥k} = 0 (k ≥ 0). Then, it
may be shown that

∣∣∆n,k − E(∆k)
∣∣ = O

(√ lnn

n

)
a.s..

Some applications and extensions to random ordered instants are given.
Finally, the last section is devoted to the non-ordered case: T1, . . . , Tk

are independent random instants, thus the scheme is not Poissonian.
Each Xi has k jumps (Tij , j = 1, . . . , k) which are not directly ob-
servable. Now, supposing that ∆1, . . . ,∆k are independent and noting
that

k∏

j=1

(
x− E(∆j)

)
=

k∑

j=0

ajx
j = 0,

one may use a trick for estimating the coefficients a0, . . . , ak−1 for k ≥ 2.
It follows that one can obtain an equation of the form

k∑

j=0

âj,nx
j = 0, (1.1)

where lim
n→∞

âj,n = aj a.s., j = 1, . . . , k. Then (1.1) can be solved at

least by approximation.
Observations in discrete time and numerical applications will appear

in a next paper (cf Blanke and Bosq, 2014).

2. Constructing D-valued random variables

In order to study the jumps of the real process X =
(
X(t), 0 ≤

t ≤ 1
)
, it is natural to consider the space D = D([0, 1]) of cadlag real

functions defined over [0, 1]. IfD is equipped with the sup-norm: ‖x‖ =
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sup
0≤t≤1

|x(t)|, it becomes a non-separable space. Thus, it is preferable to

use the Skorohod metric defined as

d(x, y) = inf
λ∈Λ

{
|λ− I| ∨ ‖x− yλ‖

}
; x, y ∈ D

where Λ is the class of strictly increasing continuous mapping of [0,1]
onto [0,1] and I is the identity from [0, 1] to [0, 1]. Then, D equipped
with the Skorohod metric is separable, we refer to Billingsley (1999) for
a detailed study ofD. Now, we denote by D the σ-algebra generated by
the Skorohod metric. We only recall three useful properties of (D,D):

- If x ∈ C = C([0, 1]), then

d(xn, x) −−−→
n→∞

0 ⇐⇒ ‖xn − x‖ −−−→
n→∞

0.

- If ρ is a bounded linear operator, i.e.

‖ρ‖L = sup
x∈D,‖x‖≤1

‖ρ(x)‖ <∞,

then it is D −D measurable.
- x 7→ x(t0)− x(t−0 ) is a continuous linear form on (D, ‖·‖).

See Billingsley (1999) and Pestman (1995) for further properties.

Now, let X be a (D,D)-valued random variable defined on some
probability space (Ω,A,P). In this paper, we focus on estimation of
the intensity of jumps in the following cases:

- a fixed number of jumps at fixed or random times,
- a random number of jumps at fixed times,
- a random number of jumps at random times.

We give below some examples of jumps associated with X correspond-
ing to our framework.

Example 2.1 (k fixed jumps).

X(t, w) =
k∑

j=1

Yj(t, w)1[tj−1,tj [(t), t ∈ [0, 1], w ∈ Ω

where t′js are fixed points with 0 = t0 < t1 < · · · < tk ≤ 1 and Yj is
D ⊗A− BR measurable, 1 ≤ j ≤ k.

Example 2.2 (k random jumps).
Consider the k + 1 measurable processes (Zj(t, w), 1 ≤ j ≤ k + 1, 0 ≤
t ≤ 1, w ∈ Ω) with continuous sample paths and k random variables
(r.v.) T1, . . . , Tk with values in ]0,1[ and such that P(Tj = Tj′) = 0,
j 6= j′. Suppose that Z1, . . . , Zk+1, T1, . . . , Tk are globally independent.
Then, we set

X(t, w) =

k+1∑

j=1

Zj(t, w)1[T ∗
j−1

(w),T ∗
j (w)[(t), 0 ≤ t ≤ 1, w ∈ Ω
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where the T ∗
j are ordered as: 0 = T ∗

0 < T ∗
1 < · · ·T ∗

k < T ∗
k+1 = 1, and

X(1) = Zk+1(1).

Example 2.3 (Random number of jumps).
Let 0 = T0 < T1 < · · · < TK < · · · be a strictly increasing sequence of
random variables (almost surely) with K a random N-valued variable.
Let us set N1 =

∑∞
k=1 1Tk≤1 and

X(t, w) =

{∑k

j=1 Yj(w)1[Tj−1,Tj [(t) if N1 = k ≥ 1, 0 ≤ t ≤ 1

0 if N1 = 0

where Yj is A−BR measurable. Note that an example of such a model
is the compound Poisson process.

3. The case of ARMAD processes

3.1. Limit theorems for ARMAD(1,1). Consider the ARMAD(1,1)
process

(Xn −m)− ρ(Xn−1 −m) = Zn − ρ′(Zn−1), n ∈ Z

where (Zn) is a D-strong white noise (i.e. (Zn) is i.i.d., 0 < E ‖Zn‖2 <
∞, E(Zn) = 0), m ∈ D, and ρ : D 7→ D, ρ′ : D 7→ D are linear
bounded operators such that ‖ρj‖L < 1 and

∥∥ρ′j′
∥∥
L
< 1 for some

integers j ≥ 1 and j′ ≥ 1. Note that ρ and ρ′ are D − D measurable
(cf Pestman, 1995).

Now, it is easy to show that

Xn = m+

∞∑

j=0

ρj
(
Zn−j − ρ′(Zn−j−1)

)
, n ∈ Z

almost surely and in L2. Moreover (Zn) is the innovation of (Xn) and
(Xn) is equidistributed.

A classical example of linear bounded operator in D meeting all our
conditions is as follows:

Example 3.1.

ρ(x)(t) =

∫ 1

0

r(s, t)x(s) ds, 0 ≤ t ≤ 1, x ∈ D,

where r is continuous and max
0≤s,t≤1

|r(s, t)| < 1. In addition, one has

ρ(D) ⊂ C = C([0, 1]).

Now, we state the law of large numbers.

Proposition 3.1. (Xn) satisfies the strong law of large numbers (SLLN)
if and only if (Zn) satisfies it. The same statement holds for the L2

law of large numbers.
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Proof. We may and do suppose that m = 0. Now, set

Yn = Xn − ρ(Xn−1) = Zn − ρ′(Zn−1), n ∈ Z (3.1)

then, we have

Xn =
∆n,X

n
+ (I − ρ)−1Y n, (3.2)

where

∆n,X = (I − ρ)−1ρ(X0 −Xn),

thus, Tchebychev inequality yields

‖∆n,X‖
n

a.s.−−−→
n→∞

0

then, from (3.1) it follows that
∥∥Xn

∥∥ a.s.−−−→
n→∞

0 ⇐⇒
∥∥Y n

∥∥ a.s.−−−→
n→∞

0. (3.3)

Similarly, we may write

Zn =
∆n,Z

n
+ (I − ρ′)−1Y n

with

∆n,Z = (I − ρ′)−1ρ′(Z0 − Zn),

and using again Tchebychev inequality, one obtains
∥∥Zn

∥∥ a.s.−−−→
n→∞

0 ⇐⇒
∥∥Y n

∥∥ a.s.−−−→
n→∞

0 (3.4)

thus, (3.3) and (3.4) give the result.
The proof concerning the L2 law of large numbers is similar. Details

are omitted. �

Example 3.2. If (Zn) is convex tight or if it takes its values in the cone

of nondecreasing functions over D, then d(0, Zn)
a.s.−−−→

n→∞
0 (cf Daffer and

Taylor, 1979) and, since 0 is a continuous function, it is equivalent
to write

∥∥Zn

∥∥ → 0 a.s.. In particular, if Zn(t) = Nn+t − Nn − λt,
0 ≤ t ≤ 1, n ≥ 1 where (Ns, s ≥ 0) is a Poisson process with intensity
λ the strong law of large numbers holds.

We now apply Proposition 3.1 for obtaining consistency of jumps:
suppose thatXn has jumps at t1, . . . , tk (≥ 1) with intensity E

(
Xn(tj)−

Xn(t
−
j )
)
, j = 1, . . . , k. Then, we have :

Corollary 3.1. If (Zn) satisfies the SLLN then

1

n

n∑

i=1

(
Xi(tj)−Xi(t

−
j )
) a.s.−−−→

n→∞
E
(
Xi(tj)−Xi(t

−
j )
)
, (3.5)

j = 1, . . . , k.
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Proof. First, if (Zn) satisfies the SLLN, Proposition 3.1 implies the
same property for (Xn). Now, set

ϕtj (x) = x(tj)− x(t−j ), x ∈ D, j = 1, . . . , k,

it is a continuous linear form on (D, ‖·‖) (cf Pestman, 1995). Then, by
continuity and linearity of ϕt0 , (3.5) follows. �

Now, we make an additional assumption :

Assumption 3.1 (A3.1).

ρ(D) ⊂ C([0, 1]), ρ′(D) ⊂ C([0, 1])

Then:

Corollary 3.2. Under A3.1, we have

Xn(tj)−Xn(t
−
j ) = Zn(tj)− Zn(t

−
j ), j = 0, . . . , k. (3.6)

Proof. Write Xn = Un+Zn where Un = ρ(Xn−1)+ρ
′(Zn−1), then, since

Un(D) ⊂ C([0, 1]), (3.6) holds. �

It follows that the jumps of (Xn) are i.i.d. ; that property entails
that all results derived in the sequel for i.i.d. jumps are also satisfied
by such ARMAD processes!

We now turn to the central limit theorem (CLT).

Proposition 3.2. The CLT holds for (Zn) if and only if holds for
(Xn).

Proof. We suppose that m = 0 and we use again (3.1) for obtaining

√
nXn =

∆n,X√
n

+ (I − ρ)−1
√
nY n,

and

√
nZn =

∆n,Z√
n

+ (I − ρ′)−1
√
nY n.

Recall that ∆n,X = (I−ρ)−1ρ(X0−Xn) and ∆n,Z = (I−ρ′)−1ρ′(Z0−Zn).
Next, as X0 and Xn are equidistributed we get,

P
(‖∆n,X‖√

n
≥ η

)
≤ E ‖∆n,X‖

η
√
n

≤ ‖(I − ρ)−1‖L ‖ρ‖L 2E ‖X0‖
η
√
n

,

η > 0. One may clearly obtain a similar bound for ∆n,Z. Since
∆n,X√
n

P−−−→
n→∞

0 and
∆n,Z√
n

P−−−→
n→∞

0, the results follow from Billingsley

(1999) p. 21 and 27. �
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Note that conditions for the CLT can be found in Bloznelis and
Paulauskas (1993). Concerning the CLT for jumps, let us set

Vij = Xi(tj)−Xi(t
−
j )−E

(
Xi(tj)−Xi(t

−
j )
)
, i = 1, . . . , n, j = 1, . . . , k

and denote Φ the distribution function of N (0, 1). Then, we have

Corollary 3.3. Under A3.1,

1√
n

n∑

i=1

Vij =⇒ N ∼ N
(
0,E(V 2

j )
)
, j = 1, . . . , k.

If, in addition E |Vij|3 <∞, we have

sup
t∈R

∣∣∣∣∣∣
P

( 1√
n

n∑

i=1

Vij√
E(V 2

ij)
≤ t

)
− Φ(t)

∣∣∣∣∣∣
≤ E |Vij|3

(
E(V 2

ij)
) 3

2
√
n
.

Proof. The first part of the proof is clear since one may use directly
Corollary 3.2 : the CLT follows since

(
Zn(tj)−Zn(t

−
j )
)
are i.i.d.. Using

again Corollary 3.2 we are in a position to apply Berry-Esseen theorem
(see e.g. Shiryaev, 1996, p. 374) for the second part. �

Let us conclude this section with some final remarks.

Remark 3.1. A special case is the model

Xn(t) = a(t)Xn−1(t) + Zn(t), 0 ≤ t ≤ 1, n ∈ Z

where Xn and Zn have a jump at t0 and a is continuous at t0 and such
that |a(t0)| < 1. Consequently

Xn(t0)−Xn(t
−
0 ) = a(t0) ·

(
Xn−1(t0)−Xn−1(t

−
0 )
)
+
(
Zn(t0)− Zn(t

−
0 )
)
,

n ∈ Z. Then,
(
Xn(t0)−Xn(t

−
0 )
)
is a real autoregressive process.

Remark 3.2. Note that ρ(D) ⊂ C is not always satisfied in Exam-

ple 3.1. For example, if r(s, t) = a(s)b(t) where
∫ 1

0
a(s)x(s) ds 6= 0 and

b has a jump at t0, one obtains

ρ(x)(t0)− ρ(x)(t−0 ) =
(
b(t0)− b(t−0 )

) ∫ 1

0

a(s)x(s) ds 6= 0.

Remark 3.3. A slight modification allows to introduce exogenous ran-
dom variables. Set Xn−m = ρ(Xn−1−m)+Zn −ρ′(Z ′

n), then, if (Zn)
and (Z ′

n) satisfy the SLLN, (Xn) satisfies it.

4. A fixed number of jumps

4.1. Case of fixed times of jumps. We begin with a very simple
case. Let X be a (D,D)-valued process admitting exactly k ≥ 1 dis-
tinct jumps at times 0 < t1 < · · · < tk < 1. Now and in all the paper,
we make use of the generic notation ∆ to denote the intensity of jumps.
So we set

∆j =
∣∣X(tj)−X(t−j )

∣∣ , j = 1, . . . , k
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and one wants to estimate E(∆j) (supposed to be finite), 1 ≤ j ≤ k
from n independent copies of ∆j. In this case, the k jumps are observed
therefore known, so one may derive the following immediate results.

Proposition 4.1.
If E(‖X‖) <∞ and ∆j,n := 1

n

∑n

i=1

∣∣Xi(tj)−Xi(t
−
j )
∣∣, j = 1, . . . , k, we

get

a) ∆j,n
a.s.−−−→

n→∞
E(∆j), j = 1, . . . , k.

b) If moreover E(‖X‖2) <∞, then
(√

n
(
∆j,n − E(∆j)

)
, j = 1, . . . , k

)
d−−−→

n→∞
Nk(0,Σ)

where Σ is a k × k matrix with elements Σj,j′ = Cov (∆j ,∆j′),
j, j′ = 1, . . . , k.

It is easy to derive an exponential bound for P(
∣∣∆j,n − E(∆j)

∣∣ ≥ ε),
j = 1, . . . , k and then, obtain an almost sure rate of convergence in
Proposition 4.1-a). For this, one can make use of the following version
of Bernstein’s inequality:

Proposition 4.2.
Let ξ1, . . . , ξn be independent real-valued random variables such that
σ2
i := Var (ξi) and Bernstein’s condition holds for all i = 1, . . . , n:

E |ξi − E(ξi)|m ≤ (m!/2)σ2
iH

m−2, H > 0, m = 3,· · ·
then for ε > 0:

P

( ∣∣∣∣∣

n∑

i=1

ξi − E(ξi)

∣∣∣∣∣ ≥ nε
)
≤ 2 exp

(
− n2ε2

2
∑n

i=1 σ
2
i + 2Hnε

)
.

Note that Bernstein’s condition is equivalent to the existence of an
exponential moment for ξi. Indeed, it is true as soon as |ξi − E(ξi)| ≤ H
a.s..

If one wants to estimate the greatest jump, it is easy to prove that
if
∣∣Xi(Ti,j)−Xi(T

−
i,j)

∣∣ fulfills conditions of Proposition 4.2 for each j =

1, . . . , k (with values σ2
j = Var (

∣∣Xi(tj)−Xi(t
−
j )
∣∣) and Hj), then

P
( ∣∣∣∣ max

j=1,...,k
∆j,n − max

j=1,...,k
E(∆j)

∣∣∣∣ ≥ ε
)
≤ 2ke−nc(ε), ε > 0

with c(ε)−1 = maxj=1,...,k(2σ
2
j +2Hjε) > 0. Actually, it suffices to note

that∣∣∣∣ max
j=1,...,k

∆j,n − max
j=1,...,k

E(∆j)

∣∣∣∣ ≥ ε =⇒ max
j=1,...,k

∣∣∆j,n − E(∆j)
∣∣ ≥ ε

and to deduce the result from Proposition 4.2 for the latter term. Also,
Proposition 4.1-b) induces construction of tests for existence of jumps.
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An alternative point is the estimation of

E( max
j=1,...,k

∣∣X(tj)−X(t−j )
∣∣) := E(∆max)

(remark that max
j=1,...,k

E(∆j) ≤ E( max
j=1,...,k

∆j)). To this end, set

∆k,n =
1

n

n∑

i=1

max
j=1,...,k

∣∣Xi(tj)−Xi(t
−
j )
∣∣ .

Clearly ∆k,n
a.s.−−−→

n→∞
E(∆max) if E(∆max) <∞ and one gets an exponen-

tial rate as soon as ∆max admits an exponential moment.
Finally, Proposition 4.1 can be extended to the case of non indepen-

dent copies of ∆j , satisfying for example some strong mixing conditions
(see e.g. Bradley, 2007). Also, recall that results can be directly applied
for some particular functional linear processes considered in Section 3,
cf Example 3.2 and Corollary 3.2.

4.2. Case of k random jumps. The second step consists in taking
random instants 0 < T1 < · · · < Tk < 1 (a.s.) with k fixed. The
intensity of jumps is given by ∆j =

∣∣X(Tj)−X(T−
j )

∣∣, j = 1, . . . , k.
Again, one wants to estimate E(∆j), j = 1, . . . , k, from i.i.d. copies of
∆j . The instants of jumps are observed and have the form 0 < Ti,1 <
· · · < Ti,k < 1 (a.s.), i = 1, . . . , n. Then, the estimator of E(∆j) is

∆j,n =
1

n

n∑

i=1

∣∣Xi(Ti,j)−Xi(T
−
i,j)

∣∣ , j = 1, . . . , k.

Clearly, all the above results remain valid: almost sure consistency,
exponential rate, estimation of the greatest jump, k-dimensional cen-
tral limit theorem. Details are left to the reader. Moreover, the next
statement shows that it is also possible to classify the jumps according
to their respective intensities.

Proposition 4.3.
Suppose that for all i = 1, . . . , n,

∣∣Xi(Ti,j)−Xi(T
−
i,j)

∣∣ fulfills conditions
of Proposition 4.2 for each j = 1, . . . , k. If E(∆ℓ1) > · · · > E(∆ℓk) > 0
for some permutation {ℓ1, . . . , ℓk} of {1, . . . , k}, then almost surely for
n large enough, one gets ∆ℓ1,n > · · · > ∆ℓk,n.

Proof. We begin with the study of P
(⋃k−1

j=1{∆ℓj ,n < ∆ℓj+1,n}
)
. First,

P
( k−1⋃

j=1

{∆ℓj ,n < ∆ℓj+1,n}
)
≤

k−1∑

j=1

P
(
∆ℓj ,n < ∆ℓj+1,n

)

≤
k−1∑

j=1

P
(
∆ℓj+1,n −∆ℓj ,n − E(∆ℓj+1

−∆ℓj ) > E(∆ℓj −∆ℓj+1
)
)
.
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Next, E(∆ℓj − ∆ℓj+1
) > 0 by assumption, so we apply Bernstein’s

inequality with the property

Var (
∣∣∣Xi(Ti,ℓj+1

)−Xi(T
−
i,ℓj+1

)
∣∣∣−

∣∣∣Xi(Ti,ℓj )−Xi(T
−
i,ℓj

)
∣∣∣) ≤ 2(σ2

ℓj+1
+ σ2

ℓj
)

where σ2
j := Var (

∣∣Xi(Ti,j)−Xi(T
−
i,j)

∣∣) for all i = 1, . . . , n. So there
exist H ′ > 0 such that

P
(
(∆ℓj+1,n −∆ℓj ,n)− E(∆ℓj+1

−∆ℓj) ≥ E(∆ℓj −∆ℓj+1
)
)

≤ exp
(
− n(E(∆ℓj −∆ℓj+1

))2

4(σ2
ℓj
+ σ2

ℓj+1
) + 2H ′E(∆ℓj −∆ℓj+1

)

)
.

Then, an uniform bound of j = 1, . . . , k can be obtained by considering
max

j
E(∆ℓj − ∆ℓj+1

), min
j

E(∆ℓj − ∆ℓj+1
) as well as the bound σ2

ℓj
+

σ2
ℓj+1

≤ 2max
j
σ2
j . Next, Borel Cantelli lemma implies that

P
(
lim
n→∞

k−1⋃

j=1

{∆ℓj ,n < ∆ℓj+1,n}
)
= 0

yielding in turn that a.s. for n large enough, ∆ℓ1,n > · · · > ∆ℓk,n. �

By this way, one may consistently estimate jump’s intensities E(∆ℓj )

by considering the ordered jumps ∆ℓj ,n, j = 1, . . . , k.

5. A random number of fixed jumps

In this part, we consider the bit more intricate case where X takes
its values in (D,D) and has K random jumps for some nonnegative
r.v. K such that for k = 0,· · ·:

P(K = k) = pk, p0 < 1 and pk ≥ 0.

We suppose also that K and ∆ are independent. If K takes a positive
value k then jumps occur at fixed times 0 := t0 < t1 < · · · < tk <
1. Then, conditionally on {K = k}, one gets

∣∣X(tk0)−X(t−k0)
∣∣ = 0

for all k0 > k. A possible construction of such a process is given in
Example 2.3 in the case of degenerated times Tk := tk. The intensity
of the k-th jump is denoted by

∆k :=
∣∣X(tk)−X(t−k )

∣∣ (5.1)

with the condition E(∆k) < ∞, k ≥ 1. Note that E(∆k) > 0 as soon
as pk is positive.
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5.1. Estimation of jumps intensities. We consider an i.i.d. se-
quence of number of jumps K1, . . . , Kn independent from the inten-
sities of jumps ∆i,k :=

∣∣Xi(tk)−Xi(t
−
k )
∣∣, i = 1, . . . , n, k ≥ 1. For

a given value of k, our aim is to estimate E(∆k) from the observed
∆i,k :=

∣∣Xi(tk)−Xi(t
−
k )
∣∣ when Ki ≥ k, k ≥ 1. Since the number

of jumps is not known and varies with i, we consider the following
estimator:

Îk,n =





∑n

i=1

∣∣Xi(tk)−Xi(t
−
k )
∣∣1{Ki≥k}∑n

i=1 1{Ki≥k}

, if
∑n

i=1 1{Ki≥k} > 0

0, if
∑n

i=1 1{Ki≥k} = 0,

(5.2)
which is equivalent to

Îk,n =
(∑n

i=1

∣∣Xi(tk)−Xi(t
−
k )
∣∣1{Ki≥k}∑n

i=1 1{Ki≥k}

)
1
{

n∑
i=1

1{Ki≥k}>0}

for k ≥ 1, using the convention 0
0
= 0.

Rates of convergence for Îk,n toward E(∆k), k ≥ 1, are given in the
following statement.

Theorem 5.1.
Suppose in addition that for k ≥ 1 and i = 1, . . . , n, ∆i,k fulfills condi-
tions of Proposition 4.2 with variance σ2

k and constant Hk. Then, for
all k = 1,· · · , such that

∑
i≥k

pi > 0, one obtains

a) for each c0 ∈]0, 1[ and all 0 < ε ≤ 2Hk(1− c0):

P

( ∣∣∣Îk,n − E(∆k)
∣∣∣ ≥ ε

)
≤ 2 exp

(
− c0

2
(
∑

i≥k

pi)
nε2

σ2
k + 2H2

k

)
; (5.3)

b)

lim
n→∞

√
n

lnn

∣∣∣Îk,n − E(∆k)
∣∣∣ ≤

√
2σk(

∑

i≥k

pi)
− 1

2 a.s.

Proof. We have to study

P
( ∣∣∣Îk,n − E(∆k)

∣∣∣ ≥ ε
)

= P

( ∣∣∣∣∣

∑n

i=1∆i,k1{Ki≥k}∑n

i=1 1{Ki≥k}

1
{

n∑
i=1

Ki≥k}>0
− E(∆k)

∣∣∣∣∣ ≥ ε),
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ε > 0, which can be written as

P
( ∣∣∣Îk,n − E(∆k)

∣∣∣ ≥ ε
)
=

n∑

j=0

P
( n∑

i=1

1{Ki≥k} = j
)

× P

(
∣∣∣∣∣∣∣∣

n∑
i=1

∆i,k1{Ki≥k}

n∑
i=1

1{Ki≥k}

1
{

n∑
i=1

Ki≥k}>0
− E(∆k)

∣∣∣∣∣∣∣∣
≥ ε

∣∣∣
n∑

i=1

1{Ki≥k} = j
)
.

As
∑n

i=1 1{Ki≥k} ∼ B(n,∑i≥k pi) and, since
{∑n

i=1 1{Ki≥k} = j
}

is
equivalent to have exactly j indicators equal to 1, the i.i.d assumption
on the ∆i’s and independence from K give

P
( ∣∣∣Îk,n − E(∆k)

∣∣∣ ≥ ε
)
= 1{ε≤E(∆k)}P

( n∑

i=1

1{Ki≥k} = 0
)

+

n∑

j=1

P
( n∑

i=1

1{Ki≥k} = j
)
× P

( ∣∣∣∣∣

∑j

i=1∆i,k

j
− E(∆k)

∣∣∣∣∣ ≥ ε
)
.

Now, one may use Bernstein’s inequality to obtain:

P
(∣∣Îk,n − E(∆k)

∣∣ ≥ ε
)
≤ (1−

∑

i≥k

pi)
n

+ 2
n∑

j=1

(n
j

)
(1−

∑

i≥k

pi)
n−j(

∑

i≥k

pi)
j exp

(
− jε2

2σ2
k + 2Hkε

)

so that,

P
(∣∣Îk,n − E(∆k)

∣∣ ≥ ε
)
≤ 2

(
1−

∑

i≥k

pi +
∑

i≥k

pi exp
(
− ε2

2σ2
k + 2Hkε

))n

.

Since ln(1− a) ≤ −a for 0 < a < 1 and 1− e−a ≥ a− a2

2
for all a ≥ 0,

we successively obtain for all k such that
∑

i≥k pi > 0:

P
(∣∣Îk,n − E(∆k)

∣∣ ≥ ε
)
≤ 2 exp

(
− n

∑

i≥k

pi
(
1− exp(− ε2

2σ2
k + 2Hkε

)
))

≤ 2 exp
(
−
n
∑

i≥k piε
2

2σ2
k + 2Hkε

(
1− ε2

4σ2
k + 4Hkε

))
.

Next, the condition 0 < c0 < 1 and 1− 1
2

ε2

2σ2
k
+2Hkε

≥ c0 entail

P
(∣∣Îk,n − E(∆k)

∣∣ ≥ ε
)
≤ 2 exp

(
− c0n(

∑

i≥k

pi)
ε2

2σ2
k + 2Hkε

)
. (5.4)

Now, it is easy to verify that 0 < ε ≤ 2Hk(1 − c0) is sufficient to

get the condition 1 − 1
2

ε2

2σ2
k
+2Hkε

≥ c0 and the bound (5.3) is deduced

from (5.4) as one has also ε ≤ 2Hk. Finally, the rate of convergence
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is derived from (5.4) with the choice ε = c1

√
lnn
n

with c1 >

√
2σ2

k

c0
∑

i≥k pi

and application of Borel-Cantelli lemma.
�

5.2. Estimation of the maximal jump. Theorem 5.1 allows us to
estimate the maximal jump of X from i.i.d. copies ∆i. Suppose that
there exists an unique integer kmax such that

E(∆kmax
) > max

k≥1
k 6=kmax

E(∆k),

again, the difficulty is that not all observed sample paths have a number
of jumps greater than kmax. An estimator of E(∆kmax

) is given by

Îmax = max
k=1,...,kn

Îk,n with Îk,n defined by (5.2) and kn → ∞. We obtain

the following result.

Proposition 5.1. Under the conditions of Theorem 5.1,

(1) If K has a finite support {0, 1, . . . , k0} with p0 6= 1, then

lim
n→∞

∣∣∣Îmax − E(∆kmax
)
∣∣∣ = O

(√ lnn

n

)
a.s..

(2) If K is a N-valued random variable, and if kn → ∞ such that
kn = O

(
lnn)κ

)
for some κ > 0, then

lim
n→∞

∣∣∣Îmax − E(∆kmax
)
∣∣∣ = O

(√ lnn

npkn

)
a.s.

with pkn = P(K = kn).

Proof. Observe that

max
k=1,...,kn

∣∣∣Îk,n − E(∆k)
∣∣∣ ≥

∣∣∣∣ max
k=1,...,kn

Îk,n − max
k=1,...,kn

E(∆k)

∣∣∣∣ ,

so,

P
( ∣∣∣∣Îmax − max

k=1,...,kn
E(∆k)

∣∣∣∣ > ε
)
≤ P

( kn⋃

k=1

{ ∣∣∣Îk,n − E(∆k)
∣∣∣ > ε

})

≤
kn∑

k=1

P
( ∣∣∣Îk,n − E(∆k)

∣∣∣ > ε
)
.

(1) First if K has a finite support {0, . . . , k0}, we get that Îmax =

max
k=1,...,k0

Îk,n (a.s.) for n large enough such that kn ≥ k0, and in

this case, max
k=1,...,kn

E(∆k) = max
k=1,...,k0

E(∆k) and the above sum-

mation ends at k0. By this way, for K with finite support, one
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gets under conditions of Theorem 5.1 that for all 0 < c0 < 1
and 0 < ε < 2minkHk(1− c0):

P
( ∣∣∣∣Îmax − max

k=1,...,kn
E(∆k)

∣∣∣∣ > ε
)
= O

(
exp

(
− c0pk0

nε2

2σ2 + 2Hε

))
,

where σ2 = max
k

σ2
k and H = max

k
Hk, yielding in turn that

lim
n→∞

∣∣∣Îmax − E(∆kmax
)
∣∣∣ = O

(√ lnn

n

)
a.s..

(2) On the other hand, for a N-valued random variable K and n
large enough such that kn ≥ kmax, one has max

k=1,...,kn
E(∆k) =

E(∆kmax
), and the bound (5.3) gives

P
( ∣∣∣∣Îmax − max

k=1,...,kn
E(∆k)

∣∣∣∣ ≥ ε
)
= O

(
kn exp

(
− c0pkn

nε2

2σ2 + 2Hε

))
.

The result follows with the choice ε = ε0
√

lnn
npkn

for some large

enough ε0 > 0 as soon as kn has at most a logarithmic order.

�

Note that if K has a infinite support, the obtained rate of conver-
gence depends strongly both on the choice of kn and its associated value
pkn. We give below two typical examples of expected rates.

Example 5.1. (a) If pkn ≍ k−α
n for some α > 0, then the choice kn ≃

ln(lnn) gives the same rate as in the finite support case, while one

gets a O(n− 1

2 (lnn)
1+α
2 ) for kn ≃ lnn. An example is furnished by

the zeta distribution with parameter q ∈]1,+∞[ for which P(K =

k) = k−q

ζ(q)
, k = 1, 2,· · ·.

(b) For Poisson distribution P(λ), Stirling’s approximation gives that
e−kn ln(kn) is predominant for pkn, it is equal to (lnn)− ln(ln(lnn)) for

kn = ln(lnn) and the associated a.s. rate of convergence of Îmax to
E(∆kmax

) is then of order o(n−β) for all 0 < β < 1
2
.

5.3. Estimation of kmax. Now as soon asE(∆kmax
) > max

k≥1,k 6=kmax

E(∆k),

the existence and uniqueness of k̂max = argmax
k=1,...,kn

Îk,n are guaranteed, at

least for n large enough. Theorem 5.1 allows us to derive the following
result.

Proposition 5.2.
Suppose that assumptions of Theorem 5.1 are fulfilled, if kn and pkn
are such that

∑
n≥0 kn exp(−C1npkn) <∞ for all C1 > 0, one gets that

almost surely for n large enough, k̂max = kmax.
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Proof. For n large enough to get kn ≥ kmax, one has clearly

P(k̂max 6= kmax) ≤
kn∑

k=1
k 6=kmax

P
(
Îk,n − E(∆k) > Îkmax,n − E(∆k)

)
.

But for all k ≥ 0 and ε > 0, and if A = {
∣∣∣Îkmax,n − E(∆kmax

)
∣∣∣ ≤ ε}

P
(
Îk,n−E(∆k) > Îkmax,n−E(∆k)

)
= P

(
Îk,n−E(∆k) > Îkmax,n−E(∆k),A

)

+ P
(
Îk,n − E(∆k) > Îkmax,n − E(∆k),Ac

)
.

Next on A, the event {Îkmax,n−E(∆k) ≥ E(∆kmax
−∆k)− ε} holds, so

P(k̂max 6= kmax) ≤
kn∑

k=1
k 6=kmax

{
P
(
Îk,n − E(∆k) > E(∆kmax

−∆k)− ε
)

+ P
( ∣∣∣Îkmax,n − E(∆kmax

)
∣∣∣ > ε

)}
,

the choice ε = 1
2
E(∆kmax

−∆k) now implies that

P(k̂max 6= kmax) ≤
kn∑

k=1

P
(
Îk,n − E(∆k) >

a

2

)

with a a positive real such that min
k≥1,k 6=kmax

E
(
∆kmax

− ∆k

)
≥ a > 0.

Finally if kn and pkn are such that
∑

n≥0 kn exp(−C1npkn) <∞ for all

C1 > 0, then replacing respectively σ2
k and Hk by σ2 = max

k
σ2
k and

H = max
k
Hk in the bound (5.3), yields together with Borel Cantelli

lemma that almost surely for n large enough, k̂max = kmax. �

6. The case of random jumps

6.1. The ordered case. It is noteworthy that all the results of Sec-
tion 5 remain true if one considers again i.i.d. copies of ∆k with an
arbitrary number of ordered random jumps Tk. A typical case is given
in Example 2.3. To this ends, one may consider

Ĩk,n =
(∑n

i=1

∣∣Xi(Tk,i)−Xi(T
−
k,i)

∣∣1{Ki≥k}∑n

i=1 1{Ki≥k}

)
1
{

n∑
i=1

1{Ki≥k}>0}

to get a strongly consistent estimator of E
∣∣X(Tk)−X(T−

k )
∣∣, the conti-

nuous time framework guaranteeing that
(
( |Xi(Tk,i)−Xi(T

−
k,i)|, Ki), i =

1, . . . , n
)
is well observed. Details are left to the reader.
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6.2. The non-ordered case. In this part, we rather suppose that X
admits k, k ≥ 2, independent jumps at independent random instants
T1, T2, . . . , Tk on ]0,1[ (so that the T ′

ks are not necessarily ordered) with
E(∆1) > · · · > E(∆k) and ∆j :=

∣∣X(Tj)−X(T−
j )

∣∣, j = 1, . . . , k. Our
aim is to estimate E(∆j), j = 1, . . . , k, from n i.i.d. copies of ∆j on
the basis of

{ ∣∣X(T ∗
ji)−X(T ∗−

ji )
∣∣ , j = 1, . . . , k, i = 1, . . . , n

}
, where

0 < T ∗
1i < · · · < T ∗

ki < 1 (a.s.). In this part, we suppose also that
∆1, . . . ,∆k are independent variables. Clearly, the difficulty is here to
identify the jumps. To this end, we follow Bosq (2014)’s methodology
for k = 2 jumps and generalize it for any arbitrary value of k.

6.2.1. Case k = 2. Since only strong consistency is established in Bosq
(2014), we begin with the case k = 2 and make use of Bernstein’s
inequality to obtain almost sure rates of convergence. The methodology
is the following. First remark that E(∆1) and E(∆2) are solutions of

the quadratic equation
∏2

j=1(x−E(∆j)) = 0, which can be written as

x2 − sx + p = 0 with s = E(∆1) + E(∆2) and p = E(∆1)E(∆2) =
E(∆1∆2) by independence of ∆1 from ∆2. Solutions x1 > x2 are

given by x1 = 1
2
(s +

√
s2 − 4p) and x2 = 1

2
(s −

√
s2 − 4p). The next

result shows that one may consistently estimate the intensities E(∆1) >
E(∆2) without the knowledge of their corresponding times of arrival
and even, without ordering jumps according to their observed intensity!
First to estimate E(∆1) and E(∆2), we set

∆̂1 =
1

2

(
(∆̃1n + ∆̃2n) +

√
(∆̃1n + ∆̃2n)2 − 4∆̃1:2,n

)

∆̂2 =
1

2

(
(∆̃1n + ∆̃2n)−

√
(∆̃1n + ∆̃2n)2 − 4∆̃1:2,n

)

with the observed

∆̃1n + ∆̃2n =
1

n

n∑

i=1

∣∣Xi(T
∗
1i)−X(T ∗−

1i )
∣∣+

∣∣Xi(T
∗
2i)−X(T ∗−

2i )
∣∣

∆̃1:2,n =
1

n

n∑

i=1

∣∣Xi(T
∗
1i)−X(T ∗−

1i )
∣∣ ∣∣Xi(T

∗
2i)−X(T ∗−

2i )
∣∣ .

We may derive the following result:

Proposition 6.1. Suppose that
∣∣Xi(T1i)−Xi(T

−
1i )

∣∣,
∣∣Xi(T2i)−Xi(T

−
2i )

∣∣
and

∣∣Xi(T1i)−Xi(T
−
1i )

∣∣ ∣∣Xi(T2i)−Xi(T
−
2i )

∣∣ fulfill conditions of Propo-
sition 4.2 for all i = 1, . . . , n. Then for j = 1, 2, we get

∣∣∣∆̂j − E(∆j)
∣∣∣ = O

(√ lnn

n

)
a.s..
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Proof. We establish the result for ∆̂1, the proof being the same for ∆̂2.
First, remark that

∆̃1n + ∆̃2n ≡ 1

n

n∑

i=1

∣∣Xi(T1i)−X(T−
1i )

∣∣+
∣∣Xi(T2i)−X(T−

2i )
∣∣

and

∆̃1:2,n ≡ 1

n

n∑

i=1

∣∣Xi(T1i)−X(T−
1i )

∣∣ ∣∣Xi(T2i)−X(T−
2i )

∣∣ .

So, we study the a.s. behaviour of

2∆̂1 = ∆1n +∆2n +

√
(∆1n +∆2n)2 − 4∆1:2,n

where the ∆jn and ∆1:2,n are built on the r.v.’s
∣∣Xi(Tji)−Xi(T

−
ji )

∣∣.
Note that as ∆1 and ∆2 are independent, we have

2E(∆1) = E(∆1 +∆2) +
√
(E∆1 + E∆2)2 − 4E(∆1)E(∆2)

= E(∆1) + E(∆2) +
√
(E∆1 + E∆2)2 − 4E(∆1∆2).

So for ψn =
√

n
lnn

, we get the bound

ψn

∣∣∣∆̂1 − E(∆1)
∣∣∣ ≤ ψn

2

( ∣∣∆1,n − E∆1

∣∣+
∣∣∆2,n − E∆2

∣∣

+

∣∣∣∣
√

(∆1n +∆2n)2 − 4∆1:2,n −
√
(E∆1 + E∆2)2 − 4E(∆1∆2)

∣∣∣∣
)
.

For j = 1, 2, we handled the terms P(
∣∣∆j,n − E∆j

∣∣ ≥ ε0ψ
−1
n ) with

Bernstein’s inequality and Borel Cantelli’s lemma for large enough pos-
itive ε0. For the square-root term, remark that it may be written as

ψn

2

∣∣(∆1n +∆2n)
2 − (E∆1 + E∆2)

2 − 4(∆1:2,n − E(∆1∆2))
∣∣

√
(∆1n +∆2n)2 − 4∆1:2,n +

√
(E∆1 + E∆2)2 − 4E(∆1∆2)

.

The denominator converges almost surely to the positive limit 2(E∆1−
E∆2). Next, to treat the last term, just observe that

ψn

2

∣∣(∆1n +∆2n)
2 − (E∆1 + E∆2)

2 − 4(∆1:2,n − E(∆1∆2))
∣∣

≤ ψn

2

∣∣(∆1n +∆2n)
2 − (E∆1 + E∆2)

2
∣∣ + 2ψn

∣∣∆1:2,n − E(∆1∆2)
∣∣

and that

ψn

2

∣∣(∆1n +∆2n)
2 − (E∆1 + E∆2)

2
∣∣

=
ψn

2

∣∣(∆1n +∆2n)− (E∆1 + E∆2)
∣∣ ∣∣∆1n +∆2n + E∆1 + E∆2

∣∣ .
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Again Bernstein’s inequality and Borel Cantelli’s lemma allow us to
control the terms ψn

∣∣∆1:2,n − E(∆1∆2)
∣∣ and ψn

∣∣∆jn − E∆j

∣∣, j = 1, 2

and the result follows since
∣∣∆1n +∆2n + E∆1 + E∆2

∣∣ a.s.−−−→
n→∞

2(E∆1 +

E∆2). �

6.2.2. The general case. For arbitrary k ≥ 2, E(∆1), . . . ,E(∆k) are
again solutions of

k∏

j=1

(
x− E(∆j)

)
= 0 =

k∑

j=0

ajx
j ,

where ak = 1 and for j = 1, . . . , k, Viète’s formula gives:

ak−j = (−1)j
∑

1≤ℓ1<...<ℓj≤k

E(∆ℓ1) · · ·E(∆ℓj ).

Next, roots can be computed by finding the eigenvalues λj of the k×k
matrix

A =




−a1
a0

−a2
a0

−a3
a0

. . . −ak−1

a0
− 1

a0

1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

0 0 0 . . . 1 0




and taking E(∆j) = λ∗−1
j , j = 1, . . . , k, with λ∗1 < · · · < λ∗k (see e.g.

Pan, 1997). This eigenvalue method can be computationally expensive,
but it is known to be fairly robust.

Concerning estimation in the case k ≥ 3, we require independence
between the ∆j ’s as it allows to write the coefficients ak−j under the
more convenient form:

ak−j = (−1)j
∑

1≤ℓ1<...<ℓj≤k

E
(
∆ℓ1 · · ·∆ℓj

)

Next, one ‘estimates’ E
(
∆ℓ1 · · ·∆ℓj

)
by

1

n

n∑

i=1

∣∣Xi(Tℓ1,i)−Xi(T
−
ℓ1,i

)
∣∣ · · ·

∣∣∣Xi(Tℓj ,i)−Xi(T
−
ℓj ,i

)
∣∣∣ .

Since these quantities are not observed and all summations are com-
plete in Viète’s formula, the trick is again to use observed Dℓji =∣∣∣X(T ∗

ℓj ,i
)−X(T ∗−

ℓj ,i
)
∣∣∣ for T ∗

1i < · · · < T ∗
ki (a.s.), i = 1, . . . , n, j =
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1, . . . , k. So the matrix A can be estimated by

Â =




− â1n
â0n

− â2n
â0n

− â3n
â0n

. . . − âk−1,n

â0,n
− 1

â0n

1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

0 0 0 . . . 1 0




with 



âk−1,n = −∑k

j=1Dj,n

âk−2,n =
∑

1≤j1<j2≤kDj1:j2,n

...

âk−ℓ,n = (−1)ℓ
∑

1≤j1<...<jℓ≤kDj1:jℓ,n

...

â0,n = (−1)k
∏k

j=1Dj,n.

where

Dj1:jℓ,n =
1

n

n∑

i=1

∣∣Xi(T
∗
j1,i

)−Xi(T
∗−
j1,i

)
∣∣ · · ·

∣∣Xi(T
∗
jℓ,i

)−Xi(T
∗−
jℓ,i

)
∣∣ .

First note that positivity of the Dj,n’s and Descartes’ rule of signs

(1637) imply that the polynomial
∑k−1

j=0 âj,nx
j+xk has 0 negative and at

most k positive roots. Also, almost surely for n large enough, â0,n > 0

which guarantees the existence of Â. Moreover, the following proposi-
tion shows that we obtain strongly consistent estimators of the coeffi-
cients.

Proposition 6.2. Under the assumption that the (∆ij, i = 1, . . . , n, j =
1, . . . , k) are globally independent, we have

k−1∑

j=0

âj,nx
j + xk

a.s.−−−→
n→∞

k−1∑

j=0

ajx
j + xk = 0.

Proof. Clearly, one has for each ℓ = 1, . . . , k:

∑

1≤j1<...<jℓ≤k

Dj1:jℓ,n ≡
∑

1≤j1<...<jℓ≤k

∆j1:jℓ,n

a.s.−−−→
n→∞

∑

1≤j1<...<jℓ≤k

E(∆j1 · · ·∆jℓ).

Then, one gets for ℓ = 1, . . . , k,
∑

1≤j1<...<jℓ≤k

E(∆j1 · · ·∆jℓ) =
∑

1≤j1<...<jℓ≤k

E(∆j1) · · ·E(∆jℓ) = (−1)ℓak−ℓ

and the result follows from
∑k

j=0 ajxk = 0 with ak = 1. �
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Consequently, one may expect to recover estimators of the k real
roots, at least by approximation.
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aspects des connaissances actuelles. La météorologie 50, 30–38.
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