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Abstract

Background

Studying the drivers and determinants of speciepujation and community spatial patte
is central to ecology. The observed structure ahmaonity assemblages is the result
deterministic abiotic (environmental constraintsid ebiotic factors (positive and negat
species interactions), as well as stochastic coéioin events (historical contingency).

analyzed the role of multi-scale spatial componehtsoil environmental variability i
structuring earthworm assemblages in a gallerysfofmm the Colombian “Llanos.” W
aimed to disentangle the spatial scales at whigtiep assemblages are structured
determine whether these scales matched those sgdrbyg soil environmental variables.

also tested the hypothesis of the “single treecé&ffby exploring the spatial relationshi
between root-related variables and soil nutrientl goihysical variables in structurir
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earthworm assemblages. Multivariate ordination neples and spatially explicit tools we
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used, namely cross-correlograms, Principal Cootdmaf Neighbor Matrices (PCNM) apd
variation partitioning analyses.

Results

The relationship between the spatial organizatiébnearthworm assemblages and s$oil
environmental parameters revealed explicitly msdtde responses. The soil environmental
variables that explained nested population strestacross the multi-spatial scale gradient
differed for earthworms and assemblages at the-fugey (<10 m) to medium-scale (10—0
m). The root traits were correlated with areasighfsoil nutrient contents at a depth of (-5
cm. Information on the scales of PCNM variables wb&ined using variogram modeling.
Based on the size of the plot, the PCNM variablesevarbitrarily allocated to medium (>80
m), fine (10—20 m) and very fine scales (<10 m)tideon partitioning analysis revealed that
the soil environmental variability explained froms$ than 1% to as much as 48% of|the
observed earthworm spatial variation.

Conclusions

A large proportion of the spatial variation did ndépend on the soil environmental
variability for certain species. This finding coulttlicate the influence of contagious biqtic
interactions, stochastic factors, or unmeasurexvaglt soil environmental variables.

Background

Ecological processes are spatially influenced aroua scales, ranging from global to local
scales [1,2]. In natural communities, the obsensghtial pattern is the result of
environmental, biological and/or historical drivd®, which are not exclusive but rather
complementary. The existence of spatial structwkespecies assemblages suggests the
influence of at least one structuring factor: gpatially distributed environment is the driving
force that structures species assemblages accotdimgche theory [4]; ii) species are
assembled on certain spatial scales through theemte of biotic interactions [5-10]; and iii)
historical contingency, according to neutral the,11], or stochastic variations in the
history of species arrival [12,13] drive this presgalthough the scale of the random effect
has not been fully identified [14]. It is challengito determine which process has a larger
effect because historical species arrival data past ecological processes are usually
unknown.

When analyzing spatial datasets, striking and pogzlresults are found if spatial
autocorrelation is ignored because response vadgabk structured on various spatial scales
[15-18]. Specific spatially explicit sampling pratus for targeted organisms and different
approaches are needed in soil ecology studies9PQ], although these methods must be
used with caution [16,21]. Geostatistics [22] akothie assessment of the spatial distribution
of soil environmental variability and soil organisrii22,23], but other powerful statistical
tools are necessary to model spatial structuresagous scales, such as principal coordinates
of neighbor matrices (PCNM) [3,24,25]. The PCNM iaaeh is part of the distance-based
Moran’s eigenvector map (MEM) analysis, which igluded in the spatial eigenfunction
family of tools [2,25,26] and is a powerful stattal method to model spatial structures at all
scales; in other words, the environmental varigbib linked to community structure on a
multi-scale level [3,24] to obtain new ecologicasights [21]. It has also been used to test



and separate the niche from neutral mechanismsnthance the community structure [15],
although it may appear over-simplistic [27,28].

To date, few field studies have been performed o assembly of soil invertebrate
communities to infer overall patterns and draw @asions on the importance of explicitly
accounting for multi-spatial scales. Soil organisommunities have been reported to be
spatially structured due to their response to apaériability in soil resources [12,19,29-33],
allowing the co-existence of competing species iwitthe same patch in spatially
heterogeneous environments [32,34]. Although compjatial patterns have been described
for soil invertebrates forming patch assemblagas téinge from the scale of soil aggregates
[35] to those of individual plants [36], agriculaliiands and natural ecosystems [37-42], no
study has assessed the multi-scale spatial retfjpnbetween soil invertebrates and
environmental variability thus far. The influenckedisturbance and habitat heterogeneity on
Carabidae assemblages has been described redauitlgnly on the landscape scale [19].
Studies and data analysis using these multi-spatillysis techniques to perform invertebrate
community research are needed, even if caution adsstbe exercised [43]. In this study, we
aimed to i) analyze the spatial location of sigmafit patches and gaps of the species
assemblages identified, ii) test whether the retestihip between species assemblages and soill
environmental variability occurs on very fine (<), fine (10-20 m), and medium scales
(>30 m), and iii) investigate the spatial relatioipsbetween root traits and soil parameters to
test the hypothesis of the “single tree effect][44

Results

Earthworm abundance and soil environmental heterogeeity

A total of 688 earthworms were collected and inellideven species (Table 1) with three
main ecological categories present [45]: epigeidser feeders),Aymara sp. and one
unclassified species (new genus 1); endogeics {seders) Andiodrilus sp., Andiorrhinus
sp., Glossodrilussp., and one unclassified species (new genusn#);aaecics (soil + litter
feeders)Martiodrilus sp.



Table 1 Earthworm abundance and main morphological traits

Species Family Ecological category Pigmentation Siz€ (mm) Weight? N  Average density
Length Diam. (g.f.w.) + standard error
Andiodrilus sp. Glossoscolecidae Endogeic Unpigeent 109.0 4.4 1.38 22 3.1+0.7
Andiorrhinus sp. Glossoscolecidae Endo-anecic Birtkrodorsal 188.0 7.6 7.10 10 0.1+0.1
Aymara sp. Glossoscolecidae Epigeic Dark-red dorsal 58.1 1.5 0.06 15 6.5+1.3
New genus 1 NE Epigeic Dark-green dorsal 117.9 3.8 0.69 18 9%+
Glossodrilus sp. Glossoscolecidae Endogeic Unpigeden 83.9 15 0.10 13 8514
Martiodrilus sp. Glossoscolecidae Anecic Dark-grayerodorsal 194.3 9.3 11.2 29 10.3x14
New genus 2 Ocnerodrilidae Endogeic Unpigmented 822. 0.7 0.006 157 24.0+2.6

! Epigeic: live and feed on the soil surface; Endugeve and feed within the soil; Anecic: live Wi the soil and dig vertical or semi-vertical s to

feed on the soil surface (after [45,46]). Endo-ama®rms have characteristics of anecic (anter@gigmentation, flattened rear end) and endogeiens
(horizontal burrowing).

% Average biometric data for adults (g.f.w.indicageams of fresh weight in 4% formalin, gut contentsuded).
® NC: not classified.



The CA extracted three axes (72.9% of the totabwae), and these three axes were used to
discriminate among the various species assembéagesding to the axis selected (Figure 1).
Axis | (34.2% of the explained variance) discrintethnew genus 1 versus all other species,
whereas the second axis (21.7% of the total vaglanevealed a clear distinction between
endogeic and epigeic + anecic species. Moreoverpdsition of species along the positive
side of axis 2 followed a body size increase amemdpgeic species. Axis 3 (17.1% of the
total variance) separatedymarg Andiodrilus and new genus 1 fronMartiodrilus,
Glossodrilusand new genus 2.

Figure 1 Ordination plot of species in the factorial plan félowing correspondence
analysis of earthworm density (N m?) in the gallery forest: (a), axes 1 and 2; (b), @s 2
and 3; and (c) and (d), “eigenvalues”The specieédndiorrhinuswas not included in the
analysis because it only represented 1% of thédatshworm abundance.

Patches and gaps of species assemblages

The SADIE spatialdindex and local vand y clustering indices were statistically significant
for endogeic species and the gradartiodrilus, Glossodrilusand new genus 2 (1 anecic +2
endogeics), whereas only thendex was significant foAndiodrilus Aymaraand new genus

1, i.e. one endogeic + two epigeics (Table 2). gant spatial dissociations were found
when using those assemblages identified with CAaxe., —0.232 (p = 0.978) between new
genus 1 and the rest of species, —0.278 (p = 098&)een endogeics and epigecis + anecic
group, and —0.383 (p = 0.999) between the grdngiodrilus Aymaraand new genus 1 from
Martiodrilus, Glossodrilusand new genus 2 group.

Table 2 SADIE aggregation indices and associated p levelsrfthe various combinations
of earthworm assemblages identified in the three as extracted from the CA

Species assemblages I v; (patch) v; (gap)

New genus 1 0.997 NS 0.871 NS -1.003 NS
Rest of species 1.018 NS 0.944 NS -1.015 NS
Endogecis 1.414* 1.485 ** -1.430*
Epigeics + Anecic 1.011 NS 1.188 NS -1.061 NS
Andiodrilus Aymaraand new genus 1 1.222 NS 1.343 * -1.222 NS
Martiodrilus, Glossodrilusand new genus 2 1.453 * 1.320* -1.428 *

I, = global index of aggregation; ¥ mean negative index value (gap)=wmean positive index value
(patch). Departure from randomness is tested Us@g7 permutations. * p < 0.05; ** p < 0.01; NS,
not significant.

The number of significant clusters of the earthw@ssemblages ranged from 1 (new genus
1) to 9 (endogeics), with gaps occupying a largeadhan that of patches (Figure 2). The
type of litter and tree root traits may influendee tpatchy distribution of endogeic
earthworms, which is known as the “single tree @ffg44]. The endogeic species
assemblage was close Ao maripatrees, except for the large patch at the centadl gf the
surveyed plot, where values of the coarse roottleagd weight (CoRL, CoRW) were the
lowest (Figure 3, kriged contour maps).



Figure 2 Overlaid contour and classed post maps (surfer) SADIE clustering indices
for counts of the species assemblages identifiedtime CA. Index values > —1.5 represent
significant gaps (blue shading and darker blue)datsl index values >1.5 indicate
significant patches (red shading and darker red)dBtack dots indicate units for which
clustering exceeds expectation, although not saamtly (>2 or < —1). Open dots indicate
clustering below expectation (<1 or > -1).

Figure 3 Correlogram computed using the factorial coordinats for the corresponding
positive (@) and negative A) row scores of the three axes extracted from theAC
depicting the spatial autocorrelation of A) assemlalges CA1+ (New genus 1) and CA1-
(rest of species), B) CA2+ (endogeics) and CA2- (gpics + anecic), and C) CA3+
(Andiodrilus, Avmara, new genus 1) and CA3-Martiodrilus, Glossodrilus and new genus
2). Black symbols refer to the lag distances at wiihehMoran’s | coefficients were
significant after progressive Bonferroni correcpedalues (p = 0.05/12; p’ = 0.0042). Only
the correlograms of the CA2+ and CA3- assemblages globally significant.

The identity and location of tree species withia slurveyed plot did not appear to explain the
observed spatial patterns of the remaining spesssmblages:

m new genus 1: a significant gap in the lower hedhavhere multiple tree species, maialy
maripa were present. The correlogram was not signifi¢aigure 4a).

m All other species: significant gaps and patchesewet linked to areas of tree presence.
The correlogram was not significant (Figure 4a).

m Endogeics group: four significant patches clostélocation where th&. maripatree
species was observed. The correlogram was signif(€agure 4b).

m epigeics + anecic group: same as described faesief species (CAl-). The correlogram
was not significant (Figure 4b).

m Andiodrilus, Aymarand new genus 1: two significant gaps in the |lowadf area and two
significant patches in the plot edge whereAhenaripatree species was found. The
correlogram was not significant (Figure 4c).

m Martiodrilus, Glossodrilusand new genus 2 group: one significant patchenatbstern

zone of the plot where trees were present andya Egnificant gap in the upper part; another
two significant patches were in the eastern zohe. dorrelogram was significant (Figure 4c).

Figure 4 Kriged maps of root-related variables (log-transfomed values): FiRL (a) and
CoRL (c), length of fine and coarse roots, respeetly (m samplé?), and FiRW (b) and
CoRW (d), weight of fine and coarse roots, respeetly (g dry weight samplé?). Darker
areas correspond to lower values.

Cross-correlogram analysis

Regarding the spatial cross-correlation betweert-nelated variables and soil nutrient-
related and physical variables, significant posittvoss-correlations were identified at short
lag distances (h) between the FIRL and $@Q( 5 and C:N_jo (Table 3), whereassR
showed a significant negative cross-correlation riddoCarlo permutation). With regard to
the CoRL, the cross-correlation at short distarveas positive for SO£;0and C:N_;0 and
negative for M_jp and R_;o Regarding root biomass, the FIRW showed sigmfigeositive
spatial cross-correlation with PO-5 anglig whereas it was negative for the variables §OC
100 C:No_s and C:N_jp at short lag distances (Table 3). The CoRW shaavpdsitive spatial
relationship with SO€;0 and C:N_jo and a negative relationship witg_R A significant



positive spatial cross-correlation was observeavéen the FIRL and soil aggregates of less
than 5 mm in size, whereas it was negative forelasgil aggregates and moisture at short lag
distances (Table 4). Regarding the FIRW, a sigaificnegative spatial cross-correlation at
short distances was especially observed for <0 26 mm size soil aggregates, and a
positive cross-correlation was observed for >10 mggregates and bulk density (BD).
Finally, the CoRL showed a positive spatial crosgadation with 0.125-0.5 and 1-5 mm soil
aggregates and hydraulic conductivity, and a negafpatial cross-correlation was observed
for >10 mm soil aggregates and soil moisture. TO®RW showed a positive spatial cross-
correlation with 0.125-0.25 and 0.5-5 mm size sgijregates and a negative spatial cross-
correlation for >10 mm soil aggregates (Table 4).



Table 3Cross-correlograms of the root- and nutrient-relatel soil variables (significant Bonferroni correctedtwo-sided p-values (0.05/11
= 0.0045) for each distance class were tested usBfp permutations under the null hypothesis)

Variables Distance (number of pair points) Global
Plant below-  Nutrient- 5.0 (360) 8.5 (644) 12.8 (1112) 17.5 (1192) 22%18) 27.5(1264) 32.1(1128) 36.9(1108) 42.0(848y.3(516) 52.8(120) significance, p’
ground related
FiRL No-s 0.090 0.028 0.021 -0.022 0.026 -0.011 0.005 -0.036 -0.004 -0.069 -0.133 NS
Ns._1c -0.015 -0.042 -0.036 -0.034 0.046 * 0.027 0.008 .00 0.001 0.033 -0.088 NS
SOG s 0.063 0.039 0.027 -0.022 0.012 0.011 0.014 -0.043 -0.009 -0.097* -0.076 NS
SOG ¢ 0.051 0.077 * 0.082 ** 0.039 0.065 ** -0.027 -0404 -0.092*  -0.0569* -0.091* -0.128 Significant
Pos 0.025 0.024 0.060 * 0.016 0.033 0.007 0.010 -0.032 -0.079* -0.175* -0.063 Significant
Ps_1c -0.089 * -0.133 ** -0.060 * -0.013 0.025 0.055 * .028 0.038 0.001 -0.002 0.044 Significant
C:Nozs -0.061 0.030 0.010 -0.001 -0.034 0.043 0.025 40.01 -0.010 -0.045 0.122 NS
C:Ns_1c 0.053 0.099 * 0.093 ** 0.054 * 0.020 -0.043 -0.040 -0.069*  -0.049 -0.101** -0.034 Significant
Litter 0.081 0.066 -0.020 -0.068 ** -0.008 -0.012 0.035 0.055 * -0.019 -0.053 -0.022 NS
CoRL No-s -0.019 0.028 0.016 0.015 -0.003 0.043 0.015 0.002 -0.057* -0.142* 0.019 Significant
Ns_1c —-0.146 ** -0.036 -0.013 -0.020 -0.006 0.072 ** B0 0.030 -0.006 -0.085*  -0.009 NS
SOG s -0.022 0.026 0.012 0.022 0.005 0.041 0.015 -0.005 -0.055 -0.139* 0.026 NS
SOG 1« -0.007 0.093 ** 0.098 ** 0.030 0.001 0.037 -0.003 -0.084*  -0.098* -0.121* 0.004 Significant
Pos 0.014 0.048 -0.001 0.028 0.042 * 0.033 0.005 -©.03 -0.079* -0.125* -0.068 NS
Ps_1c -0.127 ** -0.122 ** -0.088 ** -0.028 0.026 0.063*  0.089 **=* 0.076 ** -0.003 -0.042 -0.039 Signifina
C:Nozs -0.012 -0.003 -0.015 0.010 0.021 —-0.006 0.003 0.0 0.007 0.015 0.032 NS
C:Ns_1c 0.103 * 0.104 * 0.090 *** 0.041 0.005 -0.023 -0504 -0.094*  -0.077* -0.033 0.007 Significant
Litter -0.036 0.005 0.010 -0.014 -0.002 0.012 16.0 0.031 -0.020 0.035 -0.081 NS
FiRW No-s 0.028 -0.021 -0.017 -0.062 * 0.012 0.015 0.044 0%0. 0.013 -0.069 0.001 NS
Ns_1c 0.062 0.010 -0.009 -0.006 0.062 ** -0.013 0.005 .040 -0.038 -0.052 -0.061 NS
SOG s -0.043 -0.044 -0.013 -0.059 * -0.012 0.007 0.058 * 0.014 0.059 * -0.072 0.044 NS
SOG ¢ -0.075 -0.071* -0.036 -0.058 * 0.022 -0.018 -0.02 0.012 0.109 ** 0.108 *  0.125 Significant
Pos 0.103 * 0.083 * 0.099 *** 0.041 0.022 0.036 0.005 -0.092*  -0.150* -0.243* -0.157 Significant
Ps_1c 0.149 *** 0.145 ** 0.094 *** 0.086 ** 0.067 ** 0.28 -0.074 * -0.119*  -0.192* -0.213* -0.203* Significant
C:Nozs -0.168 ** -0.040 0.011 0.017 -0.053*  -0.025 ®02 0.051 0.105*  0.004 0.068 Significant
C:Ns_1c -0.111* -0.070 * -0.023 -0.048 * -0.027 —-0.005 .02D 0.045 0.122*  0.132*  0.154 Significant
Litter 0.060 0.054 -0.061 * -0.078 ** -0.001 -0302 0.039 0.020 0.018 0.020 0.192 * Significant
CoRW Nos 0.005 0.013 0.027 -0.023 -0.007 -0.003 0.020 0.025 -0.018 -0.084* 0.015 NS
Ns_1c -0.090 -0.020 0.021 -0.049 * -0.017 0.030 0.069 ** 0.037 0.028 -0.110* -0.014 NS
SOG s 0.003 0.014 0.020 -0.006 0.004 -0.004 0.019 0.004 -0.010 -0.092* 0.021 NS
SOG i 0.025 0.069 * 0.092 *** -0.018 -0.014 0.015 -0.001 -0.062* -0.052 -0.031 -0.025 Significant
Pos -0.088 -0.061 -0.060 * -0.026 0.039 0.048 * 0.651 0.058 * 0.018 -0.095* -0.148* NS
Ps_1c -0.183 ** -0.130 ** -0.104 ** -0.045 * 0.018 0.084 0.115 **  0.109 *** 0.024 -0.085* -0.103 Sigficant
C:Nozs -0.014 0.008 -0.019 0.039 0.029 -0.001 -0.003 520 0.017 -0.011 0.037 NS
C:Ns_1c 0.091 * 0.074 * 0.063 * 0.022 0.003 -0.014 -0.6056 -0.082*  -0.064* 0.062 -0.015 Significant
Litter -0.059 0.050 0.011 0.028 -0.017 0.005 -8.03  0.002 0.017 0.003 -0.101 NS

L FiRL, fine root length; CoRL, coarse root lengf&RW, fine root weight; CORW, coarse root weight.
*p <0.05; ** p <0.01; *** p <0.001; NS, not sifficant.
The number of pair points (within brackets) andltwer and upper limits for each distance classleyaa while computing the cross-correlograms adécated.



Table 4 Cross-correlograms of the root- and soil physicalariables (significant Bonferroni corrected two-side p-values (0.05/11 =
0.0045) for each distance class were tested usiripPermutations under the null hypothesis)

Variables Distance (number of pair points) Global

Plant below-ground  Physical 5.0(360) 8.5(644) 12.8(1112) 17.5@)1922.6(1548) 27.5(1264) 32.1(1128) 36.9 (1104R.0(848) 47.3(516) 52.8(120) significance, p’

FiRL Agg0.053-0.125 -0.121* 0.010 0.080 ** -0.001 0.036 -0.012 -0.061 * -0.034 0.046 -0.038 0.067 NS
Agg0.125-0.25 -0.005 0.103*  0.106 **  0.038 003 -0.059 * -0.096 *  -0.055* 0.030 -0.069 -0.112  igficant
Agg0.25-0.5 0.010 0.060 0.099 ***  0.049 * 0.043* -0.040 -0.068 **  -0.069**  0.032 -0.131* -0.058 ig8ificant
Agg0.5-1 0.043 0.125*  0.106 ***  0.054 * 0.029 057 -0.069 * -0.073 * -0.008 -0.144 ** -0.098 Sigrant
Aggl-2 0.037 0.089 **  0.065 ** 0.074 ** 0.022 -®8**  -0.058 * -0.037 0.013 -0.133** -0.095 Sigednt
Agg2-5 0.143*  0.127 **  0.080 ** 0.061 * 0.016 @3 * -0.068 * -0.073*  -0.025 -0.096 * -0.164 g8ificant
Agg5-10 -0.038 -0.027 -0.104**  -0.008 -0.030 @03 0.023 0.031 0.028 0.025 0.243 **  Significant
Agg > 10 -0.107* -0.127* -0.085*  -0.057* -6 0.045 0.059 * 0.074 * -0.005 0.137*  0.062 rBigant
BD -0.022 -0.045 -0.025 -0.015 -0.002 0.011 -0.001 0.028 -0.015 0.090 * 0.127 NS
Comp -0.128 ** -0.064 -0.047 0.011 0.009 0.003 18.0 0.041 -0.017 0.115*  0.167 * NS
Conduc 0.149*  0.123*  0.076 ** -0.002 0.003 084 -0.031 -0.034 -0.029 -0.109* -0.211*  Siguifit
Hum -0.233* -0.125* -0.118*  -0.029 0.019 @8 0.073 * 0.078 ** 0.003 0.102 * 0.219 * Signifita

CoRL Agg0.053-0.125  0.025 0.016 0.040 0.038 0.019 0.052 -0.022 -0.054 -0.020 0.034 0.030 NS
Agg0.125-0.25 0.099 * 0.121*  0.092 **  0.063 * .@n3 -0.075*  —-0.056 * -0.094 **  —-0.058 -0.006 0D Significant
Agg0.25-0.5 0.087 * 0.111*  0.093 ** 0.074 ** -1 -0.049 * -0.036 -0.108 **  -0.067 *  -0.037 -0608  Significant
Agg0.5-1 0.123 0.173 ** 0.095**  0.071** 0.006 -0.063*  -0.061* -0.114*  -0.078* -0.035 -0.052 Significant
Aggl-2 0.085 * 0.104 **  0.069 * 0.046 * 0.015 -6® -0.033 -0.070 * -0.090* -0.023 -0.088 Significa
Agg2-5 0.156 *** 0.173 *** 0.098 ***  0.058 -0.003 -0.058 * -0.062 * -0.102*  -0.081* -0.072 0.008 igBificant
Agg5-10 -0.057 0.000 -0.080**  -0.051* 0.007 350 0.029 0.060 * 0.080 **  0.062 0.034 Significant
Agg > 10 -0.133* -0.174* -0.082*  -0.070** 6.013 0.067 * 0.059 * 0.119 **  0.074 * 0.048 0.055  Significant
BD -0.061 -0.061 -0.053 * -0.014 0.008 0.030 0.022 0.013 0.024 0.070 * -0.068 NS
Comp -0.027 -0.064 -0.040 -0.041 -0.006 0.000 .02 0.035 0.045 0.086 * 0.044 NS
Conduc 0.068 0.149 ** 0.064 * 0.031 -0.005 -0.015 -0.038 -0.049 -0.070* -0.102* -0.017 Signifitan
Hum -0.123* -0.163* -0.114*  -0.030 0.018 ao 0.087 *** 0.070 ** 0.070 * 0.088 * 0.068 Signifant

FiRW Agg0.053-0.125 -0.099* 0.017 0.073 ** 0.014 .om -0.027 -0.050 -0.022 0.055 0.006 0.032 NS
Agg0.125-0.25 -0.134* -0.033 -0.007 -0.033 -@00 -0.055* -0.024 0.041 0.149 ** 0.100 **  0.070 gBificant
Agg0.25-0.5 -0.087* -0.043 0.001 -0.041 -0.001 .030 -0.010 0.015 0.144 **  0.016 0.080 Significant
Agg0.5-1 -0.069 —0.020 0.004 —0.051 * -0.006 -0.03 0.017 0.013 0.092 ***  -0.008 0.100 Significant
Aggl-2 -0.073 -0.018 -0.064 * -0.048 0.001 -0.014 0.032 0.043 0.107 ¥** -0.021 0.081 Significant
Agg2-5 -0.098* -0.082* -0.080* -0.065*  -0.02 -0.026 0.042 0.057 * 0.174 ** 0.086 * 0.093 Sifgrant
Agg5-10 0.019 0.048 -0.027 0.034 -0.021 0.041 9.00 -0.040 -0.075* 0.004 0.055 NS
Agg > 10 0.091 * 0.056 0.063 ** 0.057 * 0.036 0202 -0.039 -0.047 * -0.155* -0.084* -0.087 Sigodit
BD 0.090 * 0.112*  0.049 0.060 * 0.049 * 0.000 eeg*  -0.082*  -0.119* 0.033 -0.015 Significan
Comp -0.072 -0.011 -0.014 0.011 0.016 0.020 -0*044 0.028 -0.020 0.096 * 0.006 NS
Conduc -0.016 -0.055 -0.042 -0.036 -0.052 * 0.010 0.066 * 0.048 * 0.058 * -0.023 -0.003 NS
Hum -0.037 -0.006 0.002 0.017 0.004 0.029 -0.008 .00D -0.068*  0.039 -0.011 NS

CoRW Agg0.053-0.125  0.056 0.001 0.033 0.038 0.000 0.069 *  -0.012 -0.042 -0.017 0.079 * 0.044 NS
Agg0.125-0.25 0.135*  0.112*  0.076 ** 0.042 €20 -0.091*  -0.050 -0.087 *  -0.042 0.076 * 0.097  Significant
Agg0.25-0.5 0.103 * 0.081 * 0.073 ** 0.040 -0.017 -0.076*  -0.019 -0.082*  —-0.056 0.047 0.037 NS
Agg0.5-1 0.120**  0.113*  0.070 ** 0.049 -0.025 0083 *  -0.049 -0.073 * -0.019 0.041 0.029 Sigrafit
Aggl-2 0.088 0.103**  0.052 * 0.042 -0.024 -0.056 -0.046 -0.047 -0.055 0.062 0.026 Significant
Agg2-5 0.169 ** 0.165 ** 0.085 ** 0.053 * -0.042 -0.083*  -0.080*  -0.076** -0.036 0.012 0.122 Significant
Agg5-10 -0.052 0.038 -0.045 -0.008 -0.017 -0.004 0.010 0.044 0.080 * -0.010 -0.062 NS
Agg > 10 -0.140** -0.155* -0.081*  -0.054* 029 0.079 ** 0.082 **  0.090 **  0.038 -0.034 -0.08 Significant
BD -0.106 * -0.096* -0.058* 0.008 0.009 0.060* 0.033 0.035 0.001 0.018 -0.109 NS
Comp 0.003 -0.012 -0.007 -0.018 -0.027 0.026 0.006 0.021 -0.024 0.059 0.063 NS
Conduc 0.047 0.097 **  0.049* 0.026 -0.026 -0.029 -0.054 * -0.024 0.007 -0.054 -0.009 NS
Hum -0.102* -0.084* -0.044 -0.018 0.022 0.019 056.* 0.052 * -0.019 0.023 0.052 NS

TRiRL, fine root length; CoRL, coarse root lendg&RW, fine root weight; CORW, coarse root weight.
*p < 0.05; ** p <0.01; *** p <0.001; NS, not sigficant.
The number of pair points (within brackets) andlthweer and upper limits for each distance classlepsul while computing the cross-correlograms adicetted.



Decomposing multiple scale spatial patterns of spes assemblages

Significant multi-scale spatial structures were antéd for the earthworm community,
species and assemblages, especially in the casewfgenus 1. The forward selection
procedure resulted in various numbers of PCNM Wé® ranging from 1 to 9 out of 69
positively autocorrelated spatial eigenvectorsnigicant Moran’s | at p < 0.05). Variogram

modeling [25] provided information on the scales BENM variables. The PCNM

eigenfunctions selected to model the distributibaasthworm community are depicted in the
Additional file 1.

These parameters indicate clear spatial structures medium (>30 m), fine (10—20 m) and
very fine scale (<10 m), except fékndiodrilus (which presented only one significant
PCNM). Regarding new genus 1, PCNM3 and PCNMS8 ddfithe medium-scale patterns,
whereas PCNM12 and PCNM16 encompassed the fine-pedierns; PCNM29, PCNM33
and PCNM51 described very fine scales (Additioilal ). The maps of the fitted scores of
the significant canonical axes in the PCNM analf@ispecies (A), species assemblages and
the whole community (B) are depicted in Additiofild 2.

The significant explanatory environmental variabthat best described the multi-spatial
structure varied for the earthworm community, spe@nd species assemblages (Table 5).
The nutrient-related variables explained much efdtiucture of new genus 1 on the medium
and fine scales, whereas the physical variableg Wetter explained on a very fine scale,
such as soil compaction (negatively) and humidgs(tively). The variables & (Peorr <
0.001) and moisture content,{p< 0.05) contributed positively to the spatial sttue model

of new genus 1, whereass & (Pecorr < 0.05), N-s5 (Pcor < 0.001), C:N5 (p < 0.01) and
compaction (gr < 0.05) contributed negatively to medium-scalegrat (Table 5).



Table 5 Significant positive/negative relationship betweethe spatial characteristics of earthworm species ahthe soil environmental

variables measured in this study

Earthworm community, species and assemblages Scales
Medium Fine Very fine
>30m 10-20 m <10m
Vars Coeff Pinit? Peorr Vars Coeff Pinit Peor  Vars Coeff Pinit  Peorr
Community Ps_1c Positive * NS Litter Negative * NS  N¢ Positive dkkkk
- - - - Comp Positive * NS & Negative o
- - - - - - - - C:Neac Positive *roox
- - - - - - - - Humidity Negative * NS
New genus 1 Cos Positive kk rkk Cos Positive xxk ¥ Comp Negative *Ex
No-s Negative Fkk *kk Nos Negative rkk *k - Humidity Positive i
C:Nos Negative kk ** C:Nos Negative xxk wRE - - -
Compaction Negative ki ki Compaction Negative *x *E - - -
Humidity Positive ki * Gsac Negative *x * - - - -
Csac Negative ki * Litter Negative *x * - - - -
- - - - Humidity Positive ki * - - - -
Andiodrilus Ag0.25-2 Positive * NS - - - - - - - -
Ag2 Positive * NS - - - - - - - -
>Ag5 Positive * NS - - - - - - - -
<Ag0.25 Positive * NS - - - - - - - -
Glossodrilus - - - - Compaction Positive * NS - - - -
New genus 2 - - - - Rs Positive *x * - - - -
- - - - Ag0.25.2 Negative * NS - - - -
- - - - Ag2 Negative * NS - - - -
- - - - >Ag5 Negative * NS - - - -
- - - - <Ag0.25 Negative * NS - - - -
- - - - Litter Positive * NS - - - -
- - - - Nes_1c Negative * NS - - - -
- - - - PR5 Positive * NS - - - -
Aymara Compaction Positive ki NS PR20 Negative * NS - - -
Humidity Negative ki NS - - - - - - - -
FiRL Positive * NS - - - - - - - -
Martiodrilus Humidity Positive * NS Ric Positive * NS - - - -
FiRL Negative * NS
Endogeics Pos Negative kk ** Litter Negative * NS - - - -
Epigeics + anecic Compaction Negative hid NS PR20 Negative hid NS PR10 Positive * NS
Litter Positive hid NS BD Negative * NS - - - -
Humidity Positive * NS PR5 Positive * NS - - - -
Andiodrilus Aymaraand new genus 1 Litter Positive ki NS BD Negative  ** NS  Compaction Negative ** NS
Compaction Negative ki NS PR20 Negative * NS  Hurydi Positive *»* NS
Humidity Positive * NS Ric Positive * NS Gs Positive * NS
- - - - Ns_1c Negative * NS Ns Negative * NS
Martiodrilus, Glossodrilusand new genus 2 o Positive * NS - - - - - - - -
Compaction Negative * NS - - - - - - - -
CoRW Negative * NS - - - - - - - -
Cond Negative * NS - - - - - - - -

S A false discovery rate (FDR) procedure was appiliecbrrect the initial p-values (see text for extion).
*p <0.05; ** p <0.01; ** p <0.001; NS, not sigficant.



With regard to the endogeiéndiodrilus sp., the medium-scale spatial structure was
explained by physical variables associated with stze of soil aggregates, although the
values were not significant g > 0.05). When species assemblages were useddnsiea
environmental variables were detected (Table &), variable s was negatively correlated
to the medium-scale pattern of assemblage of emckygend litter contributed negatively to
this pattern. For the epigeics and anecic assemblitigr and moisture contributed positively
to the medium-scale spatial structure model, aghothis contribution was not significant
(Pcorr > 0.05).

Soil environmental control on earthworm species andssemblage spatial
patterns

The variation partitioning analysis revealed défeces among species regarding the
explanatory variables (Table 6). The entire setenfironmental and spatial variables
explained the various percentages of variation iwithe community, species and species
assemblage. In the case of the earthworm commuhgyexplained variation was 41.9%, of
which 32.3% was explained by the soil environmaritriot the spatial variables (p = 0.005).
The environment and fine-scale structure explath®&8% of the total variation, whereas the
environment and medium-scale structure togethelaggal 2.93%. For the species alone, the
R.? coefficient for the environmental fraction randenim 1% forAymarato 48.0% for new
genus 1. The medium and fine spatial scales exqdal’».4% and 13.4% féxymaraand 2%
and 2.2% for new genus 1, respectively. The amotinariation explained only by spatial
variables independent of the environment differatbiag species; it ranged from 1.3% to
28.8% for new genus 2 aWg/marg respectively (Table 6).



Table 6 Significant PCNM variables (spatial models with eignfunctions associated with a positive Moran's I)dr medium, fine and very
fine spatial scales and results of the variation pétioning analysis using adjusted R coefficientsR.?), i.e., the amount of variance

explained by the environment, the spatial scales diresiduals

Species and assemblages Number of Scales Variation partitioning, R ,2 Residual

PCNM eigenvectors Medium Fine Very fine Environment Medium scale Fine, very fine scale Pure spatial Unexplained
Community 6 3,5,8 12 33,51 0.330 ** 0.031 NS 10N5 0.018 0.581
Andiodrilus 1 - 24 - 0.129 ** 0.041 * - 0.041 0.777
Aymara 9 1,2,5 15,20,24 30, 44,47 0.002 NS 0.154 ** .13@ ** 0.288 0.623
Glossodrilus 3 - 13,24 50 0.053 * 0.081 ** 0.056 ** 0.141 0.785
Martiodrilus 2 5 - 56 0.032 * 0.038 * 0.048 * 0.096 0.867
New genus 1 7 3,8 12,16 29, 33,51 0.480* 0.020* 0.022* 0.042 0.369
New genus 2 3 - - 29, 33,49 0.176 ** - 0.012 NS 01a. 0.812
Endogeics 4 1,10 21 65 0.153 ** - 0.015 NS 0.016 .816
Epigeics + anecic 7 8, 11,15 20,33 47,51 0.¥45* 0.098 ** 0.118 ** 0.235 0.639
Andiodrilus Aymaraand new genus 1 6 8,11 20, 33 56, 63 0.198 ** 2D 0.077 ** 0.222 0.526
Martiodrilus, Glossodrilusand new genus 2 2 2,5 0.101 ** 0.058 * - 0.058 0.762
*p < 0.05; ** p < 0.01; NS, not significant.



Discussion

Both spatial and environmental variables structuhedspecies, assemblages and earthworm
community, although variations were found in thelaied contribution of environmental
factors, i.e., 33.3% of the total variation of thebal spatial structure of the earthworm
community was explained by soil environmental Matigy. The specific soil environmental
variables that were significantly linked to parteou spatial scales for species and
assemblages were also observed in other studieenoétodes in a forest [35]. To a certain
extent, our results agree with Hutchinson’s envinental control model [4], although a large
portion of the variation was also linked to a pyrgbatial component (Table 6).

The selected PCNM variables highlighted significasgatial patterns in earthworm

assemblages from a gallery forest, allowing usdeniify the spatial scale at which the

earthworm community was structured. In general, tkey fine scale of autocorrelation

detected in our study represents spatial pattefriess than 10 m (PCNMs 33, 51; Figure S1
in Additional file 1), fine scales depicted patteraf 15-20 m (PCNMs 12), and medium
scales (PCNMs 3, 5, 8) represented spatial patt#rn80 m (see details in Additional file 1).

Furthermore, our observation of very fine-, finexdamedium-scale spatial relationships
indicates the importance of considering multipl@les during ecological studies of soll

organisms. In our study, we carefully chose théesgaed to sample earthworms to focus on
small-scale patterns. Additional studies are neddetdhcrease the scale of the sampling
design, i.e., hundreds of meters to several kilogset

The influence of environmental constraints on thatial distribution of species assemblages
has previously been demonstrated in a nearby savi@®). Moreover, earthworm activity
also contributes to soil heterogeneity [33,37]. Jdiet influence of the soil environment and
species-created heterogeneity, i.e., the so-céiledtional domain” [47] of soil parameters,
could explain the spatial patterns observed on raéwxales. On very fine scales, the
environmental variables associated with the spalistribution of earthworms were more
difficult to detect, i.e., the concentration ofI96Gh_s and moisture better explained the spatial
pattern of new genus 1 on fine and medium scalegpaced with very fine scales, whereas
Andiodrilussp. was mostly associated with physical varialtdaesh as size class aggregated
distributions, because this medium-size specieslym®s compact casts that influence the
surrounding soil environment [32]. Very fine sca(B<€NMs 32 and 50) may be overlooked
by classical multivariate analyses, as their retehips may be masked by those of other
explanatory variables associated with larger scalesh as PCNM 3. As a detailed analysis
of the soil environmental variables was performethiw a relatively small area, some of the
variation could be attributed to unmeasured vaesieading to incomplete predictions [48].
Moreover, the fraction attributed solely to spacswsmaller than all other fractions, except
for Aymara (28.8%), Glossodrilus (14.1%), and assemblages epigeics + anecic and
Andiodrilus Aymara and new genus 1, which represented 23.5% and 22f28fee total
variance, respectively.

The factors affecting the spatial distribution adil sorganisms at larger scales include
gradients in soil organic matter and vegetationcstire [49], whereas at very fine scales (<10
m) earthworm spatial distribution could be influedcby local factors, such as the plant
characteristics, soil moisture and micro-topographyariety of plant species is likely to

support important levels of soil heterogeneity [5lhe root architecture or fine-scale spatial
patterns within the plant community determine theatil structures of earthworm

populations through fine-scale soil environmentliations, which is known as the “single-



tree effect” [44]. Through litter input and rootalshates, trees directly influence earthworm
populations. They also indirectly influence eartimvopopulations by altering the soil
properties, forming patches beneath tree canop@sinfluence community structure and
ecosystem function [51,52]. Species exclusion wias aeported for the savanna grass
Imperata brasiliensisas earthworms become injured upon contact wghsktarp-pointed
roots [38]. In our study, significant positive csesorrelations were found for the CoRL and
CoRW and the solil nutrient- and physical-relatedaldes. These close associations between
soil variables and vegetation structure have alsenbdescribed for epigeic invertebrate
assemblages [19]. Regarding the importance of esorironmental variables, it should be
noted that the influential factors according to aoalyses did not operate independently but
interacted (e.g., root traits and nutrients); thesmplex interactions are characteristic of
most ecological systems [53].

The idea that species distributions can be linkekiety abiotic variables on multiple scales is
not new [54]. Our analysis for empirical data hasven that environmental variables are
indeed most important on broad scales, whereasympatial patterns appear to dominate on
finer scales [55]. Applying PCNM analysis towardge-scale assessment of species-
environment relationships is a well-establishedhoet[19,56,57]. Gilbert and Bennett [43]
and Smith and Lundholm [28] criticized the applicatof variation partitioning to study the
relationship between environmental variables aratspalthough they admitted that it yields
useful results when carefully used. Our presentyaisasupports an optimistic view of this
approach. All environmental patterns are spatiatbyrelated on some scale [28], and all
ecological processes are spatial to some extentTh¢ common fraction of variance
explained jointly by environment and space app&argpresent patterns generated by both
environmental factors and the limitations on specdispersal [28]. In our study, the highest
level of pure spatial variation was obtained fog #pigeics + anecic assemblage (23.5%),
whereas the endogeics assemblage showed the llewek(1.6%, Table 6). Species, or even
earthworm ecological categories, show specific efisal behaviors [58], with endogeics
typically showing less dispersal than do epigeit anecic species.

We carefully selected the sampling scale and trediadpstatistics tools to address the
ecological question at hand [43]. We benefited fromn previous knowledge regarding the
biology and ecology of the species found in theaomgvhere the survey was undertaken
[29,32,33,37,38]. Our study lays the groundwork forther detailed analysis of spatial
structuring environmental factors and species alkgyas on several scales, while also
providing clues for developing an accurate and iglhatexplicit sampling design for
earthworm communities. In addition, the utility ofie tools used to select species
assemblages and analyze their spatial attributaBvesto the soil environmental variability
was clearly demonstrated. We are confident thatresults provide crucial insight into the
spatial relationship between species assemblagesalnenvironmental variability on scales
that range several tens of meters. The selectioassémblages from the correspondence
analysis, in this case epigeics versus endoganckilee statistical methods used to draw our
conclusions provide insights that improve undeditagn regarding why particular species
assemblages are found at particular sites. Froracatogical point of view, our study not
only suggests that specific environmental factoetewmine the structure and spatial
distribution of earthworms in the gallery forestt lalso indicates that a large proportion of
unexplained variation exists. Whether this varmtis the result of unmeasured soill
environmental variables or null model (random) graus$ is a subject for further research.



Conclusions

Earthworms were spatially structured within a rigklyy small but highly heterogeneous plot;
i.e., even at ranges of just a few meters, a nsulile spatial pattern was observed. The
amount of variation jointly explained by the envinoent and space was not high. However,
these sources of variation should not be neglebtsduse they represent unmeasured soll
environmental factors and processes that limitisgedispersal. Further studies are needed
because dispersal traits, for example, remain largenknown in many earthworm
communities. In conclusion, specific abiotic fastowere responsible for the observed
patterns, and the importance of these patternssreelde elucidated, even if the multi-scale
approach carries additional difficulties and casesen interpreting the results.

Methods

Study area

Sampling was conducted in a gallery forest (GRhatCORPOICA-CIAT Carimagua field
research station in the Eastern Plains of Color§ia87’ N, 71° 19° W, 170 m a.s.l.). The
study area is a well-drained savanna forming a galluvial plain consisting of Pleistocene
and Holocene sediments of Andean origin. The tensicharacterized by open herbaceous
savannas where GFs follow a dense braided drainetyeork of rivers toward the Orinoco
catchment. The yearly average temperature andpaiaan are 26°C (iso-hyperthermy) and
2,200 mm, respectively, with clayey Oxisols of lpi (4.2-4.4 in water) and fertility, with
low available P (1-2 ppm Bray Il) and Al saturate®0% (CIAT data).

The plant community of the GF is characterized leyesal tree species, including
Dendropanax arboreuglL.) Decne. & Planch. (1854) (Araliaceaenterolobium spp.
(Leguminosae), Ficus spp. (Moraceae),Jacaranda copaia (Aubl.) (Bignoniaceae),
Copernicia tectorum(Kunth) Mart. (Caesalpiniaceae), akcropia sp. (Cecropiaceae).
Other species includMauritia flexuosalL.f. and Mauritiella (Palmaceae)Attalea maripa
(Palmaceae)Nectandra membranacg&w.) Griseb. (Lauracead)idymopanax morototoni
(Aubl.) Decne. & Planch. (AraliaceagJjrola sp. (Myristicaceae), andymenaea courbaril
L. (Caesalpiniaceae) [59].

Earthworms and soil sampling

Earthworms and soil samples were collected at a@@ping points evenly distributed within
a 45x45 m grid with 5 m of inter-sample distance (Figure She earthworms were
identified, and their abundance was counted in fsdm soil blocks of 25x25 cm2 and a
depth of 20 cm [60]. Previously, the fresh, towikelcasts deposited on the soil surface by
Martiodrilus sp. (anecic) were counted at each point withir? uadrats, as they are reliable
indicators of the number of active individuals [61]



Figure 5 Sampling protocol used with a regular grid of 10x1&ampling points and a 5 m
inter-sample distance A total of 400 soil samples were collected for viagious soil

analyses and 100 soil monoliths for earthworm s®ecounts. The location of tree species
(>5 m diameter at breast height, DBH) within theveyed 0.2 ha plot are shown together
with the soil pit where the earthworms were sampléehtified and counted, as well as the
four soil cores taken for physical and chemicaéduinations from each of the 100 sampling
points.

In total, 400 soil samples were collected for pbgsand chemical analyses. Soil cores were
collected along the four sides of each samplinqitp@rigure 5). The core method (5 cm
depth and 5 cm diam. metal cylinder) was used @k density (soil dry mass per volume)
following [62]. Water content (soil water per volemand soil water per dry mass) was
determined gravimetrically, and hydric conductivagd susceptibility to compaction were
also measured [63].

A second core (10 cm depth and 5 cm diam. metaiagt) was used for soil organic carbon
(SOC), nitrogen (N) and phosphorous (P) measuresvegn®—5 and 5-10 cm. The soil was
then oven dried at 75°C for 48 h and finely groys@00 um). A standard colorimetric
method was used after digestion iaS&, to measure SOC, and the Kjeldahl method was
used to assess the total N. Available P was detedniising the Bray-Il extraction method.
C:N and C:P ratios were calculated as the SOC ctrat®n divided by the total N and P
concentrations, respectively.

Another soil core (15 cm depth and 10 cm diam.) taken to assess the size-class aggregate
distribution; ca. 100 g of air-dried soil was megitally shaken in a sieve column of 4.75, 2,
1, 0.5 and 0.250 mm for 30 min. The last soil qdf® cm depth and 10 cm diam.) was used
for root length and biomass quantification. Soikweashed in the lab and sieved to separate
the fine (<2 mm) and coarse roots (>2 mm) and them dried at 105°C for 48 h.

Resistance to penetration (RP) was measured (8atgd) using a hand penetrometer at each
sampling point. The soil moisture content (volunagtof the topsoil at the time of sampling
was ca. 38% (pF = 2.8).

Multivariate ordination analysis (CA)

Species abundance (raw data) was analyzed usingspondence analysis (CA). When the
species abundance was <5% of the total, it was vechdrom the species matrix. The
extracted factorial axes allowed us to identifyieas species assemblages, i.e. these were
defined according to the sum of the individualsatbfspecies linked to positive or negative
row scores of the three axes.

Species assemblage patches and gaps

SADIE (Spatial Analysis Distance IndicEs) analyj$4,65] was used to assess the presence
of significant patches and gaps within speciesrabigges. The index uses count data, i.e.,
the total number of individuals who correspondedcny of the assemblages identified per

sampling point. A global index of aggregatiog) (6§ computed:

|,=D/ Ea,



where D is the distance moved to achieve the regatern for the observed data and Ea is
the arithmetic mean distance to regularity for megdlar randomized samples [64].

l. equals 1 for a random distribution, whereas ilisor <1 for either a clumped (aggregated)
or regular spatial pattern, respectively [65].

SADIE identifies clusters of high (patches) and I@yaps) mean density, respectively, and
these clusters are categorized a@wsitive) and y(negative cluster index). A patch or gap
comprises at least one sample location where tsesl index (vor v) is significant at the
heuristic threshold of 1.5 and -1.5, respectivélgiacent sample locations with significant
index values form a single cluster [65]. The obedry or v indices are tested using random
permutations against the) ldf complete spatial independence of counts [66].

In this study, we used positive and negative roaress extracted from the CA to obtain count
data and compute the SADIE and Yy cluster indices. Factorial coordinates have bessul u
as a typical procedure to analyze the inner strastaf data matrices for community analysis
[29,33,37-39,67,68]. Because the row scores antbrfat coordinates are not count data,
which is a requisite for applying SADIE statistitise various assemblages were obtained by
summing the earthworm count data linked to thetpesand negative row scores along the
CA axes.

Finally, a spatial association/dissociation indexsvweomputed between species assemblage
pairs [66]. The local association indices calcwafeom their individual sampling-unit
clustering indices are correlated between spesssnablage pairs. The observed value of the
association index is tested against thgafl complete spatial independence of the counts
(based on random permutations). The two-tailedcatsal probability levels ai = 5% are
<0.025 and >0.975 for significant association aisgatiation, respectively [66].

Spatial autocorrelation analysis

In the presence of a spatial dependence, the aisernmade at one location is more similar
to observations made at nearby sites [2], breakiegrule of sample independence for
statistical analyses [23]. To assess the degrspaifal autocorrelation, the (semi)-variogram
is a function that describes the spatial pattermrof variable with increasing inter-sample
(lag) distance. When positive autocorrelation axigte semi-variancgh) increases until it
reaches a maximum value (the “sill”) for a giveqg ldistance, which is referred to as the
range. This parameter defines the limit of spatiependence of the variable concerned
(detailed in [22,69]). Estimated valuesygh) are adjusted using a theoretical model [70,71]
that is later applied with an interpolation techuggalled “kriging” to estimate values of the
variable under study at non-sampled sites [22¢unstudy, interpolated maps were used for
root-related variables using only the modeled patars obtained in the variogram [33].

Cross-variograms can be calculated to assess h@wvasiables co-vary in space [72].
Similar to univariate variograms, cross-covarianoey be computed using the values of two
distinct variables observed at locations separbiethg h [73]. However, variograms and
cross-variograms are not associated with forméhig$or departures from randomness (an r
correlation coefficient could be used to adjust teve). However, in our study, spatial
cross-correlation among the root-related variablesi) nutrient contents and physical
variables was assessed by calculating the spateds-correlogram [55,74]. A spatial
autocorrelation coefficient, named Moran’s |, i®tgd in the correlogram for increasing



distance classes [75]. Data were allocated to &thuite classes with a minimum of 50 pairs
of points for each distance class to compute thesecorrelogram. The significance of the
correlogram is tested with a Monte Carlo simulatj2@]; it is significant when at least one
coefficient is lower than the Bonferroni correcigaf o’ = a/k for the k distance classes used
[76]. Data normality was tested with a Kolmogorowifiov test; when the normality
assumption was not confirmed, a Box—Cox transfaonatas used [77]. The gstat and ncf
packages of the R program 2.15.1 [78] were usedotopute the variograms and cross-
correlograms and to depict the kriged maps.

Principal coordinates of neighbor matrices (PCNM) an variation
partitioning

The multi-scale spatial analysis of fauna data aod environmental variability was
performed using PCNM analysis [24,79]. This methddws to capture extremely complex
structures [80] and is based on the principal coatd analysis (PCoA) of a truncated
pairwise geographic distance matrix between samdites [25]. It creates PCNM variables
(spatial predictors or eigenfunctions) and a spéaecomposition of spatial relationships
from broad to fine spatial scales [81] that is enpassed by the data matrix among sampled
sites and then determines to which PCNM varialllesrésponse data (uni- or multivariate)
respond statistically [79]. Only spatial eigenfuans associated with positive eigenvalues
based on Moran’s | were used to define the spstiattures [3], which represents a highly
conservative method due to its penalization of elegof freedom and adjusted Ratistics
[43].

The PCNM variables that significantly contributevisd explaining the species response data
are grouped into a small number of submodels, velsetteey are normally assigned to broad,
intermediate, and fine scales. The predicted vajige®rated for each submodel can then be
reanalyzed using canonical analysis against enwiemal variables to identify the
environmental variables associated with specidslaligions on the scale represented by each
submodel [25]. The forward-selection procedure used [82] to reduce Type | error, as it is
known to underestimate the residual variance [83].other words, the probability of
selecting at least one PCNM is greater than theengignificance level, even if the response
variable is not spatially structured [80]. Apprate and rigorous approaches for submodel
selection have been argued by [43] and [81] is suppf improving the methodological
developments in MEM-based methods. Scale is gdyedafined according to the main
features of the sampling design, such as the eatdhe study area or the size and spacing of
the sampling units [84]. Given the dimensions & fhot (45x45 m) and our knowledge on
the spatial distribution of various earthworm spedn the area [33,37,38], the scales were
grouped for convenience into medium (>30 m), fib@-@20 m) and very fine (<10 m).

The next step is to relate the spatial componesisgusignificant Bonferroni-adjusted p
values extracted from the species matrix with satliables. In other words, species-saill
environment regression analysis is performed indegetly on each scale identified by the
PCNM variables. Variogram analysis for each PCNMalde is performed to identify the

spatial scale at which the relationship was sigaift. The lowest value of the Akaike
information criterion (AIC) identifies the best sigdmodel.

Partitioning the variation of a species responga tible among two or more explanatory
tables is performed using multivariate variatiortitianing [85], which determines how
much of the species variation is spatially strustuiand associated with the measured



environmental variables [57,80]. The variation piaring analysis is based on the adjusted
R? statistic R* [86], and patterns on finer scales identified by PCNM variables appear
smoother compared to other spatially explicit medslich as nested variograms and filter
kriging [79].

The data matrix included count data for 6 earthwsp®cies, 23 soil environmental variables
(Additional files 3 and 4) and xy coordinates foP0Olsampling points. It has been
recommended that fauna data should be detrendetramsformed during PCNM analysis.
Contrary to correspondence analysis, earthwormddnoe data were Hellinger transformed
because PCNM has been found to be inappropriateaferdata that includes many null
abundances [87]. Earthworm spatial distributionrepresented by patches, and clearly
meaningful trends are rarely observed; consequettitéy data were not detrended. In other
words, we were cautious with the use of tests terdene the presence of trends because
they are likely not appropriate for patchy patterfise packages vegan, mass and packfor
were used for all the calculations needed durinM@nalysis in R 2.15.1 [78].

Adjustment of the probability level

The o < 0.05 probability level was corrected using thksé discovery rate (FDR) procedure
for multiple comparisons [88], in which the powelr multiple tests is optimized while
controlling for the proportion of significant ressuithat might be Type | errors. The p values
from the individual tests are used to perform tloerections and search for significant
differences at the corrected probability level. Toenparison starts with the highest p value
obtained from the individual tests, then each vatuehecked until encountering the first
value that meets the requirement, i.e., the highestlue that is smaller than the corrected p
[89]. The transformations include the following:

p(i) < (/m)*i , where m is the number of tests (variabl@sjl i is the test (variable) ranked in

ascending order, i.e., p(® ..... < p(m). The final p value corresponded to the foltoyv
correction:

Peor =(0.05x number of variablels/ ranked(p maxim)

During PCNM analysis, three tests were performeat torresponded to the three spatial
scales used: the medium, fine and very fine scales.
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Addtional files provided with this submission:

Additional file 1. Plot at the grid nodes of the PCNM variables selected to model earthworm distribution. A square size is
proportional to the value associated to positive (black squares) and negative (white squares) spatial autocorrelation with
medium- to fine- and very fine-scale spatial models. Lower order vectors represent broad-scale groupings, and higher order
vectors represent more fine-scale groupings. These eigenvectors represent a multi-scale metric for grouping sites, and thus
do not represent any computed soil parameter that was measured at sampling sites. The size of the symbols is proportional
to the PCNM variables (353k)

http://www.biomedcentral.com/content/supplementary/s 12898-014-0026-4-s1.docx

Additional file 2. Map of the fitted scores of the significant canonical axes in the PCNM analysis for species (A) and
species assemblages and the whole community (B). The size of squares is proportional to its associated value; black and
white colors indicate positive and negative signs of the value associated to the square, respectively (101k)
http//www.biomedcentral.com/content/supplementary/s 12898-014-0026-4-s2.docx

Additional file 3. Raw count data of species in each sampling point and the resulting assemblages obtained from the

positive and negative row scores of the three axes extracted in the correspondence analysis. These data were later use to
calculate SADIE vi and vj cluster indexes (57k)

http://www.biomedcentral.com/content/supplementary/s 12898-014-0026-4-s3.docx
Additional file 4. Summary statistics of soil environmental variables analysed in this study (28k)
http//www.biomedcentral.com/content/supplementary/s 12898-014-0026-4-s4.docx
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