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Neural mass modeling is a part of computational neuroscience that was
developed to study the general behavior of a neuronal population. This
type of mesoscopic model is able to generate output signals that are com-
parable to experimental data, such as electroencephalograms. Classically,
neural mass models consider two interconnected populations: excitatory
pyramidal cells and inhibitory interneurons. However, many authors
have included an excitatory feedback on the pyramidal cell population.
Two distinct approaches have been developed: a direct feedback on the
main pyramidal cell population and an indirect feedback via a secondary
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pyramidal cell population. In this letter, we propose a new neural mass
model that couples these two approaches. We perform a detailed bifurca-
tion analysis and present a glossary of dynamical behaviors and associ-
ated time series. Our study reveals that the model is able to generate par-
ticular realistic time series that were never pointed out in either simulated
or experimental data. Finally, we aim to evaluate the effect of balance be-
tween both excitatory feedbacks on the dynamical behavior of the model.
For this purpose, we compute the codimension 2 bifurcation diagrams of
the system to establish a map of the repartition of dynamical behaviors in
a direct versus indirect feedback parameter space. A perspective of this
work is, from a given temporal series, to estimate the parameter value
range, especially in terms of direct versus indirect excitatory feedback.

1 Introduction

The purpose of computational neurosciences is to develop calculation meth-
ods to better understand the complex relationship between brain function
and structure. In addition to gaining a better understanding of cognition
and its dysfunction, this process enables a transfer of neuroscience knowl-
edge by offering new ways to process information. Developing new com-
putational models and studying their mathematical properties to simulate
neuronal population activity, and comparing these simulations with actual
data, allows us to improve our understanding of the mechanisms of brain
function in humans and other animals.

At the microscopic level, neurons in the brain communicate via sponta-
neous and rapid variations in membrane potential, action potential, or nerve
impulses. Together these electrical phenomena and their related properties
have been studied in models of firing neurons, seen as dynamical systems.
These models, such as those of Hodgkin and Huxley (1952), enable us to
understand and simulate mechanisms that reproduce neuronal behavior in
generating action potential, dendritic integration, and axonal propagation.
It is also possible to study the overall behavior of a neuronal population us-
ing networks of microscopic models (Brunel & Wang, 2001; Wong & Wang,
2006; Stefanescu & Jirsa, 2008) or macroscopic computational models based
on the organization of cell interactions. For example, these models allow
one to better understand how the balance between neuronal excitation and
inhibition affects the genesis of neuronal rhythmic activity.

For this purpose, several approaches such as mean field, neural field,
and neural mass models have been developed, as reviewed in Deco, Jirsa,
Robinson, Breakspear, and Friston (2008). Mean field models consider the
evolution of the membrane potential of a population of statistically similar
integrate-and-fire neurons, also called population density or ensemble den-
sity (Knight, Manin, & Sirovich, 1996; Omurtag, Knight, & Sirovich, 2000).
Neural field models represent the activity of specific mean field models
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Figure 1: Diagrams of interactions between neuronal populations: indirect (a),
direct (b), and double (c) excitatory feedback from pyramidal cells. P: Population
of pyramidal neurons. P’: Intermediary population of pyramidal neurons. I:
Inhibitory interneuron population. The plain (resp. dashed) arrows represent
excitation (resp. inhibition).

with respect to time and space (Jirsa & Haken, 1996, 1997). Finally, the neu-
ral mass approach was originally introduced by Beurle (1956), who studied
the propagation of activity waves in a distribution model of a mass of cells
by focusing on the density of active neurons. Then Griffith and coauthors
used a neural field formalism and introduced a second-order linear dif-
ferential operator to represent both excitatory and inhibitory interactions
between neural cells (Griffith, 1963, 1965). Thereafter, Wilson and Cowan
(1972, 1973) derived the nonlinear temporal dynamics for spatially localized
neuron populations (voxel) driving the average firing rates associated with
a two-subpopulation model. Their work popularized neural mass models
(NMM) using the ordinary differential equation formalism as an efficient
tool for studying the interaction mechanisms at a mesoscopic level. Besides,
the NMMs produce output signals, especially local field potentials (LFP),
comparable to experimental results such as those produced by electroen-
cephalography (EEG) (Lopes da Silva, Hoeks, Smits, & Zetterberg, 1974).

NMMs mainly involved the interactions of two subpopulations: the prin-
cipal excitatory cells and the inhibitory interneurons. For a more realistic
modeling, some authors have considered a feedback of each subpopulation
on itself. In particular, for the excitatory feedback of principal cells, two
approaches have been considered. On one hand, a classic way to model this
excitatory feedback involving a direct link from the output of principal cells
to their input (see Figure 1b) was proposed by Wilson and Cowan (1973) and
used by many authors (Robinson, Rennie, & Wright, 1997; Liley, Cadush,
& Dafilis, 2002; Molaee-Ardekani, Benquet, Bartolomei, & Wendling, 2010).
On the other hand, Jansen and coworkers proposed an indirect track using
an intermediate excitatory population (see Figure 1a) (Jansen & Rit, 1995;
Jansen, Zouridakis, & Brandt, 1993). Their model is based on a principal
population of pyramidal cells, connected to a population of interneurons
as well as another pyramidal cell population acting as an intermediary
for excitatory feedback. Interactions between these populations are those
introduced by Lopes da Silva and coauthors (Lopes da Silva et al., 1974;
Lopes da Silva, van Rotterdam, Barts, van Heusden, & Burr, 1976), and the
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indirect excitatory feedback of pyramidal cells follows the structure stud-
ied by Katznelson (1981). Afterward, (Wendling, Bellanger, Bartolomei,
& Chauvel, 2000) applied similar models using indirect excitatory feed-
back to simulate paroxystic neural activity in the context of partial
epilepsies.

Both direct and indirect approaches model the excitatory synaptic inter-
action between neighbor principal cells (Miles & Wong, 1986; Wang et al.,
2006; Frick, Feldmeyer, Helmstaedter, & Sakmann, 2008), usually named
collateral excitation. Nevertheless, a difference may exist in the range of
the local connections considered in these approaches. In practical terms, an
indirect feedback induces a delay in the excitatory coupling, which may
model a larger neighborhood involved in this feedback. Therefore, direct
feedback models produce different outputs that display faster activities
than those produced by the indirect feedback models. In fact, the different
couplings studied imply specific underlying dynamics of the model and
therefore give rise to different panels of behaviors. The emergence of iden-
tifiable temporal output features (e.g., subthreshold oscillations, epileptic
spikes) can be characterized or predicted by understanding these dynamics.

From the modeling perspective, we cannot privilege one type of feedback
over the other since both of these couplings are physiologically relevant and
can coexist—a very local one and a more or less distant one. To the best of
our knowledge, no computational model simultaneously integrating these
types of feedback has been published in the literature to date.

Traditionally NMMs receive an input representing the external action of
other neuron population activities from other cortical (or subcortical) units
on the main pyramidal cell population. This activity can be a stochastic vari-
able representing a nonspecific background activity (Lopes da Silva et al.,
1974, 1976; Jansen & Rit, 1995; Wendling et al., 2000; Wendling, Bartolomei,
Bellanger, & Chauvel, 2002) or a deterministic input representing a specific
activity in another cortical unit (Jansen et al., 1993; Huneau et al., 2013).
The outputs are therefore calibrated (e.g., according to the frequency and
amplitude) based on the average and variance of this input. In the case
of the Jansen-Rit model (Jansen & Rit, 1995), a codimension 2 bifurcation
analysis of the system made it possible to identify the intrinsic dynami-
cal properties to the emergence of epileptic behavior (Touboul, Wendling,
Chauvel, & Faugeras, 2011). In this study, the two parameters of interest are
the noise (considered to be a parameter in the study of bifurcations) and
the maximum number of synaptic connections. Since this latter parameter
C is very difficult to quantify physiologically at the voxel scale, a relevant
use of such a model consists in characterizing the changes in the behavior
associated with the changes in this parameter value.

In this letter, we propose a model that includes both feedback circuits
(see Figure 1c) weighted by coupling gain parameters. Therefore, this new
model specifically includes the two previous approaches. We show behav-
iors, in terms of time series, that this model can produce and the associated
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organizations of the dynamics. Using the codimension 2 bifurcation dia-
grams according to the input value and the synaptic connection rate, we
then analyze the model behavior distribution according to the direct and
indirect feedback gains. Finally, we discuss the use of this theoretical ap-
proach to identify these gain values based on time series trials.

2 Neural Mass Model with Double Excitatory Feedback

Traditionally the neural mass models looked at a pyramidal cell popula-
tion receiving inhibitory input from a local interneuron population and an
excitatory input. Collateral excitation of the pyramidal cell population by
its own activity is also relayed by synaptic connections. The firing rate of
each population results from integrating the input that it receives via the
synaptic connections. Following classical modeling (Lopes da Silva et al.,
1974, 1976; Jansen et al., 1993; Jansen & Rit, 1995), we assume the synaptic
integration is linear, which means that the membrane potential of each pop-
ulation is a convolution of the input with the synaptic impulse response.
This impulse response, which represents the average postsynaptic poten-
tial, is characterized by a rapid rise followed by a slower decay.

2.1 Synaptic Coupling in Neural Mass Models. Two functions have
been introduced to represent the transformation of the average pulse den-
sity into excitatory and inhibitory postsynaptic potentials, respectively. We
use the following functions introduced by Van Rotterdam, Lopes da Silva,
Van den Ende, Viergever, and Hermans (1982):

he(t)= A a t e−a t, t � 0,

hi(t)= B bt e−bt, t � 0.

Functions he and hi, respectively, are the basic solutions of operators Fe and
Fi as follows (Touboul et al., 2011):

Fe(he)= 1
A a

h′′
e (t) − 2

A
h′

e(t) − a
A

he(t),

Fi(hi)= 1
B b

h′′
i (t) − 2

B
h′

i(t) − b
B

hi(t).

Parameter A (resp. B) represents the amplitude of postsynaptic excitatory
potentials (resp. inhibitory) and 1

a (resp. 1
b ) the time constant of excitatory

postsynaptic potentials (resp. inhibitory), basically representative of the
kinetics of synaptic connections and delays introduced by circuitry of the
dendritic tree (Freeman, 1975; Van Rotterdam et al., 1982; Jansen et al., 1993).

The function transforming the potential of the average membrane into an
average pulse density by the neurons is generally assumed to be a sigmoid
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(Freeman, 1975; Dayan & Abbott, 2001; Gerstner & Kistler, 2002). We have
followed Freeman’s (1975) work for the parameterization of this function:

sigm(v) = 2 e0

1 + er(v0−v)
,

where 2 e0 represents the maximum discharge rate, v0 the postsynaptic
potential threshold, and r the sigmoid slope at v0.

In this letter, we use the parameter values used by Jansen and Rit (1995)
and Jansen et al. (1993):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A = 3.25 mV

B = 22 mV

a = 100 s−1

b = 50 s−1

e0 = 2.5 s−1

v0 = 6 mV

r = 0.56 mV−1

2.2 Architecture of Direct and Indirect Feedbacks. To build our model,
we considered three feedback loops of the pyramidal cell population activ-
ity (see Figure 2). The first loop represents the excitatory action of pyra-
midal neurons on inhibitory interneurons, which in turn inhibit pyramidal
activity. The second loop, which we call indirect excitation, involves the
excitatory action of the main pyramidal cell population on other intermedi-
ary pyramidal cells, which in turn excite the considered population. These
two loops (see Figure 2a) are present in the Jansen-Rit model. We added a
third feedback loop, called direct feedback, representing the self-excitation
of the pyramidal cell population. This direct feedback can replace the in-
direct feedback to simulate pyramidal cell excitation (see Figure 2b). Our
modeling approach distinguishes between the third and second loops and
differentiates between the action of interneurons directly connected to a
pyramidal neuron being studied and that of the interneuron population
connected to adjacent neurons. Indirect feedback is modeled using opera-
torFe and numbers C1 and C2 of synaptic connections between populations,
while direct feedback is modulated by a gain parameter G (see Figure 2c).

Based on the synaptic connection model described in section 2.1, we
obtain the following dynamics for variables z0, z1, and z2 that represent
the outputs of the principal pyramidal cell population, the intermediary
pyramidal cell population, and the interneuron population, respectively
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Figure 2: Neural mass model diagrams with indirect (a), direct (b), and double
(c) excitatory feedbacks. Box he(t) (resp. hi(t)): Conversion process of action
potentials into postsynaptic excitatory membrane potential (resp. inhibitor). Box
sigm: Conversion process of average membrane potential into average density
of action potentials discharged by neurons. Box Ci for i ∈ [1, 4]: Coupling gain
using the average number of synapses between two populations. G: Synaptic
coupling gain of the direct excitatory feedback. p(t): Model excitatory input from
long-distance synaptic connections with other cortical areas. Arrows: Excitatory
(+) and inhibitory (−) actions of one population onto another.

(see Figure 2c):

z′′
0 = A a sigm(z1 + G z0 − z2) − 2 a z0

′ − a2 z0, (2.1a)

z′′
1 = A aC2 sigm(C1 z0) − 2 a z1

′ − a2 z1 + A a p(t), (2.1b)

z′′
2 = B bC4 sigm(C3 z0) − 2 b z2

′ − b2 z2. (2.1c)

As in the Jansen-Rit model, we consider the following state variables: the
excitatory (y1 = z1 + G z0) and inhibitory (y2 = z2) inputs of the principal
pyramidal cell population and the output of this population (y0 = z0). This
output acts as direct excitatory feedback and on both the intermediary
pyramidal cells and the inhibitory interneurons. With these variables, our
model becomes

y′′
0 = A a sigm(y1 − y2) − 2 a y0

′ − a2 y0, (2.2a)

y′′
1 = A aC2 sigm(C1 y0) + A a G sigm(y1 − y2)

−2 a y1
′ − a2 y1 + A a p(t), (2.2b)

y′′
2 = B bC4 sigm(C3 y0) − 2 b y2

′ − b2 y2. (2.2c)



336 A. Garnier, A. Vidal, C. Huneau, and H. Benali

Parameters Ci, i ∈ [1, 4] represent the average number of synapses between
two populations. Following the formalism introduced by Jansen and Rit
(1995), based on Braitenberg and Schüz (1991), we assume that each Ci is
constant and proportional to the maximum number C of synapses between
populations:

∀i ∈ [1, 4], Ci = αi C.

Parameter G represents the average number of synaptic connections internal
to the principal pyramidal cell population, meaning the coupling gain of
direct excitatory feedback. Function p(t) represents the excitatory input
from non specific long-distance neuronal connections on pyramidal cells of
the local model (called cortical input in Suffczynski, Kalitzin, & Lopes da
Silva, 2004).

This model generalizes both modeling approaches mentioned earlier.
In fact, by stating that G = 0, we obtain the Jansen-Rit model for which
excitatory feedback is only indirect. Stating α2 = 0 (and therefore C2 = 0),
we obtain the model for which the excitatory feedback is only direct. To
analyze the bifurcations, we write equation 2.2 as a system of first-order
equations:

y′
0 = y3, (2.3a)

y′
1 = y4, (2.3b)

y′
2 = y5, (2.3c)

y′
3 = A a sigm(y1 − y2) − 2 a y3 − a2 y0, (2.3d)

y′
4 = A aC2 sigm(C1 y0) + A a G sigm(y1 − y2)

−2 a y4 − a2 y1 + A a p(t), (2.3e)

y′
5 = B bC4 sigm(C3 y0) − 2 b y5 − b2 y2. (2.3f)

and, as main model outputs, we will consider the classical approximation
of the generated LFP (Jansen et al., 1993):

LFP(t) = y1(t) − y2(t).

2.3 Parameters of Interest for Bifurcation Analysis. In section 3, we
focus on system 2.3 bifurcations according to input p(t) = p considered as
a parameter. Choosing p as a parameter of interest is a natural choice since
it represents the action of the activity in other cortical units and acts as the
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excitatory input in the model. As mentioned in section 1, understanding
the bifurcation diagram according to p, and therefore how the dynamics
attractors evolve according to this parameter, allows us to know the time
series features when p(t) varies over time. For instance, we can deduce the
different types of time series that system 2.3 can produce for p(t) a gaus-
sian variable N (m, σ 2) with mean m and variance σ 2 from its bifurcation
diagram for different values of parameters C, G, and α2. We have thereby
established a glossary of identifiable behaviors in the time series underlaid
by specific organizations of system 2.3 dynamics.

Parameters G and α2 tune the collateral excitation physiologically ex-
isting in many brain structures (Miles & Wong, 1986; Wang et al., 2006;
Frick et al., 2008). Increase of local excitatory feedback is prompt to provoke
hyperexcitability that may lead to pathological behaviors (Salin, Tseng,
Hoffman, Parada, & Prince, 1995) as epileptic discharges (McKinney, De-
banne, Gähwiler, & Thompson, 1997). In this study, we have a particular
interest, in terms of generation of pathological behaviors, on the balanced
effect of both excitatory feedbacks, which models a fast local feedback ver-
sus a delayed neighbor feedback.

In section 4, we use codimension 2 bifurcation diagrams (according to p
and C) to characterize the possible model behaviors (i.e., the types of the
generated time series from those identified in section 3) for the different
values of G and α2. By doing so, we provide a map of the model behaviors
(characterized by a type of bifurcation diagram in (p, C)) within the pa-
rameter space (α2, G). This study allows us to analyze the model behaviors
according to the weightings of direct and indirect excitatory feedbacks and
their effects on the identifiable patterns in the generated time series.

3 Bifurcation Diagrams According to p and Time Series Glossary

In this section, we describe the system bifurcation diagrams according to
the input p(t) = p considered as a parameter obtained for different values
of parameters C, α2, and G. These diagrams have been built using dedicated
algorithms based on efficient and well-documented numerical methods (in
particular, numerical continuation) by additionally taking advantage of our
knowledge of system 2.3. In the appendix we recall briefly the definitions
of the bifurcations involved in this study and describe the numerical tech-
niques developed to track them in the parameter space.

The bifurcation diagram enables us to determine the interesting intervals
of p values and trace the evolution of geometric invariants (e.g., singular
points, limit cycles, homoclinic connections) that organize the dynamics.
For each organization, the model generates specific types of time series
for input p(t) varying over time and from which we can derive qualitative
properties using the bifurcation diagram. We associate a name, an acronym,
and a colored flag with each type of time series, relying on its fundamen-
tal properties. For each case, we provide a figure with, on the left, the
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Figure 3: Bifurcation diagram (left) according to p and instance of LFP time
series and its spectrogram (right) associated with the NMO case (G = 25, α2 =
0.3, and C = 130 for the simulation). Blue curves: Stable singular points. Green
curve: Singular points with four associated eigenvalues with negative real parts.
Red points: Supercritical Hopf bifurcations (H1 and H2). Black curves: Maximal
and minimal y0 values along the stable cycles. Horizontal gray bar: Confidence
interval [< p > −σ, < p > +σ ] of the gaussian variable p(t) used to generate
the time series.

bifurcation diagram and the dynamics organizations (y0 traces of the singu-
lar points and minimal and maximal y0 values along each limit cycle) and,
on the right, an instance of associated LFP time series obtained with p(t) a
gaussian variable and its time-frequency diagram.

We have focused on the time series specifically characterized by their
qualitative properties, in particular, the types of oscillations. We are not
presenting all of the possible bifurcation diagrams because different di-
agrams can generate the same type of time series as long as they share
essential structural properties. We mention the slightly different cases in
the text. We do not discuss trivial cases where there is no limit cycle. These
cases, where the only attractors are fixed points, correspond either to the
activity of a silent population or a nonphysiological activity where the LFP
remains high for a long period of time. For the time series generation, the
mean and variance of the gaussian variable p(t) are selected so that p(t)
takes its values in the interval of interest with an expectancy greater than
0.5.

3.1 Noise Modulated Oscillations (NMO)—Figure 3. For each value of
p, system 2.3 admits a unique singular point that is stable (blue) if p < pH1

or
p > pH2

and unstable (green) if pH1
< p < pH2

(see Figure 3). At p = pH1
, the

system undergoes a supercritical Hopf bifurcation giving birth to a stable
limit cycle that persists for p > pH1

and disappears for p = pH2
through

another supercritical Hopf bifurcation. In the presence of an input varying
over time (especially for a gaussian variable), the generated time series
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Figure 4: Bifurcation diagram (left) according to p and instance of LFP time
series and its spectrogram (right) associated with the NIS case (G = 60, α2 = 0.5,
and C = 150 for the simulation). Blue curves: Stable singular points. Cyan (resp.
green) curve: Singular points with five (resp. four) associated eigenvalues with
negative real parts. Black points: Saddle node bifurcations SN1 and SN2. Black
curves: Maximal and minimal y0 values along the stable cycles. Dashed orange
line: SNIC Bifurcation (saddle node on invariant cycle). Horizontal gray bar:
Confidence interval [< p > −σ,< p > +σ ] of the gaussian variable p(t) used to
generate the time series.

oscillates when pH1
< p(t) < pH2

and oscillation amplitude and frequency
are modulated by the input value.

In a slightly different case (in particular, for a greater C value), the Hopf
bifurcation H1 is subcritical. A fold bifurcation of limit cycles occurs for
a value pFLC < pH1

at which stable and unstable limit cycles collide and
disappear. Unstable and stable cycle families indexed by p connect H1 and
H2, respectively. Since the most important property to the existence of stable
cycle families is preserved, the time series generated in this case are the same
type as those shown in Figure 3.

3.2 Noise Induced Spiking (NIS)—Figure 4. The curve of singular
points is S-shaped and points SN1 and SN2 corresponding to saddle node
bifurcations split it into three branches (see Figure 4). We refer to the sub-
sets of singular points verifying y0 < ySN1

, y0 > ySN2
, and y0 ∈ ]ySN1

, ySN2
[,

respectively, as low branch, high branch, and middle branch. The points on
the low branch are stable (blue), and those on the middle branch are unsta-
ble (cyan). The points on the high branch are unstable (green) for p < pH1

and stable (blue) alternatively. We describe the diagram for the decreasing
p values. For p > pH1

the system admits a unique singular point that is
stable. At p = pH1

, a supercritical Hopf bifurcation H1 creates a stable limit
cycle that persists for small p values until it disappears through a SNIC bi-
furcation (saddle node on invariant cycle, sometimes referred to as saddle
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Figure 5: Bifurcation diagram (left) according to p and instance of LFP time
series and its spectrogram (right) associated with the NIS-OTO case (G = 0, α2 =
0.8, and C = 136 for the simulation). Blue curves: Stable singular points. Cyan
(resp. green) curve: Singular points with five (resp. four) associated eigenvalues
with negative real parts. Red points: Hopf bifurcations (H1 subcritical, H2 and H3
supercritical). Black points: Saddle node bifurcations SN1 and SN2. Black curves:
Maximal and minimal stable cycle y0 values along the stable cycles. Dashed
black curve: Maximal and minimal y0 values along the stable cycles. Dashed
orange line: SNIC bifurcation (saddle node on invariant cycle). Horizontal gray
bar: Confidence interval [< p > −σ, < p > +σ ] of the gaussian variable p(t)
used to generate the time series.

node homoclinic bifurcation) at p = pSN1
. For p < pSN1

the system admits a
unique stable singular point.

For input p(t) with an average chosen close to pSN1
, the system alternates

between a stable singular point on the low branch and the high-amplitude
limit cycle. The period of the cycle is quite large since it is close to the SNIC
bifurcation. Hence, the generated time series display alternations of spikes
and long quiescence phases. We call this mechanism noise-induced spiking
(NIS).

3.3 Noise Induced Spiking and Over Threshold Oscillations (NIS-
OTO)—Figure 5. The curve of singular points is split into three branches
(low, middle, and high) by two saddle node bifurcation points SN1 and
SN2 as in the NIS case.

The singular points of the low branch are stable (blue), and those of
the middle branch are unstable (cyan) (see Figure 5). The points of the
high branch are unstable (green) for p ∈ ]pSN2

, pH1
[ ∪ ]pH2

, pH3
[ and stable

alternatively. The system undergoes a subcritical Hopf bifurcation at p =
pH1

and two supercritical Hopf bifurcations at p = pH2
and p = pH3

. For
p < pH1

and p > pH3
, the system admits a stable point as a single attractor.

At p = pH1
, the subcritical Hopf bifurcation gives birth to an unstable limit

cycle that persists for greater values of p. At p = pFLC, it disappears through
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Figure 6: Bifurcation diagram (left) according to p and instance of LFP time
series and its spectrogram (right) associated with the NITAM case (G = 0,
α2 = 0.3, and C = 151 for the simulation). Blue curves: Stable singular points.
Green curves: Singular points with four associated eigenvalues specific to the
negative real part. Red points: Hopf bifurcations (H1, H2, and H3 subcritical
and H4 supercritical). Black curves: Maximal and minimal y0 values along the
stable cycles. Dashed black curves: Maximal and minimal y0 values along the
stable cycles. Horizontal gray bar: Confidence interval [< p > −σ,< p > +σ ] of
the gaussian variable p(t) used to generate the time series.

a fold bifurcation of limit cycles with a high-amplitude stable limit cycle.
This latter stable cycle exists for p between pSN1

, corresponding to a SNIC
bifurcation, and pFLC. Moreover, a family of low-amplitude stable limit
cycles connects H2 and H3.

When considering a time-varying input p(t), the generated time series al-
ternates high-amplitude oscillations (for p(t) ∈ ]pH1

, pFLC[), low-amplitude
oscillations for p(t) ∈ ]pH2

, pH3
[ and quiescence phases. We call this

type of time series noise-induced spiking and over-threshold oscillations
(NIS-OTO).

3.4 Noise Induced Thresholded Amplitude Modulation (NITAM)—
Figure 6. For each value of p, the system admits a unique singular point (see
Figure 6). This point is unstable (green) for p ∈ ]pH1

, pH2
[ ∪ ]pH3

, pH4
[ and

stable (blue) alternatively. For p < pFLC1
, p ∈ ]pFLC2

, pFLC3
[, and p > pH4

the
system admits a stable point as a unique attractor. When p = pH1

, the system
undergoes a subcritical Hopf bifurcation that gives birth to a family of
unstable cycles that disappear when p = pFLC1

by a fold bifurcation of limit
cycles with a stable cycle. This stable cycle appears and disappears through
fold bifurcation of limit cycles at p = pFLC1

and p = pFLC2
, respectively. At

p = pFLC2
, the stable cycle collides with the unstable cycle that disappears

at p = pH2
through subcritical Hopf bifurcation. When p = pH3

, an unstable
limit cycle emerges from a subcritical Hopf bifurcation and disappears by
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Figure 7: Bifurcation diagram (left) according to p and instance of LFP time
series and its spectrogram (right) associated with the NIS-STO case (G = 0,
α2 = 0.3 and C = 300 for the simulation). Blue curve: Stable singular points.
Cyan (resp. green) curve: Singular points with five (resp. four) associated eigen-
values with negative real parts. Red points: Hopf bifurcation (H1 subcritical and
H2 supercritical). Black points: Saddle node bifurcation (SN1 and SN2). Black
curves: Maximal and minimal y0 values along the stable cycles. Dashed black
curve: Maximal and minimal y0 values along the unstable cycles. Horizontal
gray bar: Confidence interval [< p > −σ, < p > +σ ] of the gaussian variable
p(t) used to generate the time series.

a fold bifurcation of limit cycles at p = pFLC3
with a stable limit cycle that

persists until p = pH4
where it disappears by supercritical Hopf bifurcation.

By choosing a noise p(t) with an average close to the transition be-
tween both stable cycles, the generated time series alternates between low-
and high-amplitude oscillations due to the presence of stable limit cycles
for pFLC1

< p(t) < pFLC2
, and pFLC3

< p(t) < pH4
, respectively. Quiescence

phases can also appear when the point along the orbit follows the stable
point of the low branch. We call this type of behavior noise-induced thresh-
olded amplitude modulation (NITAM).

3.5 Noise Induced Spiking and Subthreshold Oscillations (NIS-
STO)—Figure 7. The set of singular points is split into three branches
(low, middle, and high) by two saddle node bifurcations SN1 and SN2 as
in the NIS case (see Figure 7). The singular points of the middle branch are
unstable (cyan). Those of the low branch are stable (blue) for p < pH1

and
unstable (green) alternatively. Furthermore, the points of the high branch
are unstable (green) for p < pH2

and stable (blue) alternatively. At p = pH1
,

the system undergoes a subcritical Hopf bifurcation, creating an unstable
cycle that persists for smaller values of p until it disappears at p = pFLC
through a fold bifurcation of limit cycles with a stable cycle. This latter
stable cycle exists for p greater than pFLC and disappears at p = pH2

(not
shown in Figure 7) through a supercritical Hopf bifurcation.



Neural Mass Model with Double Excitatory Feedback 343

For a gaussian input p(t) with an average close to pH1
, the time series

displays an alternation of large oscillations, quiescence phases reflecting
the input noise, and subthreshold oscillations. The large oscillations result
from the presence of the stable cycle for p(t) > pFLC. The quiescence phases
correspond to periods of time during which the current point is close to the
low branch of stable point (p(t) < pH1

). The subthreshold oscillations occur
in the transitions between the two preceding regimes and result from the re-
pulsiveness of the singular point on the low branch when p(t) ∈]pFLC, pH1

[.
We call this type of behavior noise-induced spiking and subthreshold oscil-
lations (NIS-STO).

A similar dynamical organization was found by Liley and Walsch (2013)
in a mean field model designed to reproduce the burst suppression during
anesthesia. In this context, the Hopf bifurcation is supercritical, and a fam-
ily of small, stable limit cycles emerges connecting the family of unstable
limit cycles at an additional fold bifurcation of limit cycles. In a certain
region of the parameter space, this model is able to reproduce small oscil-
lations between high-amplitude bursts. Burst suppression emerges in the
Liley model by the addition of a slow system driven by the mean fields.
Therefore, several physiologically plausible hypotheses are given by the
authors to explain the genesis of EEG bursting. One of them concerns slow
changes of GABA and glutamate neuromodulations in activity. However,
neuromodulations in activity may not be sufficient to account for burst
suppression, and other mechanisms need to be considered.

4 Impact of the Balance between Direct and Indirect Feedbacks

Direct and indirect feedbacks have an essential impact on the activity of the
neuronal population being studied, which results in different oscillation
profiles in the model outputs. Note that indirect feedback means interme-
diary pyramidal cells, and therefore its coupling gain is defined in the model
as a proportion α2 ∈ [0, 1] of the maximum number C of synaptic connec-
tions between populations. An analysis of the relative effects of direct and
indirect feedbacks requires taking into account parameter C modulating all
the synaptic interactions between populations in addition to parameters α2
and G (coupling gain of direct feedback). Specifically for fixed values of α2
and G, the model can generate different types of time series among those
described in section 3 depending on the value of C. We can identify them us-
ing the codimension 2 bifurcation diagrams according to parameters C and
p. When we modify values α2 and G, this diagram changes and therefore so
does the time series panel that system 2.3 can generate.

In this section, we describe the codimension 2 bifurcation diagrams of
system 2.3 according to C and p and their distribution in the rectangle (G,
α2) ∈ [0, 80] × [0, 1]. We obtain a partition of this rectangle and, for each
region representing a scale of direct and indirect feedback gains, a panel of
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Figure 8: Partition of the rectangle [0, 80] × [0, 1] of (G, α2) values according to
the type of bifurcation diagram in (C, p). The picture on the right is a zoom on the
center part of the rectangle. Cyan curve: Appearance or disappearance of two
folds of the Hopf branch. Red curve: Degenerated Bogdanov-Takens bifurcation.
Blue curve: Cusp-cusp bifurcation. Green curve: Appearance or disappearance
of at least one cusp (Cusp0 or Cusp1/Cusp2 couple). These curves define a
partition of the rectangle into 11 regions indexed from a to i; each region is
characterized by a type of codimension 2 bifurcation diagram (C, p) represented
by the associated panel in Figure 9 or 10.

possible behaviors for system 2.3. In the appendix, we describe briefly the
codimension 2 bifurcations and the dedicated numerical methods used to
locate them in (C, p) plane and to build the partition of (G, α2) plane.

4.1 Codimension 2 Bifurcation Diagram in (C, p) and Partition in
(α2, G). First, it should be noted that the interval [0, 80] of G values is
consistent with the values studied in the literature (Huneau et al., 2013). In
addition, rectangle [0, 80] × [0, 1] contains the essential codimension 3 and
4 bifurcations undergone by system 2.3 based on parameters p, C, G, and α2.
There are other behaviors of less interest for greater G values considered to
be far from the physiology. For clarity when presenting the behaviors, we
have chosen not to describe these behaviors beyond the limits of the model.

Figure 8 shows the partition of rectangle [0, 80] × [0, 1] values of (G, α2).
Each region from (a) to (i) is related to a type of codimension 2 diagram
according to (C, p) shown in Figure 9 (for cases (a) to (f)) or Figure 10 (for
cases (g), (h), and (i)). In each bifurcation diagram, we have highlighted the
intervals of C values for which the model generates a given type of outputs
from those presented in section 3. Each interval is materialized by a colored
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Figure 9: Bifurcation diagrams according to parameters C and p in each region
(a)–(f) of the partition of the rectangle [0, 80] × [0, 1] of (G, α2) values shown
in Figure 8. The five lower panels are zoom shots of the parts of diagrams
(a) to (f) indicated with a blue rectangle and labeled with Zoom1 to Zoom5.
Codimension 1 bifurcations (curves): saddle node in black, supercritical Hopf
in a solid red line, subcritical Hopf in a dotted red line, homoclinic connection
in green, SNIC in green dots, fold of limit cycles in purple. Codimension 2
bifurcations (blue diamonds): Cusp, Bogdanov-Takens (BT), Bogdanov-Takens
with SNIC (SBT), Bautin (B), homoclinic connection to SNIC (S), cusp of limit
cycles (CLC). In each diagram, the intervals of C values corresponding to a
given type among those described in section 3 are identified by colored bands:
NMO in yellow, NIS in mauve, NIS-OTO in orange, NITAM in blue, NIS-STO
in green. The intervals of C values left blank correspond to trivial cases.
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Figure 10: Bifurcation diagrams according to parameters C and p in each region
(g)–(i) of the partition of the rectangle [0, 80] × [0, 1] of (G, α2) values shown in
Figure 8. Codimension 1 bifurcations (curves): Saddle node in black, supercrit-
ical Hopf in a solid red line, subcritical Hopf in a dotted red line, fold of limit
cycles in purple. Codimension 2 bifurcations (blue diamonds): Cusp and Bautin
(B). In each diagram, the intervals with a value of C corresponding to the NMO
type are identified by the yellow rectangles. The intervals of C values left blank
correspond to trivial cases. In these three cases, there exists a cusp bifurcation
for a high value of C (greater than 400).

vertical band corresponding to the type of related outputs (see the flags to
the left of Figures 3 to 7).

In all the diagrams (C, p) shown in Figures 9 and 10, the following
codimension 1 bifurcations occur along curves (or branches):

� Supercritical Hopf: Solid red lines
� Subcritical Hopf: Dotted red lines
� Saddle node: Black lines
� Homoclinic connection: Solid green lines
� SNIC : Dotted green lines
� Folds of limit cycles: Purple lines

The codimension 2 bifurcations occur at the points indicated by a blue
diamond and the following abbreviations according to their nature:

� Cusp,
� Bogdanov-Takens (BT)
� Bautin (B)
� Bogdanov-Takens in the presence of a SNIC (SBT)
� Cusp of limit cycles (CLC)
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These codimension 2 bifurcations split the interval [0, 400] of C values
into intervals corresponding to a type of bifurcation diagrams according to
p among those presented in section 3. Other points play a similar role and
are mentioned in Figures 9 and 10:

� Fold point of a branch of fold bifurcations of limit cycle (FLC)
� Fold point of a Hopf bifurcation branch (FH)
� Intersection of a Hopf bifurcation branch with a saddle node bifurca-

tion branch (I)

Note that in order to prevent confusion, the FH and I type points should
be distinguished from the Hopf-Hopf (also called double-Hopf) bifurcation
and the fold-Hopf (also called zero-Hopf) bifurcation. In fact, an FH point
is not a transverse intersection of two Hopf bifurcation branches but simply
a fold that, for increasing values of C, gives birth to two Hopf bifurcations
for distinct p values. Similarly, at point I, the singular point undergoing
the Hopf bifurcation is not one of the singular points disappearing through
the saddle node bifurcation. The intersection of the two branches simply
separates the cases for which limit cycles exist from those that do not,
around a singular point for the value of p corresponding to the saddle node
bifurcation of two other singular points. In the following, for a point Q in
a bifurcation diagram in (C, p), we call CQ and pQ its C and p components,
respectively: Q = (CQ, pQ).

In each type of diagram, from (a) to (i), there is an interval of C values
(blank in the panels shown in Figures 9 and 10), bounded by 0 on the left, that
corresponds to three trivial cases. In the first case, for every p value, there is
a single singular point for system 2.3 that is attractive. This is the case, for
example, for C ∈ [0,CCusp] in the type (a) diagram or for C ∈ [0,CFH1

] in the
type (b) diagram. Therefore, the time series produced with p(t), a gaussian
input, directly reflects the input noise. The second trivial case appears when
a cusp bifurcation occurs for C = CCusp, creating two branches of saddle
node bifurcations according to p (called inferior and superior branches in
reference to the p values). For a certain interval of p values, system 2.3
is therefore bistable: two stable singular points coexist. This case takes
place, for example, for C ∈ [CCusp,CBT] in (a) and (c) type diagrams and for
C ∈ [CCusp1

,CBT] in (d) to (f) type diagrams. The time series produced with
p(t), a gaussian input, displays hysteresis behavior between two values
of potential (low and high), and the period of time surrounding the high
potential is too long to represent a physiological output. The system can
then undergo a Bogdanov-Takens bifurcation for C = CBT, as in diagrams
(a) and (c) to (f), producing on the lower branch of saddle node bifurcations.
This codimension 2 bifurcation therefore gives birth to a Hopf bifurcation
branch (in red). For C fixed close to CBT, the limit cycle born from the
Hopf bifurcation persists for close values of p but quickly disappears by
homoclinic connection with a saddle. Therefore, a branch of homoclinic
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connections (in green) also starts from the Bogdanov-Takens bifurcation
point. For C close to CBT, the cycle born from Hopf bifurcation is not large
enough to break the bistability between two stable points, and the generated
time series are, once again, nonphysiological. The cases identified in section
3 appear for C values that are greater than a bifurcation value whose nature
varies depending on diagrams (a) to (i). In the following, we present the
regions in increasing order of complexity. Cases C ∈ [CFH1

,CFH2
] in (a) (red

rectangle) and C ∈ [CFH1
,CFH2

] in (b) (blue rectangle), are described at the
end of this section.

Regarding diagrams (b), (g), (h), and (i), two supercritical Hopf bifur-
cation branches appear for C = CFH1. For a value of C > CFH1 fixed in the
interval shown in yellow, a family of limit cycles indexed by p connect
the two bifurcations. This case corresponds to the diagram in Figure 3 and
produces time series of NMO type.

Regarding diagrams (c) to (f), the branch of Hopf bifurcations resulting
from the Bogdanov-Takens BT bifurcation intersects the upper branch of
the saddle node at C = CI (see zoom 4). This transition changes the trivial
bistability case between two stable singular points into bistability between a
stable singular point and a stable cycle. In addition, the branch of homoclinic
connections resulting from the BT becomes a branch of SNIC bifurcations
(green dotted line) starting with a C value close to CI, that is, when it meets
the upper branch of the saddle node. For an interval of C values shown
with a mauve rectangle on the panels in Figure 9, the system undergoes,
for decreasing p values, a supercritical Hopf bifurcation creating a limit
cycle that disappears through a SNIC bifurcation (homoclinic connection
on a saddle node) and, finally, a second saddle node. This type of diagram
corresponds to the case in figure 4 for which the generated time series are
of the NIS type.

When C is increased again in these same diagrams (c) to (f), as well as
diagram (a), a Bogdanov-Takens bifurcation in the presence of a SNIC (SBT)
occurs for C = CSBT on the upper branch of the saddle node bifurcations (see
zoom 2). The SNIC branch is interrupted at this point to become a single
saddle node for C values greater than CSBT. The cycle born from the Hopf
bifurcation (for a very high p value) then persists down to a p value that
is less than that of the saddle node branch. A subcritical Hopf bifurcation
branch creates a family of unstable cycles also created at C = CBT as well as
a branch of fold bifurcations of limit cycles corresponding to p values for
which the stable and unstable cycles collide and disappear. For intervals of
C values shown in green in the panels of Figure 9, the bifurcation diagram
according to p is therefore similar to the diagram in Figure 7 and the time
series generated for a gaussian input p(t) are of NIS-STO type.

For diagrams (e) and (f), the two branches of saddle node bifurcations
collide and disappear via a cusp bifurcation at C = CCusp2

(see zoom 5),
only to reappear at C = CCusp3

. For a fixed value of C in [CCusp2
,CCusp3

],



Neural Mass Model with Double Excitatory Feedback 349

a family of limit cycles indexed by p connects both supercritical (upper
branch) and subcritical (lower branch) Hopf bifurcations. The bifurcation
diagram according to p is therefore similar to that of Figure 3, and the
outputs generated are of NMO type. The Cusp3 bifurcations for (e) and
(f) (resp. Cusp for (b)) make the system bistable again for C > CCusp3

(resp.
C > CCusp for (b)) and transform the NMO type diagram into a NIS-STO
type (Figure 7).

We conclude with the description of the cases where, for the same C
value, more than two Hopf bifurcations appear in the bifurcation diagram
according to p: NIS-OTO types (orange) for a and NITAM (blue) for (b). In
(a), the Hopf bifurcation curve emanating from the Bogdanov-Takens bifur-
cation admits two folds defining an interval ]CFH1

,CFH2
[ of C values (orange

rectangle) for which there are three Hopf bifurcations with different p val-
ues. This case presents a complex series of bifurcation diagrams according
to p (see zoom 1). However, all of these diagrams share the essential features
of that of Figure 5 from the time series generation viewpoint (see Touboul
et al., 2011, for illustrations of all the bifurcation diagrams according to p in
this case). Hence, for C in the orange rectangle, the model generates time
series of NIS-OTO type. The highest Hopf bifurcation (i.e., the greatest p
value) gives birth to a branch of limit cycles, which either connects to the
middle Hopf bifurcation (diagram in Figure 5) or to the SNIC via two fold
bifurcations of limit cycles. In either situation, two small-amplitude limit
cycles coexist respectively for p values close to that corresponding to the
saddle node bifurcation. As p increases, the large cycle disappears, whereas
the small cycle persists. This persistence leads to NIS-OTO-type time series
for a gaussian input p(t).

Finally, in diagram (b), the Hopf bifurcation branch shows two other
folds in C = CFH2

and C = CFH3
in addition to the one at C = CFH1

, and a
Bautin bifurcation branch turns the supercritical Hopf bifurcation into a
subcritical one. Hence, for each fixed value of C ∈]CFH1

,CFH2
[ (resp. C ∈

]CFH2
,CFH3

[) (blue rectangle), the system undergoes two (resp. four) Hopf
bifurcations when p varies. The bifurcations for the two smallest p values are
connected by a family of limit cycles with an amplitude that remains small,
whereas the two bifurcations for the two greatest p values are connected
by a family of limit cycles with an amplitude that becomes large. At the
Bautin bifurcation, a branch of fold bifurcations of limit cycles emerges
corresponding to a fold in the family of limit cycles connecting the two
upper Hopf bifurcations. In both cases, these families can undergo the fold
bifurcation of limit cycles transforming the stable cycle into an unstable one,
as shown in Figure 6. Just as in diagram (a), we do not differentiate between
the cases where these folds exist organized by the Bautin bifurcation and the
cases where they do not exist, since the types of the time series are similar
in both cases. They alternate between periods of small and large amplitude
and are both of NITAM type (see Figure 6).
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4.2 Transitions between Regions. The partition of the rectangle
[0, 80] × [0, 1] in Figure 8 identifies the regions in which the codimension
2 bifurcation diagrams according to (C, p) are diffeomorphic. Neighboring
regions of this partition are separated by curves, some of them correspond-
ing to bifurcations of codimension 3 or greater. Others separate the cases
where a codimension 1 bifurcation branch (in particular, the Hopf bifurca-
tion branch) displays or does not display a fold for a certain value of C. In
this section, we describe these transitions between regions by relying on the
comparison between pairs of diagrams among (a) to (i) in Figures 9 and 10.

The red curve (separating (a) and (b), (c) and (g), (e) and (h), and (f) and
(i)) is a degenerate Bogdanov-Takens bifurcation (Dumortier, Roussarie, So-
tomayor, & Zoladek, 1991; Baer, Kooi, Kuznetsov, & Thieme, 2006) occurring
with a cusp bifurcation. Roughly speaking, this codimension 3 bifurcation
corresponds to the split of a continuous Hopf bifurcation branch into two
branches by a cusp bifurcation. For system 2.3, from the perspective of
(C, p), it involves the appearance of the two Bogdanov-Takens bifurcations
(diagrams (a), (c), (e), and (f)): BT occurs on the lower saddle node branch
(lowest p values), which results, in particular, in a SNIC bifurcation on the
upper branch (greatest p values) and SBT occurs on the upper saddle node
branch, which coincides locally with the SNIC branch.

The cyan curve (separating (a) and (c), (b) and (g)) corresponds to the
disappearance of both folds FH1 and FH2 of the Hopf bifurcation branch.
Note that it is not a codimension 3 bifurcation because the bifurcation
diagrams (b) for C ∈ [CFH1

,CCusp] and (g) are diffeomorphic. However, the
existence (for a given C value) of a different number of Hopf bifurcations
depending on p modifies the structure of the bifurcation diagram according
to p and therefore the generated outputs. The transition between (g) and (b)
thereby inserts an interval of C values for which NITAM-type outputs are
generated in the interval of C values generating NMO.

Along the blue curve (separating (c) and (e), (d) and (f)) fusion and
separation of the two bifurcations Cusp2 and Cusp3 occurs in the diagram
according to (C, p). Starting at (c) (resp. (d)), varying parameters G and
α2, the two cusp bifurcations occur when (G, α2) intersects this blue curve,
thereby creating in (e) (resp. (f)) an interval of C values for which there is
no longer a saddle node bifurcation according to p. In this way, this interval
where the model generates NMO type-outputs (yellow) merges into the
interval where there are NIS-STO type outputs.

The green curves (separating (c) and (d), (e) and (f), (g) and (h), (h) and
(i) among other region couples) correspond to the appearance of at least one
additional cusp for a positive C value. In the first case, the cusp bifurcation
exists for a negative C value, and when (G, α2) intersects a green curve, this
value CCusp0

becomes positive (as in diagrams (d), (f), and (i)). In another
case, when (G, α2) intersects a green curve, two cusp bifurcations connected
by the two same saddle node branches appear as in the transitions from (g)
to (h). It is therefore a codimension 3 cusp-cusp bifurcation.
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Figure 11: Partition of parameter (α2, G) space based on the time series panel
that the system can generate for C ∈ [0, 400]. The cyan curve represents the
appearance and disappearance of two folds of the Hopf bifurcation branch.
The red curve is a branch of degenerate Bogdanov-Takens bifurcations. The blue
curve is a branch of cusp/cusp bifurcation. This diagram defines five regions
characterized by a single panel of output types: (a) NIS-OTO, NIS, NIS-STO; (b)
NMO, NITAM, NIS-STO; (c) NIS, NIS-STO; (e) NIS, NIS-STO, NMO; (g) NMO.

Transitions between regions that are not adjacent can occur when pass-
ing through an intersection point between two curves. Note specifically
that the intersection between the red curve and the blue curve is a codi-
mension 4 bifurcation in parameters G, α2, C, and p where a degenerate
Bogdanov-Takens bifurcation involving a cusp bifurcation coincides with
a cusp-cusp bifurcation. Similarly, the intersection point between the red
and cyan curves corresponds to simultaneous occurrences of a degenerate
Bogdanov-Takens bifurcation and the fusion of two folds of the Hopf bi-
furcation branch. These two central points in the rectangle partition with
values of (G, α2) primarily organize the time-series panel that the system
can generate based on the values given to the direct and indirect excitatory
feedback gains.

4.3 Tool for Estimating Relative Contributions of Direct and Indirect
Excitatory Feedbacks. Certain groups of partition regions in Figure 8 can-
not be differentiated by the panel of time series types that the system can
generate. This is due to the fact that certain bifurcation diagrams for (a) to (i)
differ only in the bifurcations that affect trivial cases. We simplify the parti-
tion in Figure 8 by ignoring the appearances of cusp bifurcations along the
green curves and obtain the simplified partition in Figure 11. Hence, each
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new region is characterized by a single panel of time series generated for
various values of C ∈ [0, 400]. This panel is identified with a flag composed
of the colors related to the types of time series.

Since diagrams (c) and (d) in Figure 9 differ only by the presence of
Cusp0, which affects only the trivial cases, regions (c) and (d) are combined
into a single region called (c). For (G, α2) in this new region, the model can
only generate NIS and NIS-STO type outputs according to the value of C
(mauve and green flag). The same simplification is applied to regions (e)
and (f), combined into a single region, (e), in which the time series are of the
type NIS, NIS-STO, and NMO (mauve, green, and yellow flag). Regions (g),
(h), and (i) are combined in the new region, (g), in which the time series are
all of type NMO (yellow flag). Regions (a) and (b) remain unchanged and
are characterized by the NIS-OTO, NIS, NIS-STO panels (orange, mauve
and green flag) and NMO, NITAM, NIS-STO (yellow, blue and green flag),
respectively.

Note that the bifurcation analysis also provides a bijective mapping be-
tween the set of time series types and a partition in the extended parameter
space (C, G, α2) that consists of five regions intertwined in a complex way.
Yet the partition in the (G, α2) plane allows us to study the impact of the bal-
ance between direct and indirect excitatory feedbacks on the model behav-
ior, assuming that the number of synaptic connections between populations
remains constant.

4.4 Comparison with Experimental Data. Neural mass models are clas-
sically used to simulate typical features in epileptic seizures (Wendling et al.,
2002; Touboul et al., 2011) and more recently to search mechanisms under-
lying epileptic activities in animal models (Wendling, Bartolomei, Mina,
Huneau, & Benquet, 2012; Huneau et al., 2013). In this regard, we have re-
produced experimental data recorded from epileptic mice with our model
by tuning the coupling gain of the indirect excitatory feedback. The ex-
perimental data were recorded using the mesial temporal lobe epilepsy
(MTLE) mouse model (Riban et al., 2002). Mice were initially injected with
kainic acid (KA) in the hippocampus and were implanted with intracra-
nial electrodes. After the animals reached the chronic epileptic stage (about
30 days after KA injection), LFP was recorded in the injured hippocampus
(2048 Hz sampling frequency). Before each recording, mice were injected
with picrotoxin (intraperitoneal). The experimental procedures are detailed
in Huneau et al. (2013) and agree with the European Communities Council
Directive of November 24, 1986 (86/609/EEC).

The acquired signals contain many hippocampal discharges (HD). HD
display high-amplitude sharp waves followed by lower-amplitude rhyth-
mic discharges (Heinrich et al., 2011). Actually two of the behaviors de-
scribed in section 3 share common features with these HD (see Figure 12a).
The NIS case generates sparse large-amplitude spikes comparable with the
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Figure 12: (a) Experimental LFP time series and associated spectrogram.
(b) Model output and associated spectrogram. For t < 8 s, NIS case (α2 = 0.4)
and for t > 8 s, NIS-STO case (α2 = 0.35).

first regime, and the NIS-STO case generates lower-amplitude and higher-
frequency oscillations comparable with the rhythmic discharges.

Using our model, we have generated a time series displaying NIS be-
havior for t < 8s and NIS-STO behavior afterward (see Figure 12b). The
transition from the NIS case to the NIS-STO case is obtained by switching
the α2 value (from 0.4 to 0.35) at time t = 8 s. When the activity in a given
cortical area is changed, the activity in the other areas is also modified, and
their feedback action on the considered population also changed; thus, the
expectation of p(t) is modified at t = 8 s. The spectrograms associated with
the model output and the experimental data (see Figure 12) show that the
model output is comparable to the real data in terms of frequency and oscil-
lation amplitudes in each regime. (See Garnier, Huneau, Vidal, Wendling,
& Benali, 2014, for further explanations and an expanded analysis.)

5 Discussion

We propose a new neural mass model generalizing existing models. This
model, built around a population of pyramidal cells, integrates both types of
excitatory feedback present in literature: first, a direct feedback loop of the
pyramidal neuron population onto itself (Wilson & Cowan, 1973; Robinson
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et al., 1997; Liley et al., 2002; Molaee-Ardekani et al., 2010), and second, an in-
direct feedback produced by the action of pyramidal cells via intermediary
pyramidal cells (Jansen et al., 1993; Jansen & Rit, 1995; Wendling et al., 2000,
2002). To the best of our knowledge, these two types of excitatory coupling
have never been studied together within a same model.

This architecture allows us to study the balance between direct (via
parameter G) and indirect (via parameter α2) excitatory feedbacks on the
dynamical behavior of the model. We have characterized the codimension 2
bifurcations undergone by the system for (C, p) ∈ [0, 400] × [0, 2000] based
on the different values of (α2, G) in the rectangle [0, 1] × [0, 80]. This study
has revealed a rich zoology of dynamical behaviors that are physiologically
relevant and identified.

This study highlights another fact about neural mass models based on
the classic second-order operators Fe and Fi for the synaptic connection
kinetics: such a model involving only direct excitatory feedback cannot
reproduce the whole set of behaviors identified in this letter when consid-
ering physiological parameter values. This neural mass model, obtained
from our model by setting α2 = 0, cannot produce time series of the NIS-
OTO or NITAM type. Moreover, a Jansen-Rit–like model considering an
indirect feedback (G = 0 in our model) displays NIS-STO–type behaviors
for reasonable values of C (lower than 200) only in a small range of α2 (pre-
cisely ]0.31, 0.34[). Nevertheless, it is true that this result remains limited
by the parameter space studied. It would be interesting to look at a larger-
parameter space of higher dimension in which other bifurcations would be
likely to occur. In fact, for G > 66 and high p (p > 2000) Figures 9c and 9e
reveal a Bogdanov-Takens bifurcation on the upper branch of the Hopf bi-
furcations, which produces two saddle node bifurcation branches replacing
the Hopf bifurcations. In this case, the cusp bifurcations fuse for a certain G
value, provoking the disappearance of a branch of Hopf bifurcations in the
long term. Although it seems far from the physiological values of parame-
ters observed in the literature, this behavior could be interesting to analyze
from the dynamical viewpoint in order to improve our understanding of
the model. To go even further, it would be interesting to expand this study
to other parameters, notably concerning the synaptic responses, which are
critical to the dynamical behaviors of this type of models (Grimbert &
Faugeras, 2006).

Studying the proposed model allows us to define an exhaustive glossary
(within the studied parameter space) of time series types, physiologically
realistic, generated by this model for different values of α2, G, and C. The
creation of this glossary consists in resolving the direct problem, which as-
sociates parameter values with types of dynamics. In this way, this partition
would enable a qualitative resolution of the inverse problem concerning the
estimation of direct and indirect coupling gain parameters from time series
organization and identify their distribution in the parameter space, assum-
ing that the number of synaptic connections C between populations remains
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constant. For example, in a set of NMO and NIS time series, the partition
shown in Figure 11 allows us to determine that the values of direct and
indirect excitatory coupling gains are located in region (e), the only re-
gion where the model can generate these types of outputs. This estimating
method can be fine-tuned when the NIS-STO are being studied. In fact, such
outputs can occur in all presented codimension 2 bifurcation diagrams ac-
cording to p and C, even in region (g). However, within this region, the
set of (G, α2) values for which NIS-STO occurs is a very small neighbor-
hood of the red degenerate Bogdanov-Takens bifurcation curve, which we
have chosen not to show in Figures 8 and 11. For (G, α2) in the main part
of this region, there is a cusp bifurcation in the bifurcation diagram ac-
cording to (C, p) (indicated with an arrow in the panels in Figure 10) for
a very high C value and therefore far from physiological reality. However,
for (G, α2) in region (g) but close to the red curve, this cusp bifurcation
occurs for C values in the [0, 400] interval being studied. The occurrence of
NIS-STO and NMO-type outputs without any other type allows us to infer
the region of possible values for (G, α2) with greater accuracy and improve
the method for qualitatively solving the inverse problem of estimating pa-
rameters. When experimental time series are used, this analysis could be
used for a model-based estimation of coupling gains parameters between
populations. Other works on this subject have previously addressed this
identification parameter problem by building a space representing time
series based on parameters (Wendling et al., 2002; Labyt, Frogerais, Uva,
Bellanger, & Wendling, 2007). However, these studies are proceeding empir-
ically through repeated simulations. In this study, we have built a theoretical
diagram using the bifurcation analysis, which has enabled a more precise
and exhaustive partition.

Touboul et al. (2011) have studied bifurcations in the Jansen-Rit model.
Our study has allowed us to identify the additional dynamical behav-
iors generated by NIS-STO and NITAM type outputs. The proximity of
this output, within the parameter space, with other more traditional be-
haviors such as NIS gives them definite physiological relevance. However,
to the best of our knowledge, these behaviors and associated times series
have never been specifically described in electrophysiological signals. We
would argue that the reason is they have never been researched. In addition,
the associated time series can easily be interpreted as a noise even though
they are strictly separated from the dynamical viewpoint. Therefore, the
proposed study can have a predictive value and serve as a tool for re-
searching subtle dynamical behaviors in physiological or even pathological
cases.

Appendix: Bifurcations and Numerical Methods

We recall briefly the properties of the different types of bifurcations under-
gone by the model and identified in this letter. We describe the numerical



356 A. Garnier, A. Vidal, C. Huneau, and H. Benali

methods used for calculating the bifurcation diagrams in Figures 3 to 7
and 9 and 10 and for the construction of the partition of (G, α2) space in
Figure 8.

We have implemented these methods on a Matlab platform. We took
advantage of the explicit characterizations of the singular points as well
as the saddle node, cusp, and cusp/cusp bifurcations. The localizations
of the limit cycle families and bifurcations are based on pseudo-arc-
length continuation methods (see Doedel, Govaerts, & Kuznetsov, 2003;
Govaerts, Kuznetsov, & Dhooge, 2005; Kuznetsov, Govaerts, Doedel, &
Dhooge, 2005). Few transitions between dynamical organizations are not
accessible to continuation-based algorithms since they do not correspond
to generic bifurcations, as explained in section 4.1. We have integrated
an automatic research of such transitions in our algorithms. With these
codes, we were able to produce automatically the codimension 2 bifurca-
tion diagrams, displayed in Figure 9 and 10, provided that the values of the
parameters associated with the research algorithms (e.g., arc length step,
tolerances, initialization, interval of model parameter values) were well
chosen in each case. Hence, the design of a completely automatic algorithm
for building the transition curves in Figure 8 is delicate yet conceivable. For
efficiency, the transition curves (except the cusp/cusp bifurcation curve,
which is characterized by an explicit condition) have been built by a human-
directed process based on the analysis of the codimension 2 bifurcation
diagram.

A.1 Singular Points and Limit Cycles. A direct calculation shows that
any singular point of system 2.3 with constant input p(t) = p is character-
ized by its y0 component as a fixed point of the following function ϕ:

ϕ(y0) = A
a

sigm
(

A
a

(
α2C sigm(α1C y0) + p

) + G y0

−B
b
α4C sigm(α3C y0), e0, r, v0

)
. (A.1)

The other components of the singular point associated with such value y0
are given by

y1 = A
a

(
α2Csigm(α1Cy0) + p

) + Gy0, (A.2a)

y2 = B
b
α4Csigm(α3Cy0), (A.2b)

y3 = y4 = y5 = 0. (A.2c)
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One can state an equivalent characterization if we restrict y0 values to
]0, 2Ae0/a[. This interval of values defines an invariant domain in the phase
space for the forward flow. Hence, we use the following property: for any
y0 ∈]0, 2Ae0/a1[, there exists a unique value of p such that (yi)

5
i=0 defined by

equation A.2, is a singular point of equation 2.3 and given by the following
explicit formula:

p = ψ(y0)= a
A

(
v0 − 1

r
ln

(
2 A e0

a y0
− 1

)
− G y0 + B

b
α4C sigm(α3C y0)

)

−α2C sigm(α1C y0). (A.3)

The stability of a given singular point Q = (yi)
5
i=0 is characterized by the

linearized flow of equation 2.3, at this point, that is, by the eigenvalues of
the following Jacobian matrix evaluated at Q:

J(Q) =
(

03 I3

U V

)
∈ M6(R)

where 03 ∈ M3(R) is the null matrix, I3 ∈ M3(R) is the identity matrix,

U =

⎛
⎜⎝

−a2 � −�

Aaα1α2C
2S(α1Cy0) G� − a2 −G�

Bbα3α4C
2S(α3Cy0) 0 −b2

⎞
⎟⎠ ,

V =

⎛
⎜⎝

−2a 0 0

0 −2a 0

0 0 −2b

⎞
⎟⎠ ,

S(v)= sigm′(v) = 2e0r
er(v0−v)

(1 + er(v0−v))2
,

�= AaS(y1 − y2).

A singular point Q is hyperbolic if every eigenvalue of J(Q) has a nonzero
real part. A hyperbolic singular point Q is stable if every eigenvalue of J(Q)

has a negative real part and unstable otherwise. For simplicity, we refer to
“the eigenvalues of Q” as the eigenvalues of the Jacobian matrix associated
with the flow at Q.

The branch of singular points in Figures 3 to 7 are obtained using equa-
tion A.3 and the stability of the singular points by numerical evaluation of
the associated eigenvalues.
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A.2 Codimension 1 Bifurcation of Singular Points.

A.2.1 Saddle Node Bifurcation. A saddle node bifurcation is a collision
and disappearance of two singular points occurring when the bifurcation
parameter varies. Near the bifurcation value, the two singular points have
k and k + 1 associated real negative eigenvalues, respectively. For system
2.3, each saddle node bifurcation according to parameter p corresponds to
a fold of the curve of singular points defined by equation A.3, that is, by
equation ψ ′(y0) = 0, where

ψ ′(y0) = 2ae0

(2Ae0 − ay0)y0r
− aG

A
+ aBα3α4C

2sigm′(α3Cy0)

Ab

−α1α2C
2sigm′(α1Cy0). (A.4)

The corresponding value of p is given by equation A.3. The branches of
saddle node bifurcations in Figure 9 are obtained by solving, for each point
of a given subdivision of the interval of C values, ψ ′(y0) = 0 in y0 and eval-
uating p = ψ(y0) afterward for each solution y0. Transversality conditions
(see Guckenheimer & Holmes, 1993) on the flow are checked afterward to
ensure the nondegeneracy of the bifurcation.

A.2.2 Hopf Bifurcation. A Hopf bifurcation is the local birth of a limit cycle
from a singular point when it changes stability by a pair of purely imaginary
eigenvalues. The bifurcation is said to be supercritical (resp. subcritical) if
the cycle is stable (resp. unstable). More precisely, let us assume that for
each value p ∈ [pH − δp, pH + δp], system 2.3 admits a singular point Y(p).
The singular point Y(p) undergoes a Hopf bifurcation at p = pH if a couple
of eigenvalues λ(p) ± iμ(p) associated with Y(p) cross the imaginary axis
at p = pH . To fix the idea, let us assume that λ(p) < 0 for p ∈ [pH − δp, pH[
and λ(p) > 0 for p ∈]pH, pH + δp]. If the Hopf bifurcation is supercritical
(resp. subcritical), a family of stable (resp. unstable) limit cycles indexed by
p ∈]pH, pH + δp] (resp. p ∈ [pH − δp, pH[) emerges from Y(pH ). Following
(Kuznetsov, 2004), whether a Hopf bifurcation is supercritical or subcritical
is determined by the sign of the first Lyapunov exponent of the system near
the singular point.

Numerically, Hopf bifurcations are located by a change of sign in the
real part of a couple of complex conjugate eigenvalues associated with
a singular point. Since equation A.3 provides an explicit characterization
of the singular points, a direct calculation of the eigenvalues on a grid
of (C, p) values is more efficient than in the general case. For each point
(C, p) corresponding to Hopf bifurcation, the first Lyapunov exponent is
calculated following Kuznetsov (2004).
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A.3 Limit Cycles and Codimension One Bifurcations.

A.3.1 Pseudo-arc-length Continuation of Limit Cycles. The families of limit
cycles shown in Figures 3 to 7 are obtained using a pseudo-arc-length con-
tinuation method. Numerical continuation methods consist in reducing the
search for a family of limit cycles indexed by a parameter to the sequential
search for the root of functions built on a discretization of the flow and
a periodic boundary condition. Introducing a pseudo-arc-length condition
instead of fixing the grid of index parameter values makes it possible to
keep tracking the limit cycles even if the family of limit cycles displays a
fold. Hence, this algorithmic process allows us to track branches of stable
as well as unstable limit cycles. (For more details about this method, see
Doedel et al., 2003, and Govaerts et al., 2005.)

For building the families of limit cycles of system 2.3, we have charac-
terized each cycle by 1000 to 2000 mesh points (depending on the maximal
amplitude and period along the branch of limit cycles), and we used the
collocation points associated with the fourth-order Lobatto IIIa method.

A.3.2 Fold Bifurcation of Limit Cycles. A fold bifurcation of limit cycles
corresponds to a turning point of a branch of limit cycles. Hence, such bi-
furcation undergone by system 2.3 according to p can be directly located
from the family of limit cycles obtained with the method described above.
For building the branches of fold bifurcations of limit cycles in Figure 9,
we have used the arc-length continuation method with the additional equa-
tion expressing the tangential condition (local existence of two roots) and
considering C as a variable in the arc-length continuation equation (see
Kuznetsov et al., 2005).

A.4 Codimension 2 Bifurcations.

A.4.1 Cusp of Singular Points. A cusp bifurcation occurs when a singular
point has one zero eigenvalue and the quadratic coefficient for the saddle
node bifurcation vanishes. At the cusp bifurcation point, two branches
of saddle node bifurcation meet tangentially and disappear. For nearby
parameter values, the system can have three singular points that collide
and disappear pairwise via the saddle node bifurcations.

Following the characterization of saddle node bifurcation given by equa-
tions A.3 and A.4, cusp bifurcations are defined as the points in this set of
solutions fulfilling ψ ′′(y0) = 0 and ψ(3)(y0) �= 0.

A.4.2 Bogdanov-Takens Bifurcation. A Bogdanov-Takens occurs when a
singular point has a zero eigenvalue of multiplicity two. For nearby param-
eter values, the system admits a saddle and a nonsaddle singular point that
collide and disappear via a saddle node bifurcation. The nonsaddle singular
point undergoes a Hopf bifurcation giving birth to a limit cycle. This cycle
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persists for nearby parameter values until it disappears via a homoclinic
bifurcation. Hence, a Bogdanov-Takens bifurcation occurs at a point of a
saddle node bifurcation branch. From this point arise, both tangentially to
the saddle node bifurcation branch, a branch of Hopf bifurcations and a
branch of homoclinic bifurcations. Whether it is subcritical or supercritical
depends on the nature of the Hopf bifurcation nearby the Bogdanov-Takens
bifurcation point and, consequently, on the first Lyapunov exponent.

Numerically we find the Bogdanov-Takens bifurcation point by search-
ing for the vanishing of a second eigenvalue associated with the nonhy-
perbolic point along the branch of saddle node bifurcations. We check the
nondegeneracy condition (see Guckenheimer & Holmes, 1993) involving
the quadratic coefficients in the Taylor expansion of the flow at the bifurca-
tion point, which also determines whether the bifurcation is subcritical or
supercritical.

A.4.3 Bautin Bifurcation. A Bautin (or generalized Hopf) bifurcation sep-
arates branches of subcritical and supercritical Hopf bifurcations in a two-
parameter plane. For nearby parameter values, the system admits two limit
cycles that collide and disappear via a fold bifurcation of limit cycles. It
is characterized by a pair of purely imaginary eigenvalues associated with
the singular point and a vanishing first Lyapunov coefficient for the Hopf
bifurcation.

Since we locate the branches of Hopf bifurcations in the bifurcation
diagrams according to C and p and calculate the first Lyapunov coefficient
at each point, Bautin bifurcation points in Figure 9 and 10 are obtained
directly. We just check the nondegeneracy conditions (see Kuznetsov, 2004).

A.4.4 Fold Points of the Hopf Bifurcation Branch. As explained in
section 4.1, the fold points of a branch of Hopf bifurcations do not cor-
respond to codimension 2 bifurcations but participate in the organization
of the bifurcation diagram according to p and the associated time series.
They are given directly by the numerical calculation of the Hopf bifurcation
branches.

A.5 Partition of (G,α2) Rectangle. Branches defining the partition
of the rectangle [0, 80] × [0, 1] of (G, α2) values are obtained in two ways.
The branch involving the appearance of cusps (AC and cusp/cusp) is ob-
tained using the numerical tracking of cusp bifurcations described above.
The branches of the appearance of folds in the branch of Hopf bifurcation
(FH/FH) and degenerate Bogdanov-Takens (DBT) bifurcation are calcu-
lated using dichotomic processes.

A.5.1 AC and Cusp/Cusp Branches. The AC branch consists in the appear-
ance of cusp bifurcations in the bifurcation diagram according to C and p
either by a cusp/cusp bifurcation or by the passage of a cusp bifurcation
from negative to positive values of C. As explained above, cusp bifurcations
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are characterized by the existence of a value y0 fulfilling

ψ(y0)= p, (A.5a)

ψ ′(y0)= 0, (A.5b)

ψ ′′(y0)= 0, (A.5c)

ψ(3)(y0) �= 0. (A.5d)

Note that in the case of a cusp/cusp bifurcation, the fourth condition
fails and should be replaced by the vanishing ψ(3)(y0) together with other
nondegeneracy conditions. Since different cusp bifurcations are involved
(Cusp0 to Cusp3) and can be quickly numerically determined by solving
system A.5, we have chosen to directly calculate the cusps bifurcations and
find where they collide or enter C > 0. We have first approximated the AC
and cusp/cusp branches by considering a coarse grid of the rectangle with
10−2 step for α2 and 1 step for G. Then we have obtained more precise
values for the mesh points of the branches by applying a dichotomic search
according to α2 for the cusp/cusp points and to G for the AC points.

A.5.2 DBT and FH/FH Branches. The degenerate Bogdanov-Takens (also
known as Dumortier–Roussarie–Sotomayor) bifurcation is a codimension
3 bifurcation corresponding to the occurrence of a Bogdanov-Takens bifur-
cation at a cusp point (see Dumortier et al., 1991). The cusp bifurcations
have been located on a coarse grid of (α2, G) values to approximate the AC
and cusp/cusp branches. Hence, we locate the DBT bifurcations using a
dichotomic process according to parameter α2 for each value of G of the
coarse grid that calculates the Hopf bifurcation branch and determines the
value of (G, α2) for which a cusp point crosses the Hopf bifurcation branch.

The FH/FH branch corresponds to the appearance of folds in the branch
of Hopf bifurcation. We locate this branch with a dichotomic process ac-
cording to parameter G values that calculate the Hopf bifurcation branch
and determine whether it displays a fold.
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