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Abstract 

Background 

Studying the drivers and determinants of species, population and community spatial patterns 
is central to ecology. The observed structure of community assemblages is the result of 
deterministic abiotic (environmental constraints) and biotic factors (positive and negative 
species interactions), as well as stochastic colonization events (historical contingency). We 
analyzed the role of multi-scale spatial component of soil environmental variability in 
structuring earthworm assemblages in a gallery forest from the Colombian “Llanos.” We 
aimed to disentangle the spatial scales at which species assemblages are structured and 
determine whether these scales matched those expressed by soil environmental variables. We 
also tested the hypothesis of the “single tree effect” by exploring the spatial relationships 
between root-related variables and soil nutrient and physical variables in structuring 
earthworm assemblages. Multivariate ordination techniques and spatially explicit tools were 



used, namely cross-correlograms, Principal Coordinates of Neighbor Matrices (PCNM) and 
variation partitioning analyses. 

Results 

The relationship between the spatial organization of earthworm assemblages and soil 
environmental parameters revealed explicitly multi-scale responses. The soil environmental 
variables that explained nested population structures across the multi-spatial scale gradient 
differed for earthworms and assemblages at the very-fine- (<10 m) to medium-scale (10–20 
m). The root traits were correlated with areas of high soil nutrient contents at a depth of 0–5 
cm. Information on the scales of PCNM variables was obtained using variogram modeling. 
Based on the size of the plot, the PCNM variables were arbitrarily allocated to medium (>30 
m), fine (10–20 m) and very fine scales (<10 m). Variation partitioning analysis revealed that 
the soil environmental variability explained from less than 1% to as much as 48% of the 
observed earthworm spatial variation. 

Conclusions 

A large proportion of the spatial variation did not depend on the soil environmental 
variability for certain species. This finding could indicate the influence of contagious biotic 
interactions, stochastic factors, or unmeasured relevant soil environmental variables. 

Background 

Ecological processes are spatially influenced on various scales, ranging from global to local 
scales [1,2]. In natural communities, the observed spatial pattern is the result of 
environmental, biological and/or historical drivers [3], which are not exclusive but rather 
complementary. The existence of spatial structures of species assemblages suggests the 
influence of at least one structuring factor: i) a spatially distributed environment is the driving 
force that structures species assemblages according to niche theory [4]; ii) species are 
assembled on certain spatial scales through the influence of biotic interactions [5-10]; and iii) 
historical contingency, according to neutral theory [10,11], or stochastic variations in the 
history of species arrival [12,13] drive this process, although the scale of the random effect 
has not been fully identified [14]. It is challenging to determine which process has a larger 
effect because historical species arrival data and past ecological processes are usually 
unknown. 

When analyzing spatial datasets, striking and puzzling results are found if spatial 
autocorrelation is ignored because response variables are structured on various spatial scales 
[15-18]. Specific spatially explicit sampling protocols for targeted organisms and different 
approaches are needed in soil ecology studies [17,19,20], although these methods must be 
used with caution [16,21]. Geostatistics [22] allows the assessment of the spatial distribution 
of soil environmental variability and soil organisms [22,23], but other powerful statistical 
tools are necessary to model spatial structures on various scales, such as principal coordinates 
of neighbor matrices (PCNM) [3,24,25]. The PCNM approach is part of the distance-based 
Moran’s eigenvector map (MEM) analysis, which is included in the spatial eigenfunction 
family of tools [2,25,26] and is a powerful statistical method to model spatial structures at all 
scales; in other words, the environmental variability is linked to community structure on a 
multi-scale level [3,24] to obtain new ecological insights [21]. It has also been used to test 



and separate the niche from neutral mechanisms that influence the community structure [15], 
although it may appear over-simplistic [27,28]. 

To date, few field studies have been performed on the assembly of soil invertebrate 
communities to infer overall patterns and draw conclusions on the importance of explicitly 
accounting for multi-spatial scales. Soil organism communities have been reported to be 
spatially structured due to their response to spatial variability in soil resources [12,19,29-33], 
allowing the co-existence of competing species within the same patch in spatially 
heterogeneous environments [32,34]. Although complex spatial patterns have been described 
for soil invertebrates forming patch assemblages that range from the scale of soil aggregates 
[35] to those of individual plants [36], agricultural lands and natural ecosystems [37-42], no 
study has assessed the multi-scale spatial relationship between soil invertebrates and 
environmental variability thus far. The influence of disturbance and habitat heterogeneity on 
Carabidae assemblages has been described recently, but only on the landscape scale [19]. 
Studies and data analysis using these multi-spatial analysis techniques to perform invertebrate 
community research are needed, even if caution must also be exercised [43]. In this study, we 
aimed to i) analyze the spatial location of significant patches and gaps of the species 
assemblages identified, ii) test whether the relationship between species assemblages and soil 
environmental variability occurs on very fine (<10 m), fine (10–20 m), and medium scales 
(>30 m), and iii) investigate the spatial relationship between root traits and soil parameters to 
test the hypothesis of the “single tree effect” [44]. 

Results 

Earthworm abundance and soil environmental heterogeneity 

A total of 688 earthworms were collected and included seven species (Table 1) with three 
main ecological categories present [45]: epigeics (litter feeders), Aymara sp. and one 
unclassified species (new genus 1); endogeics (soil feeders), Andiodrilus sp., Andiorrhinus 
sp., Glossodrilus sp., and one unclassified species (new genus 2); and anecics (soil + litter 
feeders), Martiodrilus sp. 



Table 1 Earthworm abundance and main morphological traits 
Species Family Ecological category1 Pigmentation Size2 (mm) Weight2 N Average density 
    Length Diam. (g.f.w.)  ± standard error 
Andiodrilus sp. Glossoscolecidae Endogeic Unpigmented 109.0 4.4 1.38 22 3.1 ± 0.7 
Andiorrhinus sp. Glossoscolecidae Endo-anecic Pink anterodorsal 188.0 7.6 7.10 10 0.1 ± 0.1 
Aymara sp. Glossoscolecidae Epigeic Dark-red dorsal 58.1 1.5 0.06 15 6.5 ± 1.3 
New genus 1 NC3 Epigeic Dark-green dorsal 117.9 3.8 0.69 18 9.5 ± 5.1 
Glossodrilus sp. Glossoscolecidae Endogeic Unpigmented 83.9 1.5 0.10 13 8.5 ± 1.4 
Martiodrilus sp. Glossoscolecidae Anecic Dark-grey anterodorsal 194.3 9.3 11.2 29 10.3 ± 1.4 
New genus 2 Ocnerodrilidae Endogeic Unpigmented 22.8 0.7 0.006 157 24.0 ± 2.6 
1 Epigeic: live and feed on the soil surface; Endogeic: live and feed within the soil; Anecic: live within the soil and dig vertical or semi-vertical burrows to 
feed on the soil surface (after [45,46]). Endo-anecic worms have characteristics of anecic (anterodorsal pigmentation, flattened rear end) and endogeic worms 
(horizontal burrowing). 
2 Average biometric data for adults (g.f.w.indicates grams of fresh weight in 4% formalin, gut contents included). 
3 NC: not classified. 



The CA extracted three axes (72.9% of the total variance), and these three axes were used to 
discriminate among the various species assemblages according to the axis selected (Figure 1). 
Axis I (34.2% of the explained variance) discriminated new genus 1 versus all other species, 
whereas the second axis (21.7% of the total variance) revealed a clear distinction between 
endogeic and epigeic + anecic species. Moreover, the position of species along the positive 
side of axis 2 followed a body size increase among endogeic species. Axis 3 (17.1% of the 
total variance) separated Aymara, Andiodrilus and new genus 1 from Martiodrilus, 
Glossodrilus and new genus 2. 

Figure 1 Ordination plot of species in the factorial plan following correspondence 
analysis of earthworm density (N m−2) in the gallery forest: (a), axes 1 and 2; (b), axes 2 
and 3; and (c) and (d), “eigenvalues”. The species Andiorrhinus was not included in the 
analysis because it only represented 1% of the total earthworm abundance. 

Patches and gaps of species assemblages 

The SADIE spatial Ia index and local vi and vj clustering indices were statistically significant 
for endogeic species and the group Martiodrilus, Glossodrilus and new genus 2 (1 anecic +2 
endogeics), whereas only the vj index was significant for Andiodrilus, Aymara and new genus 
1, i.e. one endogeic + two epigeics (Table 2). Significant spatial dissociations were found 
when using those assemblages identified with CA axes, i.e., −0.232 (p = 0.978) between new 
genus 1 and the rest of species, −0.278 (p = 0.995) between endogeics and epigecis + anecic 
group, and −0.383 (p = 0.999) between the group Andiodrilus, Aymara and new genus 1 from 
Martiodrilus, Glossodrilus and new genus 2 group. 

Table 2 SADIE aggregation indices and associated p levels for the various combinations 
of earthworm assemblages identified in the three axes extracted from the CA 
Species assemblages Ia vi (patch) vj (gap) 
New genus 1 0.997 NS 0.871 NS −1.003 NS 
Rest of species 1.018 NS 0.944 NS −1.015 NS 
Endogecis 1.414 * 1.485 ** −1.430 * 
Epigeics + Anecic 1.011 NS 1.188 NS −1.061 NS 
Andiodrilus, Aymara and new genus 1 1.222 NS 1.343 * −1.222 NS 
Martiodrilus, Glossodrilus and new genus 2 1.453 * 1.320* −1.428 * 
Ia = global index of aggregation; vj = mean negative index value (gap); vi = mean positive index value 
(patch). Departure from randomness is tested using 5,967 permutations. * p < 0.05; ** p < 0.01; NS, 
not significant. 

The number of significant clusters of the earthworm assemblages ranged from 1 (new genus 
1) to 9 (endogeics), with gaps occupying a larger area than that of patches (Figure 2). The 
type of litter and tree root traits may influence the patchy distribution of endogeic 
earthworms, which is known as the “single tree effect” [44]. The endogeic species 
assemblage was close to A. maripa trees, except for the large patch at the central part of the 
surveyed plot, where values of the coarse root length and weight (CoRL, CoRW) were the 
lowest (Figure 3, kriged contour maps). 

  



Figure 2 Overlaid contour and classed post maps (surfer) of SADIE clustering indices 
for counts of the species assemblages identified in the CA. Index values > −1.5 represent 
significant gaps (blue shading and darker blue dots), and index values >1.5 indicate 
significant patches (red shading and darker red dots). Black dots indicate units for which 
clustering exceeds expectation, although not significantly (>2 or < −1). Open dots indicate 
clustering below expectation (<1 or > −1). 

Figure 3 Correlogram computed using the factorial coordinates for the corresponding 
positive (□) and negative (∆) row scores of the three axes extracted from the CA 
depicting the spatial autocorrelation of A) assemblages CA1+ (New genus 1) and CA1- 
(rest of species), B) CA2+ (endogeics) and CA2- (epigeics + anecic), and C) CA3+ 
(Andiodrilus, Avmara, new genus 1) and CA3- (Martiodrilus, Glossodrilus and new genus 
2). Black symbols refer to the lag distances at which the Moran’s I coefficients were 
significant after progressive Bonferroni corrected p-values (p = 0.05/12; p’ = 0.0042). Only 
the correlograms of the CA2+ and CA3- assemblages were globally significant. 

The identity and location of tree species within the surveyed plot did not appear to explain the 
observed spatial patterns of the remaining species assemblages: 

■ new genus 1: a significant gap in the lower half area where multiple tree species, mainly A. 
maripa, were present. The correlogram was not significant (Figure 4a). 
■ All other species: significant gaps and patches were not linked to areas of tree presence. 
The correlogram was not significant (Figure 4a). 
■ Endogeics group: four significant patches close to the location where the A. maripa tree 
species was observed. The correlogram was significant (Figure 4b). 
■ epigeics + anecic group: same as described for the rest of species (CA1-). The correlogram 
was not significant (Figure 4b). 
■ Andiodrilus, Aymara and new genus 1: two significant gaps in the lower half area and two 
significant patches in the plot edge where the A. maripa tree species was found. The 
correlogram was not significant (Figure 4c). 
■ Martiodrilus, Glossodrilus and new genus 2 group: one significant patch in the western 
zone of the plot where trees were present and a large significant gap in the upper part; another 
two significant patches were in the eastern zone. The correlogram was significant (Figure 4c). 

Figure 4 Kriged maps of root-related variables (log-transformed values): FiRL (a) and 
CoRL (c), length of fine and coarse roots, respectively (m sample−1), and FiRW (b) and 
CoRW (d), weight of fine and coarse roots, respectively (g dry weight sample−1). Darker 
areas correspond to lower values. 

Cross-correlogram analysis 

Regarding the spatial cross-correlation between root-related variables and soil nutrient-
related and physical variables, significant positive cross-correlations were identified at short 
lag distances (h) between the FiRL and SOC0–5, P0–5 and C:N5–10 (Table 3), whereas P5–10 
showed a significant negative cross-correlation (Monte Carlo permutation). With regard to 
the CoRL, the cross-correlation at short distances was positive for SOC5–10 and C:N5–10 and 
negative for N5–10 and P5–10. Regarding root biomass, the FiRW showed significant positive 
spatial cross-correlation with P0-5 and P5–10, whereas it was negative for the variables SOC5–

10, C:N0–5 and C:N5–10 at short lag distances (Table 3). The CoRW showed a positive spatial 
relationship with SOC5–10 and C:N5–10 and a negative relationship with P5–10. A significant 



positive spatial cross-correlation was observed between the FiRL and soil aggregates of less 
than 5 mm in size, whereas it was negative for larger soil aggregates and moisture at short lag 
distances (Table 4). Regarding the FiRW, a significant negative spatial cross-correlation at 
short distances was especially observed for <0.5 and 2–5 mm size soil aggregates, and a 
positive cross-correlation was observed for >10 mm aggregates and bulk density (BD). 
Finally, the CoRL showed a positive spatial cross-correlation with 0.125-0.5 and 1–5 mm soil 
aggregates and hydraulic conductivity, and a negative spatial cross-correlation was observed 
for >10 mm soil aggregates and soil moisture. The CoRW showed a positive spatial cross-
correlation with 0.125-0.25 and 0.5-5 mm size soil aggregates and a negative spatial cross-
correlation for >10 mm soil aggregates (Table 4). 



Table 3 Cross-correlograms of the root- and nutrient-related soil variables (significant Bonferroni corrected two-sided p-values (0.05/11 
= 0.0045) for each distance class were tested using 999 permutations under the null hypothesis) 
Variables  Distance (number of pair points)       Global 
Plant below-
ground1 

Nutrient-
related 

5.0 (360) 8.5 (644) 12.8 (1112) 17.5 (1192) 22.6 (1548) 27.5 (1264) 32.1 (1128) 36.9 (1108) 42.0 (848) 47.3 (516) 52.8 (120) significance, p’ 

FiRL N0–5 0.090 0.028 0.021 −0.022 0.026 −0.011 0.005 −0.036 −0.004 −0.069 −0.133 NS 
 N5–10 −0.015 −0.042 −0.036 −0.034 0.046 * 0.027 0.008 −0.011 0.001 0.033 −0.088 NS 
 SOC0–5 0.063 0.039 0.027 −0.022 0.012 0.011 0.014 −0.043 −0.009 −0.097 * −0.076 NS 
 SOC5–10 0.051 0.077 * 0.082 ** 0.039 0.065 ** −0.027 −0.044 −0.092 ** −0.059 * −0.091 * −0.128 Significant 
 P0–5 0.025 0.024 0.060 * 0.016 0.033 0.007 0.010 −0.032 −0.079 * −0.175 ** −0.063 Significant 
 P5–10 −0.089 * −0.133 ** −0.060 * −0.013 0.025 0.055 * 0.028 0.038 0.001 −0.002 0.044 Significant 
 C:N0–5 −0.061 0.030 0.010 −0.001 −0.034 0.043 0.025 −0.011 −0.010 −0.045 0.122 NS 
 C:N5–10 0.053 0.099 * 0.093 ** 0.054 * 0.020 −0.043 −0.040 −0.069 ** −0.049 −0.101 ** −0.034 Significant 
 Litter 0.081 0.066 −0.020 −0.068 ** −0.008 −0.012 0.035 0.055 * −0.019 −0.053 −0.022 NS 
CoRL N0–5 −0.019 0.028 0.016 0.015 −0.003 0.043 0.015 0.002 −0.057 * −0.142 ** 0.019 Significant 
 N5–10 −0.146 ** −0.036 −0.013 −0.020 −0.006 0.072 ** 0.054 * 0.030 −0.006 −0.085 * −0.009 NS 
 SOC0–5 −0.022 0.026 0.012 0.022 0.005 0.041 0.015 −0.005 −0.055 −0.139 ** 0.026 NS 
 SOC5–10 −0.007 0.093 ** 0.098 ** 0.030 0.001 0.037 −0.003 −0.084 ** −0.098 ** −0.121 ** 0.004 Significant 
 P0–5 0.014 0.048 −0.001 0.028 0.042 * 0.033 0.005 −0.030 −0.079 * −0.125 ** −0.068 NS 
 P5–10 −0.127 ** −0.122 ** −0.088 ** −0.028 0.026 0.063 ** 0.089 *** 0.076 ** −0.003 −0.042 −0.039 Significant 
 C:N0–5 −0.012 −0.003 −0.015 0.010 0.021 −0.006 0.003 −0.017 0.007 0.015 0.032 NS 
 C:N5–10 0.103 * 0.104 * 0.090 *** 0.041 0.005 −0.023 −0.045 −0.094 ** −0.077 * −0.033 0.007 Significant 
 Litter −0.036 0.005 0.010 −0.014 −0.002 0.012 −0.016 0.031 −0.020 0.035 −0.081 NS 
FiRW N0–5 0.028 −0.021 −0.017 −0.062 * 0.012 0.015 0.044 −0.010 0.013 −0.069 0.001 NS 
 N5–10 0.062 0.010 −0.009 −0.006 0.062 ** −0.013 0.005 −0.047 −0.038 −0.052 −0.061 NS 
 SOC0–5 −0.043 −0.044 −0.013 −0.059 * −0.012 0.007 0.058 * 0.014 0.059 * −0.072 0.044 NS 
 SOC5–10 −0.075 −0.071 * −0.036 −0.058 * 0.022 −0.018 −0.021 0.012 0.109 *** 0.108 ** 0.125 Significant 
 P0–5 0.103 * 0.083 * 0.099 *** 0.041 0.022 0.036 0.005 −0.092 ** −0.150 ** −0.243 ** −0.157 Significant 
 P5–10 0.149 *** 0.145 ** 0.094 *** 0.086 ** 0.067 ** 0.028 −0.074 * −0.119 ** −0.192 ** −0.213 ** −0.203 * Significant 
 C:N0–5 −0.168 ** −0.040 0.011 0.017 −0.053 ** −0.025 0.025 0.051 0.105 ** 0.004 0.068 Significant 
 C:N5–10 −0.111 * −0.070 * −0.023 −0.048 * −0.027 −0.005 −0.020 0.045 0.122 ** 0.132 ** 0.154 Significant 
 Litter 0.060 0.054 −0.061 * −0.078 ** −0.001 −0.023 0.039 0.020 0.018 0.020 0.192 * Significant 
CoRW N0–5 0.005 0.013 0.027 −0.023 −0.007 −0.003 0.020 0.025 −0.018 −0.084 * 0.015 NS 
 N5–10 −0.090 −0.020 0.021 −0.049 * −0.017 0.030 0.069 ** 0.037 0.028 −0.110 ** −0.014 NS 
 SOC0–5 0.003 0.014 0.020 −0.006 0.004 −0.004 0.019 0.004 −0.010 −0.092 * 0.021 NS 
 SOC5–10 0.025 0.069 * 0.092 *** −0.018 −0.014 0.015 −0.001 −0.062 * −0.052 −0.031 −0.025 Significant 
 P0–5 −0.088 −0.061 −0.060 * −0.026 0.039 0.048 * 0.051 * 0.058 * 0.018 −0.095 * −0.148 * NS 
 P5–10 −0.183 ** −0.130 ** −0.104 ** −0.045 * 0.018 0.084 ** 0.115 *** 0.109 *** 0.024 −0.085 * −0.103 Significant 
 C:N0–5 −0.014 0.008 −0.019 0.039 0.029 −0.001 −0.003 −0.052 * 0.017 −0.011 0.037 NS 
 C:N5–10 0.091 * 0.074 * 0.063 * 0.022 0.003 −0.014 −0.056 * −0.082 ** −0.064 * 0.062 −0.015 Significant 
 Litter −0.059 0.050 0.011 0.028 −0.017 0.005 −0.033 0.002 0.017 0.003 −0.101 NS 
1 FiRL, fine root length; CoRL, coarse root length; FiRW, fine root weight; CoRW, coarse root weight. 
* p < 0.05; ** p < 0.01; *** p < 0.001; NS, not significant. 
The number of pair points (within brackets) and the lower and upper limits for each distance class employed while computing the cross-correlograms are indicated. 



Table 4 Cross-correlograms of the root- and soil physical variables (significant Bonferroni corrected two-sided p-values (0.05/11 = 
0.0045) for each distance class were tested using 999 permutations under the null hypothesis) 
Variables  Distance (number of pair points) Global 
Plant below-ground1 Physical 5.0 (360) 8.5 (644) 12.8 (1112) 17.5 (1192) 22.6 (1548) 27.5 (1264) 32.1 (1128) 36.9 (1108) 42.0 (848) 47.3 (516) 52.8 (120) significance, p’ 
FiRL Agg0.053-0.125 −0.121 * 0.010 0.080 ** −0.001 0.036 −0.012 −0.061 * −0.034 0.046 −0.038 0.067 NS 
 Agg0.125-0.25 −0.005 0.103 ** 0.106 *** 0.038 0.037 −0.059 * −0.096 ** −0.055 * 0.030 −0.069 −0.112 Significant 
 Agg0.25-0.5 0.010 0.060 0.099 *** 0.049 * 0.043 * −0.040 −0.068 ** −0.069 ** 0.032 −0.131 ** −0.058 Significant 
 Agg0.5-1 0.043 0.125 ** 0.106 *** 0.054 * 0.029 −0.057 −0.069 * −0.073 * −0.008 −0.144 ** −0.098 Significant 
 Agg1-2 0.037 0.089 ** 0.065 ** 0.074 ** 0.022 −0.063 ** −0.058 * −0.037 0.013 −0.133 ** −0.095 Significant 
 Agg2-5 0.143 ** 0.127 ** 0.080 ** 0.061 * 0.016 −0.053 * −0.068 * −0.073 ** −0.025 −0.096 * −0.164 Significant 
 Agg5-10 −0.038 −0.027 −0.104 ** −0.008 −0.030 0.031 0.023 0.031 0.028 0.025 0.243 ** Significant 
 Agg > 10 −0.107 * −0.127 ** −0.085 ** −0.057 * −0.006 0.045 0.059 * 0.074 * −0.005 0.137 ** 0.062 Significant 
 BD −0.022 −0.045 −0.025 −0.015 −0.002 0.011 −0.001 0.028 −0.015 0.090 * 0.127 NS 
 Comp −0.128 ** −0.064 −0.047 0.011 0.009 0.003 0.013 0.041 −0.017 0.115 ** 0.167 * NS 
 Conduc 0.149 ** 0.123 ** 0.076 ** −0.002 0.003 −0.044 −0.031 −0.034 −0.029 −0.109 * −0.211 * Significant 
 Hum −0.233 ** −0.125 ** −0.118 ** −0.029 0.019 0.048 0.073 * 0.078 ** 0.003 0.102 * 0.219 * Significant 
CoRL Agg0.053-0.125 0.025 0.016 0.040 0.038 0.019 −0.052 −0.022 −0.054 −0.020 0.034 0.030 NS 
 Agg0.125-0.25 0.099 * 0.121 ** 0.092 *** 0.063 * 0.003 −0.075 ** −0.056 * −0.094 ** −0.058 −0.006 0.035 Significant 
 Agg0.25-0.5 0.087 * 0.111 ** 0.093 ** 0.074 ** −0.001 −0.049 * −0.036 −0.108 ** −0.067 * −0.037 −0.086 Significant 
 Agg0.5-1 0.123 0.173 *** 0.095 *** 0.071 ** 0.006 −0.063 ** −0.061 * −0.114 ** −0.078 * −0.035 −0.052 Significant 
 Agg1-2 0.085 * 0.104 ** 0.069 * 0.046 * 0.015 −0.038 −0.033 −0.070 * −0.090 * −0.023 −0.088 Significant 
 Agg2-5 0.156 *** 0.173 *** 0.098 *** 0.058 −0.003 −0.058 * −0.062 * −0.102 ** −0.081 * −0.072 0.008 Significant 
 Agg5-10 −0.057 0.000 −0.080 ** −0.051 * 0.007 −0.035 0.029 0.060 * 0.080 ** 0.062 0.034 Significant 
 Agg > 10 −0.133 ** −0.174 ** −0.082 ** −0.070 ** −0.013 0.067 * 0.059 * 0.119 *** 0.074 * 0.048 0.055 Significant 
 BD −0.061 −0.061 −0.053 * −0.014 0.008 0.030 0.022 0.013 0.024 0.070 * −0.068 NS 
 Comp −0.027 −0.064 −0.040 −0.041 −0.006 0.000 0.027 0.035 0.045 0.086 * 0.044 NS 
 Conduc 0.068 0.149 *** 0.064 * 0.031 −0.005 −0.015 −0.038 −0.049 −0.070 * −0.102 ** −0.017 Significant 
 Hum −0.123 ** −0.163 ** −0.114 ** −0.030 0.018 0.011 0.087 *** 0.070 ** 0.070 * 0.088 * 0.068 Significant 
FiRW Agg0.053-0.125 −0.099 * 0.017 0.073 ** 0.014 0.004 −0.027 −0.050 −0.022 0.055 0.006 0.032 NS 
 Agg0.125-0.25 −0.134 ** −0.033 −0.007 −0.033 −0.008 −0.055 * −0.024 0.041 0.149 *** 0.100 ** 0.070 Significant 
 Agg0.25-0.5 −0.087 * −0.043 0.001 −0.041 −0.001 −0.030 −0.010 0.015 0.144 *** 0.016 0.080 Significant 
 Agg0.5-1 −0.069 −0.020 0.004 −0.051 * −0.006 −0.030 0.017 0.013 0.092 *** −0.008 0.100 Significant 
 Agg1-2 −0.073 −0.018 −0.064 * −0.048 0.001 −0.014 0.032 0.043 0.107 *** −0.021 0.081 Significant 
 Agg2-5 −0.098 * −0.082 * −0.080 ** −0.065 ** −0.029 −0.026 0.042 0.057 * 0.174 *** 0.086 * 0.093 Significant 
 Agg5-10 0.019 0.048 −0.027 0.034 −0.021 0.041 0.009 −0.040 −0.075 * 0.004 0.055 NS 
 Agg > 10 0.091 * 0.056 0.063 ** 0.057 * 0.036 0.022 −0.039 −0.047 * −0.155 ** −0.084 * −0.087 Significant 
 BD 0.090 * 0.112 ** 0.049 0.060 * 0.049 * 0.000 −0.098 ** −0.082 ** −0.119 ** 0.033 −0.015 Significant 
 Comp −0.072 −0.011 −0.014 0.011 0.016 0.020 −0.044 * 0.028 −0.020 0.096 * 0.006 NS 
 Conduc −0.016 −0.055 −0.042 −0.036 −0.052 * 0.010 0.066 * 0.048 * 0.058 * −0.023 −0.003 NS 
 Hum −0.037 −0.006 0.002 0.017 0.004 0.029 −0.008 0.009 −0.068 * 0.039 −0.011 NS 
CoRW Agg0.053-0.125 0.056 0.001 0.033 0.038 0.000 −0.069 ** −0.012 −0.042 −0.017 0.079 * 0.044 NS 
 Agg0.125-0.25 0.135 ** 0.112 ** 0.076 ** 0.042 −0.020 −0.091 ** −0.050 −0.087 ** −0.042 0.076 * 0.097 Significant 
 Agg0.25-0.5 0.103 * 0.081 * 0.073 ** 0.040 −0.017 −0.076 ** −0.019 −0.082 ** −0.056 0.047 0.037 NS 
 Agg0.5-1 0.120 ** 0.113 ** 0.070 ** 0.049 −0.025 −0.083 ** −0.049 −0.073 * −0.019 0.041 0.029 Significant 
 Agg1-2 0.088 0.103 ** 0.052 * 0.042 −0.024 −0.056 * −0.046 −0.047 −0.055 0.062 0.026 Significant 
 Agg2-5 0.169 *** 0.165 *** 0.085 ** 0.053 * −0.042 * −0.083 ** −0.080 ** −0.076 ** −0.036 0.012 0.122 Significant 
 Agg5-10 −0.052 0.038 −0.045 −0.008 −0.017 −0.004 −0.010 0.044 0.080 * −0.010 −0.062 NS 
 Agg > 10 −0.140 ** −0.155 ** −0.081 ** −0.054 * 0.029 0.079 ** 0.082 *** 0.090 *** 0.038 −0.034 −0.081 Significant 
 BD −0.106 * −0.096 * −0.058 * 0.008 0.009 0.060 * 0.033 0.035 0.001 0.018 −0.109 NS 
 Comp 0.003 −0.012 −0.007 −0.018 −0.027 0.026 0.006 0.021 −0.024 0.059 0.063 NS 
 Conduc 0.047 0.097 ** 0.049 * 0.026 −0.026 −0.029 −0.054 * −0.024 0.007 −0.054 −0.009 NS 
 Hum −0.102 * −0.084 * −0.044 −0.018 0.022 0.019 0.056 * 0.052 * −0.019 0.023 0.052 NS 
1 FiRL, fine root length; CoRL, coarse root length; FiRW, fine root weight; CoRW, coarse root weight. 
* p < 0.05; ** p < 0.01; *** p < 0.001; NS, not significant. 
The number of pair points (within brackets) and the lower and upper limits for each distance class employed while computing the cross-correlograms are indicated. 



Decomposing multiple scale spatial patterns of species assemblages 

Significant multi-scale spatial structures were obtained for the earthworm community, 
species and assemblages, especially in the case of new genus 1. The forward selection 
procedure resulted in various numbers of PCNM variables, ranging from 1 to 9 out of 69 
positively autocorrelated spatial eigenvectors (significant Moran’s I at p < 0.05). Variogram 
modeling [25] provided information on the scales of PCNM variables. The PCNM 
eigenfunctions selected to model the distribution of earthworm community are depicted in the 
Additional file 1. 

These parameters indicate clear spatial structures on a medium (>30 m), fine (10–20 m) and 
very fine scale (<10 m), except for Andiodrilus (which presented only one significant 
PCNM). Regarding new genus 1, PCNM3 and PCNM8 defined the medium-scale patterns, 
whereas PCNM12 and PCNM16 encompassed the fine-scale patterns; PCNM29, PCNM33 
and PCNM51 described very fine scales (Additional file 1). The maps of the fitted scores of 
the significant canonical axes in the PCNM analysis for species (A), species assemblages and 
the whole community (B) are depicted in Additional file 2. 

The significant explanatory environmental variables that best described the multi-spatial 
structure varied for the earthworm community, species and species assemblages (Table 5). 
The nutrient-related variables explained much of the structure of new genus 1 on the medium 
and fine scales, whereas the physical variables were better explained on a very fine scale, 
such as soil compaction (negatively) and humidity (positively). The variables C0–5 (pcorr < 
0.001) and moisture content (pcorr < 0.05) contributed positively to the spatial structure model 
of new genus 1, whereas C5–10 (pcorr < 0.05), N0–5 (pcorr < 0.001), C:N0–5 (p < 0.01) and 
compaction (pcorr < 0.05) contributed negatively to medium-scale patterns (Table 5). 



Table 5 Significant positive/negative relationship between the spatial characteristics of earthworm species and the soil environmental 
variables measured in this study 
Earthworm community, species and assemblages Scales            

Medium    Fine    Very fine    
>30 m    10-20 m    <10 m    
Vars Coeff Pinit

§ Pcorr Vars Coeff Pinit  Pcorr Vars Coeff Pinit  Pcorr 
Community P5–10 Positive * NS Litter Negative * NS N5–10 Positive *** ** 
 - - - - Comp Positive * NS C5–10 Negative ** * 
 - - - - - - - - C:N5–10 Positive ** * 
 - - - - - - - - Humidity Negative * NS 
New genus 1 C0–5 Positive *** *** C 0–5 Positive *** *** Comp Negative ** * 
 N0–5 Negative *** *** N 0–5 Negative *** *** Humidity Positive ** * 
 C:N0–5 Negative *** ** C:N0–5 Negative *** *** - - - - 
 Compaction Negative ** ** Compaction Negative ** ** - - - - 
 Humidity Positive ** * C5–10 Negative ** * - - - - 
 C5–10 Negative ** * Litter Negative ** * - - - - 
 - - - - Humidity Positive ** * - - - - 
Andiodrilus Ag0.25-2 Positive * NS - - - - - - - - 
 Ag2 Positive * NS - - - - - - - - 
 >Ag5 Positive * NS - - - - - - - - 
 <Ag0.25 Positive * NS - - - - - - - - 
Glossodrilus - - - - Compaction Positive * NS - - - - 
New genus 2 - - - - P0–5 Positive ** * - - - - 
 - - - - Ag0.25.2 Negative * NS - - - - 
 - - - - Ag2 Negative * NS - - - - 
 - - - - >Ag5 Negative * NS - - - - 
 - - - - <Ag0.25 Negative * NS - - - - 
 - - - - Litter Positive * NS - - - - 
 - - - - N5–10 Negative * NS - - - - 
 - - - - PR5 Positive * NS - - - - 
Aymara Compaction Positive ** NS PR20 Negative * NS - - - - 
 Humidity Negative ** NS - - - - - - - - 
 FiRL Positive * NS - - - - - - - - 
Martiodrilus Humidity Positive * NS P5–10 Positive * NS - - - - 
 FiRL Negative * NS         
Endogeics P0–5 Negative *** ** Litter Negative * NS - - - - 
Epigeics + anecic Compaction Negative ** NS PR20 Negative ** NS PR10 Positive * NS 
 Litter Positive ** NS BD Negative * NS - - - - 
 Humidity Positive * NS PR5 Positive * NS - - - - 
Andiodrilus, Aymara and new genus 1 Litter Positive ** NS BD Negative ** NS Compaction Negative ** NS 
 Compaction Negative ** NS PR20 Negative * NS Humidity Positive ** NS 
 Humidity Positive * NS P5–10 Positive * NS C0–5 Positive * NS 
 - - - - N5–10 Negative * NS N0–5 Negative * NS 
Martiodrilus, Glossodrilus and new genus 2 P0–5 Positive * NS - - - - - - - - 
 Compaction Negative * NS - - - - - - - - 
 CoRW Negative * NS - - - - - - - - 
 Cond Negative * NS - - - - - - - - 
§ A false discovery rate (FDR) procedure was applied to correct the initial p-values (see text for explanation). 
* p < 0.05; ** p < 0.01; *** p < 0.001; NS, not significant. 



With regard to the endogeic Andiodrilus sp., the medium-scale spatial structure was 
explained by physical variables associated with the size of soil aggregates, although the 
values were not significant (pcorr > 0.05). When species assemblages were used instead, new 
environmental variables were detected (Table 5), i.e., variable P0–5 was negatively correlated 
to the medium-scale pattern of assemblage of endogeics, and litter contributed negatively to 
this pattern. For the epigeics and anecic assemblage, litter and moisture contributed positively 
to the medium-scale spatial structure model, although this contribution was not significant 
(pcorr > 0.05). 

Soil environmental control on earthworm species and assemblage spatial 
patterns 

The variation partitioning analysis revealed differences among species regarding the 
explanatory variables (Table 6). The entire set of environmental and spatial variables 
explained the various percentages of variation within the community, species and species 
assemblage. In the case of the earthworm community, the explained variation was 41.9%, of 
which 32.3% was explained by the soil environment but not the spatial variables (p = 0.005). 
The environment and fine-scale structure explained 4.98% of the total variation, whereas the 
environment and medium-scale structure together explained 2.93%. For the species alone, the 
Ra

2 coefficient for the environmental fraction ranged from 1% for Aymara to 48.0% for new 
genus 1. The medium and fine spatial scales explained 15.4% and 13.4% for Aymara and 2% 
and 2.2% for new genus 1, respectively. The amount of variation explained only by spatial 
variables independent of the environment differed among species; it ranged from 1.3% to 
28.8% for new genus 2 and Aymara, respectively (Table 6). 



Table 6 Significant PCNM variables (spatial models with eigenfunctions associated with a positive Moran's I) for medium, fine and very 
fine spatial scales and results of the variation partitioning analysis using adjusted R coefficients (Ra

2), i.e., the amount of variance 
explained by the environment, the spatial scales and residuals 
Species and assemblages Number of Scales   Variation partitioning, R a

2   Residual 
PCNM eigenvectors Medium Fine Very fine Environment Medium scale Fine, very fine scale Pure spatial Unexplained 

Community 6 3, 5, 8 12 33, 51 0.330 ** 0.031 NS 0.01 NS 0.018 0.581 
Andiodrilus 1 - 24 - 0.129 ** 0.041 * - 0.041 0.777 
Aymara 9 1, 2, 5 15, 20, 24 30, 44, 47 0.002 NS 0.154 ** 0.134 ** 0.288 0.623 
Glossodrilus 3 - 13, 24 50 0.053 * 0.081 ** 0.056 ** 0.141 0.785 
Martiodrilus 2 5 - 56 0.032 * 0.038 * 0.048 * 0.096 0.867 
New genus 1 7 3, 8 12,16 29, 33, 51 0.480 * 0.020 * 0.022 * 0.042 0.369 
New genus 2 3 - - 29, 33, 49 0.176 ** - 0.012 NS 0.013 0.812 
Endogeics 4 1, 10 21 65 0.153 ** - 0.015 NS 0.016 0.816 
Epigeics + anecic 7 8, 11, 15 20, 33 47, 51 0.145 ** 0.098 ** 0.118 ** 0.235 0.639 
Andiodrilus, Aymara and new genus 1 6 8, 11 20, 33 56, 63 0.198 ** 0.123 ** 0.077 ** 0.222 0.526 
Martiodrilus, Glossodrilus and new genus 2 2 2, 5   0.101 ** 0.058 * - 0.058 0.762 
* p < 0.05; ** p < 0.01; NS, not significant. 



Discussion 

Both spatial and environmental variables structured the species, assemblages and earthworm 
community, although variations were found in the explained contribution of environmental 
factors, i.e., 33.3% of the total variation of the global spatial structure of the earthworm 
community was explained by soil environmental variability. The specific soil environmental 
variables that were significantly linked to particular spatial scales for species and 
assemblages were also observed in other studies of nematodes in a forest [35]. To a certain 
extent, our results agree with Hutchinson’s environmental control model [4], although a large 
portion of the variation was also linked to a purely spatial component (Table 6). 

The selected PCNM variables highlighted significant spatial patterns in earthworm 
assemblages from a gallery forest, allowing us to identify the spatial scale at which the 
earthworm community was structured. In general, the very fine scale of autocorrelation 
detected in our study represents spatial patterns of less than 10 m (PCNMs 33, 51; Figure S1 
in Additional file 1), fine scales depicted patterns of 15–20 m (PCNMs 12), and medium 
scales (PCNMs 3, 5, 8) represented spatial patterns of >30 m (see details in Additional file 1). 
Furthermore, our observation of very fine-, fine- and medium-scale spatial relationships 
indicates the importance of considering multiple scales during ecological studies of soil 
organisms. In our study, we carefully chose the scale used to sample earthworms to focus on 
small-scale patterns. Additional studies are needed to increase the scale of the sampling 
design, i.e., hundreds of meters to several kilometres. 

The influence of environmental constraints on the spatial distribution of species assemblages 
has previously been demonstrated in a nearby savanna [29]. Moreover, earthworm activity 
also contributes to soil heterogeneity [33,37]. The joint influence of the soil environment and 
species-created heterogeneity, i.e., the so-called “functional domain” [47] of soil parameters, 
could explain the spatial patterns observed on several scales. On very fine scales, the 
environmental variables associated with the spatial distribution of earthworms were more 
difficult to detect, i.e., the concentration of soil C0–5 and moisture better explained the spatial 
pattern of new genus 1 on fine and medium scales compared with very fine scales, whereas 
Andiodrilus sp. was mostly associated with physical variables, such as size class aggregated 
distributions, because this medium-size species produces compact casts that influence the 
surrounding soil environment [32]. Very fine scales (PCNMs 32 and 50) may be overlooked 
by classical multivariate analyses, as their relationships may be masked by those of other 
explanatory variables associated with larger scales, such as PCNM 3. As a detailed analysis 
of the soil environmental variables was performed within a relatively small area, some of the 
variation could be attributed to unmeasured variables, leading to incomplete predictions [48]. 
Moreover, the fraction attributed solely to space was smaller than all other fractions, except 
for Aymara (28.8%), Glossodrilus (14.1%), and assemblages epigeics + anecic and 
Andiodrilus, Aymara and new genus 1, which represented 23.5% and 22.2% of the total 
variance, respectively. 

The factors affecting the spatial distribution of soil organisms at larger scales include 
gradients in soil organic matter and vegetation structure [49], whereas at very fine scales (<10 
m) earthworm spatial distribution could be influenced by local factors, such as the plant 
characteristics, soil moisture and micro-topography. A variety of plant species is likely to 
support important levels of soil heterogeneity [50]. The root architecture or fine-scale spatial 
patterns within the plant community determine the spatial structures of earthworm 
populations through fine-scale soil environmental variations, which is known as the “single-



tree effect” [44]. Through litter input and root leachates, trees directly influence earthworm 
populations. They also indirectly influence earthworm populations by altering the soil 
properties, forming patches beneath tree canopies that influence community structure and 
ecosystem function [51,52]. Species exclusion was also reported for the savanna grass 
Imperata brasiliensis, as earthworms become injured upon contact with its sharp-pointed 
roots [38]. In our study, significant positive cross-correlations were found for the CoRL and 
CoRW and the soil nutrient- and physical-related variables. These close associations between 
soil variables and vegetation structure have also been described for epigeic invertebrate 
assemblages [19]. Regarding the importance of soil environmental variables, it should be 
noted that the influential factors according to our analyses did not operate independently but 
interacted (e.g., root traits and nutrients); these complex interactions are characteristic of 
most ecological systems [53]. 

The idea that species distributions can be linked to key abiotic variables on multiple scales is 
not new [54]. Our analysis for empirical data has shown that environmental variables are 
indeed most important on broad scales, whereas purely spatial patterns appear to dominate on 
finer scales [55]. Applying PCNM analysis toward large-scale assessment of species-
environment relationships is a well-established method [19,56,57]. Gilbert and Bennett [43] 
and Smith and Lundholm [28] criticized the application of variation partitioning to study the 
relationship between environmental variables and space, although they admitted that it yields 
useful results when carefully used. Our present analysis supports an optimistic view of this 
approach. All environmental patterns are spatially correlated on some scale [28], and all 
ecological processes are spatial to some extent [1]. The common fraction of variance 
explained jointly by environment and space appears to represent patterns generated by both 
environmental factors and the limitations on species dispersal [28]. In our study, the highest 
level of pure spatial variation was obtained for the epigeics + anecic assemblage (23.5%), 
whereas the endogeics assemblage showed the lowest level (1.6%, Table 6). Species, or even 
earthworm ecological categories, show specific dispersal behaviors [58], with endogeics 
typically showing less dispersal than do epigeic and anecic species. 

We carefully selected the sampling scale and the spatial statistics tools to address the 
ecological question at hand [43]. We benefited from our previous knowledge regarding the 
biology and ecology of the species found in the region where the survey was undertaken 
[29,32,33,37,38]. Our study lays the groundwork for further detailed analysis of spatial 
structuring environmental factors and species assemblages on several scales, while also 
providing clues for developing an accurate and spatially explicit sampling design for 
earthworm communities. In addition, the utility of the tools used to select species 
assemblages and analyze their spatial attributes relative to the soil environmental variability 
was clearly demonstrated. We are confident that our results provide crucial insight into the 
spatial relationship between species assemblages and soil environmental variability on scales 
that range several tens of meters. The selection of assemblages from the correspondence 
analysis, in this case epigeics versus endogeics, and the statistical methods used to draw our 
conclusions provide insights that improve understanding regarding why particular species 
assemblages are found at particular sites. From an ecological point of view, our study not 
only suggests that specific environmental factors determine the structure and spatial 
distribution of earthworms in the gallery forest but also indicates that a large proportion of 
unexplained variation exists. Whether this variation is the result of unmeasured soil 
environmental variables or null model (random) patterns is a subject for further research. 



Conclusions 

Earthworms were spatially structured within a relatively small but highly heterogeneous plot; 
i.e., even at ranges of just a few meters, a multi-scale spatial pattern was observed. The 
amount of variation jointly explained by the environment and space was not high. However, 
these sources of variation should not be neglected because they represent unmeasured soil 
environmental factors and processes that limit species dispersal. Further studies are needed 
because dispersal traits, for example, remain largely unknown in many earthworm 
communities. In conclusion, specific abiotic factors were responsible for the observed 
patterns, and the importance of these patterns needs to be elucidated, even if the multi-scale 
approach carries additional difficulties and caveats when interpreting the results. 

Methods 

Study area 

Sampling was conducted in a gallery forest (GF) at the CORPOICA-CIAT Carimagua field 
research station in the Eastern Plains of Colombia (4° 37’ N, 71° 19’ W, 170 m a.s.l.). The 
study area is a well-drained savanna forming a young alluvial plain consisting of Pleistocene 
and Holocene sediments of Andean origin. The terrain is characterized by open herbaceous 
savannas where GFs follow a dense braided drainage network of rivers toward the Orinoco 
catchment. The yearly average temperature and precipitation are 26°C (iso-hyperthermy) and 
2,200 mm, respectively, with clayey Oxisols of low pH (4.2-4.4 in water) and fertility, with 
low available P (1–2 ppm Bray II) and Al saturation >90% (CIAT data). 

The plant community of the GF is characterized by several tree species, including 
Dendropanax arboreus (L.) Decne. & Planch. (1854) (Araliaceae), Enterolobium spp. 
(Leguminosae), Ficus spp. (Moraceae), Jacaranda copaia (Aubl.) (Bignoniaceae), 
Copernicia tectorum (Kunth) Mart. (Caesalpiniaceae), and Cecropia sp. (Cecropiaceae). 
Other species include Mauritia flexuosa L.f. and Mauritiella (Palmaceae), Attalea maripa 
(Palmaceae), Nectandra membranacea (Sw.) Griseb. (Lauraceae), Didymopanax morototoni 
(Aubl.) Decne. & Planch. (Araliaceae), Virola sp. (Myristicaceae), and Hymenaea courbaril 
L. (Caesalpiniaceae) [59]. 

Earthworms and soil sampling 

Earthworms and soil samples were collected at 100 sampling points evenly distributed within 
a 45x45 m2 grid with 5 m of inter-sample distance (Figure 5). The earthworms were 
identified, and their abundance was counted in situ from soil blocks of 25x25 cm2 and a 
depth of 20 cm [60]. Previously, the fresh, tower-like casts deposited on the soil surface by 
Martiodrilus sp. (anecic) were counted at each point within 1 m2 quadrats, as they are reliable 
indicators of the number of active individuals [61]. 

  



Figure 5 Sampling protocol used with a regular grid of 10x10 sampling points and a 5 m 
inter-sample distance. A total of 400 soil samples were collected for the various soil 
analyses and 100 soil monoliths for earthworm species counts. The location of tree species 
(>5 m diameter at breast height, DBH) within the surveyed 0.2 ha plot are shown together 
with the soil pit where the earthworms were sampled, identified and counted, as well as the 
four soil cores taken for physical and chemical determinations from each of the 100 sampling 
points. 

In total, 400 soil samples were collected for physical and chemical analyses. Soil cores were 
collected along the four sides of each sampling point (Figure 5). The core method (5 cm 
depth and 5 cm diam. metal cylinder) was used for bulk density (soil dry mass per volume) 
following [62]. Water content (soil water per volume and soil water per dry mass) was 
determined gravimetrically, and hydric conductivity and susceptibility to compaction were 
also measured [63]. 

A second core (10 cm depth and 5 cm diam. metal cylinder) was used for soil organic carbon 
(SOC), nitrogen (N) and phosphorous (P) measurements at 0–5 and 5–10 cm. The soil was 
then oven dried at 75°C for 48 h and finely ground (<200 µm). A standard colorimetric 
method was used after digestion in H2SO4 to measure SOC, and the Kjeldahl method was 
used to assess the total N. Available P was determined using the Bray-II extraction method. 
C:N and C:P ratios were calculated as the SOC concentration divided by the total N and P 
concentrations, respectively. 

Another soil core (15 cm depth and 10 cm diam.) was taken to assess the size-class aggregate 
distribution; ca. 100 g of air-dried soil was mechanically shaken in a sieve column of 4.75, 2, 
1, 0.5 and 0.250 mm for 30 min. The last soil core (15 cm depth and 10 cm diam.) was used 
for root length and biomass quantification. Soil was washed in the lab and sieved to separate 
the fine (<2 mm) and coarse roots (>2 mm) and then oven dried at 105°C for 48 h. 

Resistance to penetration (RP) was measured (3 replicates) using a hand penetrometer at each 
sampling point. The soil moisture content (volumetric) of the topsoil at the time of sampling 
was ca. 38% (pF = 2.8). 

Multivariate ordination analysis (CA) 

Species abundance (raw data) was analyzed using correspondence analysis (CA). When the 
species abundance was <5% of the total, it was removed from the species matrix. The 
extracted factorial axes allowed us to identify various species assemblages, i.e. these were 
defined according to the sum of the individuals of all species linked to positive or negative 
row scores of the three axes. 

Species assemblage patches and gaps 

SADIE (Spatial Analysis Distance IndicEs) analysis [64,65] was used to assess the presence 
of significant patches and gaps within species assemblages. The index uses count data, i.e., 
the total number of individuals who corresponded to any of the assemblages identified per 
sampling point. A global index of aggregation (Ia) is computed: 

aI = D / Ea,  



where D is the distance moved to achieve the regular pattern for the observed data and Ea is 
the arithmetic mean distance to regularity for non-regular randomized samples [64]. 

Ia equals 1 for a random distribution, whereas it is >1 or <1 for either a clumped (aggregated) 
or regular spatial pattern, respectively [65]. 

SADIE identifies clusters of high (patches) and low (gaps) mean density, respectively, and 
these clusters are categorized as vi (positive) and vj (negative cluster index). A patch or gap 
comprises at least one sample location where the cluster index (vi or vj) is significant at the 
heuristic threshold of 1.5 and −1.5, respectively. Adjacent sample locations with significant 
index values form a single cluster [65]. The observed vi or vj indices are tested using random 
permutations against the H0 of complete spatial independence of counts [66]. 

In this study, we used positive and negative row scores extracted from the CA to obtain count 
data and compute the SADIE vi and vj cluster indices. Factorial coordinates have been used 
as a typical procedure to analyze the inner structures of data matrices for community analysis 
[29,33,37-39,67,68]. Because the row scores and factorial coordinates are not count data, 
which is a requisite for applying SADIE statistics, the various assemblages were obtained by 
summing the earthworm count data linked to the positive and negative row scores along the 
CA axes. 

Finally, a spatial association/dissociation index was computed between species assemblage 
pairs [66]. The local association indices calculated from their individual sampling-unit 
clustering indices are correlated between species assemblage pairs. The observed value of the 
association index is tested against the H0 of complete spatial independence of the counts 
(based on random permutations). The two-tailed associated probability levels at α = 5% are 
<0.025 and >0.975 for significant association and dissociation, respectively [66]. 

Spatial autocorrelation analysis 

In the presence of a spatial dependence, the observation made at one location is more similar 
to observations made at nearby sites [2], breaking the rule of sample independence for 
statistical analyses [23]. To assess the degree of spatial autocorrelation, the (semi)-variogram 
is a function that describes the spatial pattern of any variable with increasing inter-sample 
(lag) distance. When positive autocorrelation exists, the semi-variance γ(h) increases until it 
reaches a maximum value (the “sill”) for a given lag distance, which is referred to as the 
range. This parameter defines the limit of spatial dependence of the variable concerned 
(detailed in [22,69]). Estimated values of γ(h) are adjusted using a theoretical model [70,71] 
that is later applied with an interpolation technique called “kriging” to estimate values of the 
variable under study at non-sampled sites [22]. In our study, interpolated maps were used for 
root-related variables using only the modeled parameters obtained in the variogram [33]. 

Cross-variograms can be calculated to assess how two variables co-vary in space [72]. 
Similar to univariate variograms, cross-covariances may be computed using the values of two 
distinct variables observed at locations separated by lag h [73]. However, variograms and 
cross-variograms are not associated with formal testing for departures from randomness (an r2 
correlation coefficient could be used to adjust the curve). However, in our study, spatial 
cross-correlation among the root-related variables, soil nutrient contents and physical 
variables was assessed by calculating the spatial cross-correlogram [55,74]. A spatial 
autocorrelation coefficient, named Moran’s I, is plotted in the correlogram for increasing 



distance classes [75]. Data were allocated to 11 distance classes with a minimum of 50 pairs 
of points for each distance class to compute the cross-correlogram. The significance of the 
correlogram is tested with a Monte Carlo simulation [20]; it is significant when at least one 
coefficient is lower than the Bonferroni corrected p′ of α′ = α/k for the k distance classes used 
[76]. Data normality was tested with a Kolmogorov–Smirnov test; when the normality 
assumption was not confirmed, a Box–Cox transformation was used [77]. The gstat and ncf 
packages of the R program 2.15.1 [78] were used to compute the variograms and cross-
correlograms and to depict the kriged maps. 

Principal coordinates of neighbor matrices (PCNM) and variation 
partitioning 

The multi-scale spatial analysis of fauna data and soil environmental variability was 
performed using PCNM analysis [24,79]. This method allows to capture extremely complex 
structures [80] and is based on the principal coordinate analysis (PCoA) of a truncated 
pairwise geographic distance matrix between sampling sites [25]. It creates PCNM variables 
(spatial predictors or eigenfunctions) and a spectral decomposition of spatial relationships 
from broad to fine spatial scales [81] that is encompassed by the data matrix among sampled 
sites and then determines to which PCNM variables the response data (uni- or multivariate) 
respond statistically [79]. Only spatial eigenfunctions associated with positive eigenvalues 
based on Moran’s I were used to define the spatial structures [3], which represents a highly 
conservative method due to its penalization of degrees of freedom and adjusted R2 statistics 
[43]. 

The PCNM variables that significantly contribute toward explaining the species response data 
are grouped into a small number of submodels, whereas they are normally assigned to broad, 
intermediate, and fine scales. The predicted values generated for each submodel can then be 
reanalyzed using canonical analysis against environmental variables to identify the 
environmental variables associated with species distributions on the scale represented by each 
submodel [25]. The forward-selection procedure was used [82] to reduce Type I error, as it is 
known to underestimate the residual variance [83]. In other words, the probability of 
selecting at least one PCNM is greater than the chosen significance level, even if the response 
variable is not spatially structured [80]. Appropriate and rigorous approaches for submodel 
selection have been argued by [43] and [81] is support of improving the methodological 
developments in MEM-based methods. Scale is generally defined according to the main 
features of the sampling design, such as the extent of the study area or the size and spacing of 
the sampling units [84]. Given the dimensions of the plot (45x45 m) and our knowledge on 
the spatial distribution of various earthworm species in the area [33,37,38], the scales were 
grouped for convenience into medium (>30 m), fine (10–20 m) and very fine (<10 m). 

The next step is to relate the spatial components using significant Bonferroni-adjusted p 
values extracted from the species matrix with soil variables. In other words, species-soil 
environment regression analysis is performed independently on each scale identified by the 
PCNM variables. Variogram analysis for each PCNM variable is performed to identify the 
spatial scale at which the relationship was significant. The lowest value of the Akaike 
information criterion (AIC) identifies the best spatial model. 

Partitioning the variation of a species response data table among two or more explanatory 
tables is performed using multivariate variation partitioning [85], which determines how 
much of the species variation is spatially structured and associated with the measured 



environmental variables [57,80]. The variation partitioning analysis is based on the adjusted 
R2 statistic Ra

2 [86], and patterns on finer scales identified by the PCNM variables appear 
smoother compared to other spatially explicit models, such as nested variograms and filter 
kriging [79]. 

The data matrix included count data for 6 earthworm species, 23 soil environmental variables 
(Additional files 3 and 4) and xy coordinates for 100 sampling points. It has been 
recommended that fauna data should be detrended and transformed during PCNM analysis. 
Contrary to correspondence analysis, earthworm abundance data were Hellinger transformed 
because PCNM has been found to be inappropriate for raw data that includes many null 
abundances [87]. Earthworm spatial distribution is represented by patches, and clearly 
meaningful trends are rarely observed; consequently, the data were not detrended. In other 
words, we were cautious with the use of tests to determine the presence of trends because 
they are likely not appropriate for patchy patterns. The packages vegan, mass and packfor 
were used for all the calculations needed during PCNM analysis in R 2.15.1 [78]. 

Adjustment of the probability level 

The α < 0.05 probability level was corrected using the false discovery rate (FDR) procedure 
for multiple comparisons [88], in which the power of multiple tests is optimized while 
controlling for the proportion of significant results that might be Type I errors. The p values 
from the individual tests are used to perform the corrections and search for significant 
differences at the corrected probability level. The comparison starts with the highest p value 
obtained from the individual tests, then each value is checked until encountering the first 
value that meets the requirement, i.e., the highest p value that is smaller than the corrected p 
[89]. The transformations include the following: 

p(i) ≤ (α/m)*i , where m is the number of tests (variables) and i is the test (variable) ranked in 
ascending order, i.e., p(1) ≤ ….. ≤ p(m). The final p value corresponded to the following 
correction: 

( ) ( ) 0.05  /  corrp x number of variables ranked p maximum=
 

During PCNM analysis, three tests were performed that corresponded to the three spatial 
scales used: the medium, fine and very fine scales. 
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Addtional files provided with this submission:

Additional file 1. Plot at the grid nodes of the PCNM variables selected to model earthworm distribution. A square size is
proportional to the value associated to positive (black squares) and negative (white squares) spatial autocorrelation with
medium- to fine- and very fine-scale spatial models. Lower order vectors represent broad-scale groupings, and higher order
vectors represent more fine-scale groupings. These eigenvectors represent a multi-scale metric for grouping sites, and thus
do not represent any computed soil parameter that was measured at sampling sites. The size of the symbols is proportional
to the PCNM variables (353k)
http://www.biomedcentral.com/content/supplementary/s12898-014-0026-4-s1.docx
Additional file 2. Map of the fitted scores of the significant canonical axes in the PCNM analysis for species (A) and
species assemblages and the whole community (B). The size of squares is proportional to its associated value; black and
white colors indicate positive and negative signs of the value associated to the square, respectively (101k)
http://www.biomedcentral.com/content/supplementary/s12898-014-0026-4-s2.docx
Additional file 3. Raw count data of species in each sampling point and the resulting assemblages obtained from the
positive and negative row scores of the three axes extracted in the correspondence analysis. These data were later use to
calculate SADIE vi and vj cluster indexes (57k)
http://www.biomedcentral.com/content/supplementary/s12898-014-0026-4-s3.docx
Additional file 4. Summary statistics of soil environmental variables analysed in this study (28k)
http://www.biomedcentral.com/content/supplementary/s12898-014-0026-4-s4.docx
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