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Abstract We present an extension to the Mathematica
package SARAH which allows for Higgs mass calculations
at the two-loop level in a wide range of supersymmetric
(SUSY) models beyond the MSSM. These calculations are
based on the effective potential approach and include all
two-loop corrections which are independent of electroweak
gauge couplings. For the numerical evaluation Fortran code
for SPheno is generated by SARAH. This allows the predic-
tion of the Higgs mass in more complicated SUSY models
with the same precision that most state-of-the-art spectrum
generators provide for the MSSM.

1 Introduction

The discovery of the Higgs boson has been so far the biggest
success of the experiments at the Large Hadron Collider
(LHC) [1,2]. The mass of the Higgs is already pinned down
with an impressive experimental uncertainty of just a few
hundred MeV in the range of 125–126 GeV. This experimen-
tal accuracy is at the moment much better than theoretical
predictions for the Higgs mass in any given model beyond
the standard model (SM). For instance, in recent decades
a lot of effort has been taken to calculate the Higgs mass
in the minimal supersymmetric standard model (MSSM).
This industry was initiated by the observation that stop cor-
rections can lift the Higgs mass, which is bounded at tree-
level to be below MZ , above the long existing LEP limit
of 114 GeV [3–7]. The next milestones were a complete
diagrammatic one-loop calculation [8–11] and a calculation
of the leading two-loop corrections in the effective poten-
tial approach [12–26] or equivalent diagrammatic calcula-
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tions with zero external momentum [27] on the one side as
well as progressively better calculations using renormalisa-
tion group equation (RGE) methods [28–34]. In particular
the two-loop calculation in the effective potential including
O(αs(αt+αb+ατ )) and O((αt+αb+ατ )2) corrections are
widely used because they have entered different public codes
such as SoftSUSY [35–37], SPheno [38,39], Suspect
[40] or FeynHiggs [41,42]. The RGE methods are imple-
mented in CPsuperH [43,44]. Also three-loop results in
the effective potential approach exist [45–47]. The discov-
ery of the Higgs and the determination of its mass gave a
new impetus to these calculations and now the diagrammatic
two-loop calculations O(αsαt ) and O(α2

t ) including external
momenta exist [48–51]. In addition, calculations in an effec-
tive model matched to the MSSM at a higher scale have been
performed [52,53]. However, if one goes beyond the MSSM
and considers non-minimal SUSY models, the picture is very
simple: only for the next-to-minimal supersymmetric stan-
dard model (NMSSM) a full one-loop calculation has been
presented in the literature [54–57]. At the two-loop level
only the O(αs(αt + αb)) in the effective potential approach
are known up to now [54]. This is in particular problematic
because non-minimal SUSY models have gained more and
more interest in the last few years because of the experimental
results: (i) they can lift the Higgs mass at tree-level by new
F- or D-contributions [58–62] which makes these models
more natural by reducing the fine-tuning [63–67], (ii) they
can weaken SUSY limits by either predicting compressed
spectra or reducing the expected missing transverse energy
significantly [68–71]. A brief overview of Higgs sectors in
BMSSM models is given, for instance, in [72].

The situation in non-minimal SUSY models has been
relaxed with the development of the Mathematica pack-
age SARAH [73–77]: SARAH can automatically generate
SPheno modules which allow for a full one-loop cal-
culation in a wide range of SUSY models like singlet
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extensions [67,78,79], triplet extensions [80], models with
Dirac gauginos and broken [81,82] or unbroken [83] R-
symmetry, extended gauge sectors [62,84–86] or even more
exotic models [87,88]. A similar link between SARAH and
FlexibleSUSY has been presented recently [89]. These
automatised calculations have now been brought to the next
level by providing routines which calculate two-loop correc-
tions to the CP even Higgs scalars in the effective potential
approach. The resulting accuracy for many beyond-MSSM
models is the same as for the MSSM using the results of
Refs. [20,21,23,24,26]. For this purpose, the generic results
for the two-loop effective potential presented in Ref. [90]
have been implemented in SARAH and the two-loop self-
energies in the approximation of vanishing external momenta
are calculated using a numerical derivation. This is analog to
Ref. [22]. Corrections including gauge couplings of a broken
gauge group are not included.

This paper is organized as follows. In Sect. 2 we review the
effective potential approach as well as our implementation
in SARAH and SPheno. In Sect. 3 we compare the results
obtained for the MSSM and NMSSM with the results of well
established routines. In Sect. 4 we explain how the user can
obtain the two-loop results for his/her favorite model before
we conclude in Sect. 5.

2 Effective potential approach for two-loop Higgs
masses in a generic SUSY model

We consider a set of real scalars {φk}which are diagonalised
to physical states {hk}. The scalar potential at tree-level is
V T ({φk}). The pole masses of hi are in general the eigenval-
ues of the loop corrected mass matrix given by

∂2V T

∂φi∂φ j
+
∑

n

�
(n)
i j (p

2) (1)

Here, �(n)(p2) is the self-energy at the n-loop level which
usually depends on the external momenta. The parameters
appearing in V T should be chosen to minimise the effec-
tive potential. For a pole mass mhi the momentum is fixed
to be p2 = m2

hi
. To include this momentum dependence

of �(n) a diagrammatic calculation is necessary. However,
things become significantly easier if one considers the limit
of p2 = 0. In this limit �(n)(0) is equivalent to the second
derivative of the effective potential at the n-loop level,

�
(n)
i j (0) =

∂2V (n)

∂φi∂φ j
. (2)

We present here a fully automatised hybrid method imple-
mented in the public tools SARAH and SPheno for the cal-
culation of the scalar masses at the two-loop level in the DR

′

renormalization scheme [91]: while the one-loop corrections

are calculated including the full momentum dependence, the
two-loop corrections are derived in the effective potential
approximation. In general, the setup is based on the follow-
ing work distribution: the user implements their favourite
model in SARAH. SARAH derives all analytical expressions
for mass-matrices, vertices, renormalisation group equations
as well as loop corrections and exports this information into
Fortran source code. The Fortran source code is com-
piled together with SPheno and all numerical calculations
are then performed by the new SPheno module. Since the
one-loop diagrammatic calculation has been included since
SARAH 2.0, we focus in the following on the new two-loop
corrections which are published in version 4.4.0. We start
with a discussion how the two-loop self-energies are derived.

2.1 Calculation of the two-loop self energies in the
effective potential approximation

We shall neglect CP-violating effects in the following. There-
fore, a set of neutral, complex scalars Hi are decomposed
after symmetry breaking as

Hi = 1√
2
(φi + iσi + vi ). (3)

φi are the CP-even components, σi the CP-odd ones and
vi are the vacuum expectation values (VEVs). Under this
assumption, the two-loop corrections to the mass matrix of
real scalars in the effective potential approach are given by

�
(2)
i j (0) =

∂2V (2)

∂vi∂v j
. (4)

In addition, we require the tadpole contributions which are
the first derivatives of the effective potential,

δt (2)i =
∂V (2)

∂vi
. (5)

The tadpoles then also contribute to the scalar masses by
shifting the parameters; for example if we treat the VEVs
vi as fixed, “all-loop” correct values, then we can exchange
them for scalar mass-squared at a given loop order via the
tadpole equations, and in turn find compact equations for the
total shift in the mass-squared of

(	M2
S)

eff
i j =

∂2V (2)

∂vi∂v j
− δi j

vi

∂V (2)

∂vi
, (6)

as used, for example, in [54]. However, we do not do this here,
instead (as detailed below) solving the tadpole equations and
then using the parameters derived from these in the tree-
level mass calculation. The reason is that SARAH allows for
a more general choice of variables to solve for via the tadpole
equations.
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SS FFV FFS FFS

SV FFV SSS SSV

V V V V V V V S GGV

Fig. 1 All possible topologies of two-loop bubble diagrams. We con-
sider in the following SS, SSV , SSS, F F S, F F S, F FV , and F FV

V (2) receives contributions from the possible topologies
shown in Fig. 1. The generic results for all of these dia-
grams in Landau gauge have been presented in Ref. [90]
and we heavily make use of these results in the following.
However, we will not require all topologies but neglect V V ,
V V S, V V V , SV , and GGV . The reason is that these only
lead to non-zero contributions if massive vector bosons are
involved. We will neglect all contributions stemming from
broken gauge groups because of the many complications that
they entail.

The remaining topologies are those which have been con-
sidered so far in the MSSM to obtain the dominant two-loop
corrections and which are implemented in public computer
tools. The impact on the Higgs mass is considered to be
moderate when neglecting contributions proportional to the
electroweak gauge couplings in models with the SM gauge
sector, since they are significantly smaller than the strong and
top Yukawa coupling–and the diagrams involving these cou-
plings are of typically lower multiplicity. In fact, by inspect-
ing the form of the loop functions it is evident that the topolo-
gies SV, V V, V V V, V V S and GGV lead to contributions
proportional to g4

EW v
2 where gEW stands for the electroweak

gauge coupling; these are hence subdominant to the contribu-
tions from SSV, F FV, F FV diagrams involving the elec-
troweak gauge bosons (which we are also neglecting) which
would be proportional to g2

EWv
2.

The electroweak contributions in the MSSM have been
estimated to be of O(1 GeV) [92]. A more recent estimate of
the total theoretical uncertainty of the MSSM Higgs mass

concluded that missing two- and three-loop contributions
together can account for a shift of about 2 GeV in the Higgs
mass if third generation squarks are 2 TeV or lighter [93].
This is much smaller than the corrections involving super-
potential interactions and the strong coupling. Of course, in
models with extended gauge sectors this conclusion might
change. An estimate of the importance of the missing contri-
butions can be obtained be considering the different one-loop
corrections and assuming a similar behavior at two loops.

Note, for consistency, we also set all gauge couplings aris-
ing in the D-terms of broken groups in the vertices to zero.
The masses used in the loops are tree-level masses calculated
from running DR

′
parameters. In this context, there are two

possibilities to treat D-term contributions to the tree-level
masses: either one can work in the gaugeless limit where
these contributions are also put to zero [21], or one can work
with the full tree-level masses as this is also done in dia-
grammatic calculations [49]. We offer both possibilities. In
the gaugeless limit the SU (2)L ×U (1)Y gauge symmetries
become global symmetries. Therefore, it is obvious that no
gauge dependence has been introduced by including only
Goldstone diagrams but no diagrams of the corresponding
vector bosons. Of course, when including D-terms in the
mass matrices the derivatives of the D-terms are still forced
to vanish. However, we stress that the second method has to
be used carefully as explained in Sect. 2.3.

For the calculation of the two-loop effective potential
we have translated the expressions of Ref. [90] given in
two-component notation into four-component language, see
Appendix A. All necessary generic expressions have been
implemented in SARAH. SARAH uses these expressions to
generate Fortran code for all two-loop diagrams which
are possible in the considered model assuming the topolo-
gies SS, SSV , SSS, F F S, F F S, F FV and F FV .

As soon as the two-loop effective potential is calculated,
one can obtain the two-loop corrections to the Higgs mass by
performing the derivative of Eqs. (4) and (5) numerically. The
numerical derivation in SPheno is done by using Ridders’
method of polynomial extrapolation with dynamical step-
size [94]. We have implemented two different methods to
take the derivation of the effective potential which the user
can choose as explained later in Sect. 4:

1. Purely numerical derivation: in this approach the entire
potential is derived with respect to the VEVs. This is the
ansatz of Ref. [22].

2. Semi-analytical derivation: in this approach the deriva-
tives of all masses and couplings with respect to the
VEVs are calculated separately also in a numerical way.
However, all one- and two-loop derivatives of the loop-
functions with respect to their arguments have been
calculated analytically and implemented in the output
SPheno code. The derivatives of the potential are then
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calculated combining both results using the chain rule.
This can be easily done because every contribution to the
potential is a product of couplings (c1, c2), masses (mi )
and a loop function fX with a coefficient k, Eq. (7).

V (2)
X = k · (c1c2) · fX (m

2
1,m2

2,m2
3),

for X = F F S, F FV, SSV (7a)

V (2)
X = k · (c1c2) · m F1m F2 · fX (m

2
F1,m2

F2,m2
3),

for X = F F S, F FV (7b)

V (2)
X = k · (c1) · fX (m

2
1,m2

2), for X = SS (7c)

The second method is numerically slightly more expensive
but it is also more stable. In particular, in the presence of
large hierarchies in the VEVs the purely numerical method
could become inaccurate. More details about the numerical
stability are given in Sect. 4. There is in addition, a third,
fully analytical method–which gives results equivalent to
a diagrammatic calculation of the pole mass with external
momenta set to zero. We will present the analytic results and
implementation in a forthcoming publication [95].

2.2 Calculation of loop corrected mass spectrum

We have described how the corrections to the effective poten-
tial at the two-loop level are calculated and how to obtain the
self-energies of the Higgs from it. We will now show how
this fits into the full picture by explaining the different steps
performed in the numerical evaluation by SPheno to obtain
the loop corrected Higgs masses:

1. The starting point for all loop calculations is the set of
running parameters at the renormalization scale Q. This
scale can be either be a fixed value or a variable which
depends on other parameters of the model. For instance,
in SUSY models it is common to choose Q to be the
geometric mean of the stop masses.

2. The running parameters are used to solve the minimi-
sation conditions of the vacuum (the tadpole equations
Ti ) at tree-level

Ti = ∂V (T )

∂vi
≡ 0. (8)

These equations are solved for a set of parameters, one
per equation. This set is determined by the user; typically
these are mass-squared parameters, which can be solved
for linearly, but SARAH also allows non-linear tadpole
equations.

3. The running parameters as well as the solutions of the
tadpole equations are used to calculate the tree-level
mass spectrum. The tree-level Higgs masses mh,(T )

i are
the eigenvalues of the tree-level mass matrix Mh,(T )

defined by

Mh,(T ) = ∂2V (T )

∂φi∂φ j
(9)

4. Similarly, the tree-level masses of all other particles
present in the model are calculated.

5. Using the tree-level masses the one-loop corrections
δMZ to the Z boson are calculated.

6. The electroweak VEV v is expressed by the measured
pole mass of the Z , M pole

Z , the one-loop corrections and
a function of the involved gauge couplings gi .

v =
√

M2,pole
Z + δM2

Z

f ({gi }) (10)

In the case of the MSSM f ({gi }) = f (g1, g2) = 1
4 (g

2
1+

g2
2) holds. Together with the value of the running tan β,

the values for the VEVs of the up- and down Higgs can
be calculated.

7. The tree-level masses are calculated again with the new
values for the VEVs.

8. The one- (δt (1)i ) and two-loop (δt (2)i ) corrections to the
tadpole equations are calculated. These are used to solve
the loop-corrected minimisation conditions

Ti + δt (1)i + δt (2)i ≡ 0. (11)

9. The one-loop self-energies for all particles including the
external momentum p are calculated. For the Higgs, we
call them in the following �h,(1L)(p2).

10. For the CP-even Higgs states, the two-loop self-energies
(with zero external momentum) �h,(2L)(0) are calcu-
lated as explained in the previous section.

11. The physical Higgs masses are then calculated by taking
the real part of the poles of the corresponding propagator
matrices

Det[p2
i 1− Mh,(2L)(p2)] = 0, (12)

where

M2,(2L)(p2) = M̃h,(T ) −�h,(1L)(p2)−�h,(2L)(0).

(13)

Here, M̃h,(T ) is the tree-level mass matrix where the
parameters solving the loop-corrected tadpole equations
are used. Eq. (12) is solved for each eigenvalue p2 = m2

i
in an iterative way.
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2.3 Treating the Goldstones

It is well known that the derivatives of the effective poten-
tial in the Landau gauge may suffer from divergences due
to massless Goldstone bosons [96]: the derivatives of some
loop functions have infra-red singularities. In the gaugeless
limit of the MSSM, this problem is circumvented because
the masses of the pseudoscalars become independent of the
Higgs VEVs, and so the derivatives of the effective poten-
tial do not contain any singular functions. However, once
we go beyond the MSSM (even to the NMSSM) this prob-
lem reappears. The singularities in the first derivative of the
potential may be tamed by resummation methods [97,98], but
the second derivatives may remain singular and it has been
suggested that the problem could be resolved by passing to
the pole mass calculation instead [98]. However, working in
the gaugeless limit this problem is usually not present: as
stated above, the tree-level masses entering the calculation
are calculated at the minimum of (full) tree-level potential.
Thus, using the Lagrangian parameters at this minimum in
the mass matrices expressed in the gaugeless limit, the Gold-
stone masses are usually non-zero and no divergences in the
numerical evaluation show up. This is one strong motivation
for working in the gaugeless limit: it reduces the dependence
of the tree-level Goldstone “masses” that enter into the cal-
culation on the renormalisation scale; the problem was noted
to be particularly severe for a full calculation of the two-
loop Higgs mass via the effective potential technique in the
MSSM in [22]. However, it would be interesting to explore
alternative solutions to this problem.

2.4 Limitations

As we have stated above, the presented procedure can repro-
duce the Higgs mass for a wide range of SUSY models
with the precision most spectrum generators provide at the
moment for the MSSM. That means that we can include
all two-loop corrections including the strong coupling and
any superpotential or soft-parameter, but neglect those com-
ing from electroweak couplings. However, even within this
approximation there is still one remaining correction miss-
ing: the two-loop corrections to the electroweak VEV v.
As can be seen from Eq. (10), v will receive corrections of

δM2,2L
Z

2M2,pole
Z f ({gi })

which in simple extensions of the MSSM will

be
2δM2,2L

Z

M2,pole
Z (g2

1+g2
2)

. At any given loop order there will be con-

tributions to δM2
Z proportional to g2

1, g2
2 (i.e. loops which

do not contain any further electroweak couplings) and so
there will be nonvanishing contributions to v even in the
limit that the electroweak gauge couplings are set to zero.
These corrections then feed into the tree-level Higgs mass;
in the MSSM this is not an issue because, in the gaugeless

limit, they are multiplied by zero. However, in general exten-
sions (such as the NMSSM) the tree-level Higgs mass matrix
will contain non-vanishing elements proportional to v, and
therefore there will be a corresponding two-loop correction
to the Higgs mass. Since the general expression for these two
loop corrections is not available in the literature, we leave the
calculation and implementation of these to future work.

A further limitation is that only corrections to CP even
states are calculated. Thus, two-loop corrections for pseudo-
scalars or charged Higgs bosons are not calculated by this
setup at the moment.

3 Validation

We have cross-checked the Higgs mass using our new rou-
tines against the well-established routines of Refs. [20,21,
23,24,26]. For this purpose, we made a few modifications to
ensure that both routines run with equivalent conditions:

1. By default the new routine includes any correction from
superpotential parameters and soft-terms while the rou-
tines of Refs. [20,21,23,24,26] are restricted to third gen-
eration couplings in the context of the MSSM. Therefore,
we set all couplings of the first and second generations
of (s)quarks to zero.

2. As discussed above, we have implemented a flag to
perform calculations in the gaugeless limit in which
D-term contributions to the masses are neglected. We
made use of this option. However, it was also neces-
sary to ensure that both routines use the same values
for the scalar and pseudo-scalar masses: even if D-
terms in the mass matrices are neglected, the routines
of Ref. [20,21,23,24,26] are usually called with val-
ues for μ and MA which correspond to the minimum of
the potential including D-terms. Diagonalising the cor-
responding scalar and pseudo-scalar mass matrix would
not give MG = Mh = 0. In our comparison, we there-
fore used the gaugeless limit and re-solved the tadpole
equations in this limit. The obtained values for μ and
MA were then used in both calculations to ensure that all
masses running in the loops are identical.

The resulting Higgs mass for a variation of m0, M1/2, tan β
and A0 in the context of the CMSSM is shown in Fig. 2. One
can see the very good agreement between the automatically
generated routines by SARAH and the ones of Refs. [20,21,
23,24,26]. There are tiny numerical differences stemming
from the numerical derivation but those are negligible and
have no visible impact on the Higgs mass as can bee seen
from Table 1. One can also see from these numbers that there
is hardly any difference in including D-terms to the tree-level
masses used in the calculation, as expected.
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Fig. 2 The Higgs mass at one- (black) and two-loop (blue, green) in
the CMSSM for a variation of m0 (top left), M1/2 (top right), tan β
(bottom left) and A0 (bottom right). The unvaried parameters are fixed
to m0 = M1/2 = 1 TeV, tan β = 10, μ > 0, A0 = −2 TeV. Blue shows

the Higgs mass including αs(αt + αt ) corrections while green includes
all dominant two-loop corrections. The full lines are the results using
the routines of Refs. [20,21,23,24,26], while for the small circles the
routines automatically generated by SARAH are used

Table 1 Two-loop self energies and loop-corrected masses calculated
with the two numerical method to get the derivative of the effec-
tive potential in the gaugeless limit and with full masses. We used

m0 = M1/2 = 1 TeV, μ > 0, tan β = 10, A0 = −2 TeV. The ref-
erence value is the one using the routines of Ref. [20,21,23,24,26]

Purely-numerical
method

Purely-numerical
method (gaugeless)

Semi-analytical
method

Semi-analytical
method (gaugeless)

References

�
(2)
11 [GeV2] 3475.21 3462.95 3475.18 3462.87 3460.45

�
(2)
12 [GeV2] −299.21 −297.92 −299.21 −297.92 −297.70

�
(2)
22 [GeV2] 1954.32 1954.06 1954.32 1954.06 1954.03

mh1 [GeV] 124.69 124.69 124.69 124.69 124.69

mh2 [GeV] 1963.56 1963.55 1963.56 1963.56 1963.55

As a next step, we compared the two-loop results of the
SARAH routines for other models with existing references:
these are the αs(αt + αb) corrections in the NMSSM [54]
and in the MSSM extended by Dirac gauginos, for which
analytical results and an independent code will be presented
in future work. Of course, we can use also the new routines
to calculate the Higgs masses in these models including the
other important corrections, but the presentation and discus-
sion of these results is beyond the scope of this paper and will
be given elsewhere [99]. As example for the good agreement
between our results and those of Ref. [54] we show the light
Higgs mass in Fig. 3 for a variation of λ and κ .

4 How to use the routines

SARAH 4.4 automatically writes the necessary Fortran
routines in the SPheno output to calculate the two-loop
Higgs corrections. To obtain the SPheno code for a given
model download the most recent SARAH version from
HepForge

Copy the tar-file into a directory called $PATH in the fol-
lowing and extract it
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Fig. 3 The Higgs mass at one- (black) and two-loop with αS(αb +αt )

corrections (blue) in a constrained variant of the NMSSM for a varia-
tion of λ (left) and κ (right). The unvaried parameters are fixed to m0 =
M1/2 = 1.4 TeV, tan β = 2.9, μ > 0, A0 = −1.35 TeV, λ = 0.56,

κ = 0.33, Aλ = −390 GeV, Aκ = −280 GeV, vS = 500 GeV. The full
lines are the results using the routines of Ref. [54], while for the small
circles the automatically generated routines by SARAH are used

Afterwards, start Mathematica, load SARAH, run a
model $MODEL and generated the SPheno output

The last command initializes all necessary calculations
and writes all Fortran files into the output directory of the
considered model. These files can be compiled together with
SPheno version 3.3.0 or later. SPheno is also available at
HepForge.

The necessary steps to compile the new files are

This creates a new binary bin/SPheno$MODEL which
reads all input parameters from an external file.SARAHwrites
a template for this input file which can be used after filling it
with numbers as

The output is written to

and contains all running parameters at the renormalization
scale, the loop corrected mass spectrum, two and three-body

decays as well as a prediction of precision and flavour observ-
ables. More details about the calculation of flavour observ-
ables and how to implement new observables are given in the
FlavorKit manual [100]. The implementation of SARAH
models in SPheno can also be automatized by using the
SUSY Toolbox [101].

There are five flags which can be used in the Les Houches
input file to adjust the properties of the two-loop calculation

The following values are possible:

– SPhenoInput[7]:

– 0: Don’t skip two-loop masses
– 1: Skip two-loop masses

– SPhenoInput[8]:

– 1: Two-loop calculation with purely numerical deriva-
tion

– 2: Two-loop calculation with analytical derivation of
loop functions (default)

– 9: Use routines based on Refs. [20,21,23,24,26]

– SPhenoInput[9]:

– 0: Turn off gauge-less limit
– 1: Use gauge-less limit (default)

– SPhenoInput[10]:

– 0: Turn off the safe-mode (default)
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Fig. 4 Test of the numerical stability: on the left we vary the initial
step-size h used in the numerical derivation. The blue line corresponds
to the semi-analytical approach and red for the purely numerical cal-
culation. On the right we show the Higgs mass as function of a large

variation of m0 (with M1/2 = −A0 = m0 and tan β = 10, μ > 0).
The solid line is based on the calculation of Refs. [20,21,23,24,26], the
blue points are based on our semi-analytical method and the red ones
on the purely numerical one

– 1: Use safe-mode

– SPhenoInput[400]: a real number (default: 0.5)
– SPhenoInput[401]: a real number (default: 0.001)

Note that the two-loop routines from Refs. [20,21,23,24,26]
are not included by default in the SPheno output of SARAH.
To include them, in the SPheno.m file the flag

has to be set.
The flags SPhenoInput[400] and SPhenoInput

[401] can be used to check numerical stability of the deriva-
tion. If the step size is chosen to be too small or large the
numerical derivation might suffer from some instabilites.
We found that the initial step size for derivation with the
fully numerical method usually needs a larger initial step-
size for the considered VEV especially for heavy SUSY
spectra. The reason is that the potential is of O(M4

SU SY )

and the overall value only changes slightly when the VEVs
are varied. The second method usually operates acceptably
with a smaller initial step size because objects of at most
order O(M2

SU SY ,M2
Z ) are derived numerically. FS: In addi-

tion, we make the approximation that in the purely numerical
approach mass squareds in the loop which are smaller than
10−5 times the largest mass squared in the loop is taken to
be zero. For the semi-analytical approach we take a limit of
10−8.

To give an impression of the numerical stability we show
in Fig. 4 the Higgs mass for a variation of the initial step
size used in two methods and for a large variation of m0.
Here, one sees that the semi-analytical method becomes sta-
ble for smaller initial step sizes as this is the case in the
purely numerical calculation. Also we see that the routines
are stable even for very large values of the SUSY masses.

Here, the purely numerical method shows some instabilites
for m0 > 15 TeV. This can be improved by changing the
initial step-size to larger values. The small off-set between
the purely-numerical method and the reference in the case of
a very heavy SUSY spectrum is explained by our approxi-
mation to take ratios of mass squared smaller than 10−5 as
zero. Because of this even the top quark is treated as mass-
less in some loops. However, we want to stress that these
instabilites appear for SUSY masses where this setup should
not be used for calculations of Higgs masses. As soon as the
SUSY masses are much above the EW scale the very heavy
particles should be decoupled and an effective theory has to
be considered [102]. Of course, this statement holds for all
public versions of SUSY spectrum generators.

We also provide a “safe mode” for SPheno via flag 10:
in this case SPheno starts with a large initial step size which
is decreased automatically. It checks for what range of the
initial step size the results are numerically stable by compar-
ing the results obtained with different inital step sizes. If no
stable range is found an error is returned. In the unlikely case
that both methods suffer from numerical instabilities there
is also the possibility to increase the numerical precision by
passing from double to quadruple precision. For this pur-
pose, the Makefile located in SPheno-3.3.0/src must
be changed. The line

should be replaced by

Afterwards the entire SPheno code must be recompiled
via
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This will slow down the numerical evaluation signifi-
cantly. However, have not found an example for resonable
SUSY masses where this was necessary.

5 Conclusion and outlook

We have presented a fully automatised two-loop calculation
of Higgs masses in supersymmetric models. The method is
based on the two-loop effective potential approximation and
provides the same numerical accuracy of Higgs masses in
beyond MSSM models as commonly used spectrum genera-
tors do for the MSSM. That means for any BMSSM model
the combination SARAH/SPheno offers now the most pre-
cise calculation for Higgs masses available. Of course, there
is still much space for further improvements: we have not
yet included the contributions from electroweak gauge cou-
plings, and also masses for CP odd states are not yet calcu-
lated; the corrections to v at two loops should be calculated
and included; alternative solutions to the Goldstone boson
catastrophe should be investigated. However, it is not yet
clear if all of these can be accomplished in an appropriate way
in the effective potential approach. Therefore, future develop-
ments will go in the direction of a diagrammatic calculation
where these effects can be included in a more straightfor-
ward way–a further update ofSARAH together with analytical
calculations are in preparation. Nevertheless, the presented
framework pushes precision studies in non-minimal SUSY
models to a new level. It allows the prediction of the Higgs
mass to be confronted in many SUSY models in the same
way as this is done in the MSSM.
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Appendix A: The Two-loop effective potential in
four-component notation

The basis for our implementation is the two-loop effective
potential for a general renormalizable theory, given by S.
Martin [90]. His convention is the most elegant and sim-
plest when dealing with a general theory, using only Weyl
fermions (ψI ), real scalars (RK ) and real vectors (Aa

μ). We

will refer to it as the R-convention (R for real). However, in
a specific model it is more useful to organise particles into
groups, including explicitly real and complex scalars, Majo-
rana and Dirac fermions. This is the case in the framework of
SARAH/SPheno: Fermions are described by bispinors �i ,
which can be Dirac or Majorana, and bosons can be real or
complex. We will call this the C-convention (C for complex).
In this section we will slightly recast the formulae of the ref-
erence to a form suitable for implementation.

The general structure of the effective potential at two-loop
can be decomposed into ten terms,

V (2) = V (2)
SSS + V (2)

SS + V (2)
F F S + V (2)

F F S
+ V (2)

SSV + V (2)
V S

+V (2)
V V S + V (2)

F FV + V (2)
F FV
+ V (2)

gauge. (A.1)

Every contribution is described by a simple expression,

V (2) ∼ (coupling)2× floop(m
2
1,m2

2,m2
3), sunrise topology

(A.2)

V (2) ∼ (coupling)× floop(m
2
1,m2

2), snowman topology

(A.3)

in which only the prefactors must be figured out care-
fully. Usually, the loop functions will be abbreviated to
floop(m2

i ,m2
j ,m2

k) = floop(i, j, k).
In the SARAH framework, a vertex factor for three scalars

φ1, φ2, φ3 is understood as

vertex = i
δL

δφ1δφ2δφ3
=: ic, (A.4)

which is what is used in the textbook approach to writing
down Feynman amplitudes. φi are either Weyl fermions or
bosons. The vertex factor can be decomposed into a kine-
matic part (Lorentz indices) and a coefficient. For example,
for two Dirac fermions and a vector boson, the vertex factor
can be expressed as

vertex = i(cL PL + cR PR)γ
μ (A.5)

Here, PL and PR are the polarization operators PL ,R =
1
2 (1∓ γ5). The coefficients for particles p1,p2,p3,(p4)
can be obtained in SARAH by the command

e.g. Vertex[{Fu,bar[Fu],VG}] returns the vertex of
t, t̄, g.
SARAH calculates internally with 2-component spinors,

but the final set of particles as used in SPheno is given in
terms of Dirac spinors. The Vertex-command accepts both.
If ξ and χ are 2-component spinors with the same quantum
numbers, a Dirac spinor can be constructed (Chiral represen-

123



 32 Page 10 of 18 Eur. Phys. J. C   (2015) 75:32 

tation)

� =
(
ξ

χ†

)
, � = �†γ 0 = (χ, ξ†) (A.6)

with the translation table

� iγ
μPL� j = ξ†

i σ̄
μξ j , � iγ

μPR� j = χiσ
μχ

†
j (A.7)

� i PL� j = χiξ j , � i PR� j = ξ†
i χ

†
j (A.8)

with σμ = (1, σ i ) and σ̄ μ = (1,−σ i ) and the Pauli matrices
σ i .

For each of the terms in Eq. (A.1) we will define a
piece of Lagrangian such that ic or icL/R will match
the output of a SARAH Vertex command (cf. Eq. A.4).
This Lagrangian is then transformed such that the relations
between these couplings and the S. Martin couplings are
obvious. When using SARAH conventions, we will write
lower-case indices i, j, k to denote generation or color
indices. When using capital letters I, J, K , they refer to the
notation where everything is broken down to 2-component
spinors ψI = (ξ1, χ1, ξ2, χ2, . . . ) and real scalars RK =
(ϕ1, σ1, ϕ2, σ2, . . . ).

A.1: F FV and F FV

Given a set of fermions �i and a vector Aa
μ, the Lagrangian

term is

LF FV = �̄iγ
μ(cL PL + cR PR)� j Aa

μ (A.9)

= cLξ
†
i σ̄

μξ j Aa
μ + cRχiσ

μχ
†
j Aa

μ (A.10)

= cLξ
†
i σ̄

μξ j Aa
μ − cRχ

†
j σ̄
μχi Aa

μ (A.11)

There is no implicit sum over i, j, k here. The coefficients
are cL/R = cL/R(i, j, a). The minus sign comes from
the rearrangement χσμξ† = −ξ†σ̄ μχ (in signatures with
mostly plus as well as mostly minus). We can arrange all
2-component spinors in a list: (ψI ) = (ξ1, χ1, ξ2, χ2, . . . ).
The interaction in S. Martin convention is given by

LF FV =
∑

I,J,a

ga
I Jψ

†
I σ̄

μψJ Aa
μ. (A.12)

Since this term has to be real, ga
I J = (ga

J I )
� holds. Vectors

only couple left to left and right to right, so a rewriting of
Eq. (A.11) is useful:

L = ga
Li jξ

†
i σ̄

μξ j Aa
μ + ga

Ri jχ
†
i σ̄

μχ j Aa
μ. (A.13)

The connection is ga
Li j =ga

I=2i−1,J=2 j−1, ga
Ri j = ga

I=2i,J=2 j .
This allows to match the coefficients,

ga
Li j = cL(i, j) (A.14)

ga
Ri j = −cR( j, i) = −cR(i, j)∗ = −c∗R . (A.15)

The original expression for F FV is given by

V (2)
F FV
= 1

2
ga

I J ga
I ′ J ′MI I ′M

�
J J ′FF FV (I, J, a) (A.16)

MI J denotes a mass insertion, which in case of a Dirac

fermion is a 2 × 2 block matrix,

(
0 m D

m D 0

)
, or more for-

mally expressed as MI J = m Di (δI,2i−1δJ,2i + δI,2iδJ,2i−1).
This allows to partially simplify:

ga
I J MI I ′ = (ga

Li jδJ,2 j−1δI ′,2i + ga
Ri jδI ′,2i−1δJ,2 j )mi ,

(A.17)

ga
I ′J ′MJ J ′ = (ga

Li jδI ′,2i−1δJ,2 j + ga
Ri jδJ,2 j−1δI ′,2i )m j .

(A.18)

The whole expression becomes

V (2)
F FV
= 1

2

∑

I,J,I ′,J ′
ga

I J ga
I ′ J ′MI I ′M

�
J J ′FF FV (m

2
I ,m2

J ,m2
a)

(A.19)

=
∑

i, j

ga
Li j g

a
Ri j m Di m Dj FF FV (m

2
Di ,m2

Dj ,m2
a)

(A.20)

Observe that for a Dirac fermion, m2i−1 = m2i = m Di . If
we fix two different particles i and j , this sum has two terms
that involve these particles.

V (2)
F FV,i �= j

= (ga
Li j g

a
Ri j + ga

L ji g
a
R ji )m Di m Dj FF FV (i, j, a)

(A.21)

= 2	(ga
Li j g

a
Ri j )m Di m Dj FF FV (i, j, a) (A.22)

= −2	(cL c∗R)m Di m Dj FF FV (i, j, a) (A.23)

If we fix the same particle i = j , the factor 2 disappears.

V (2)
F FV,i= j

= −	(cL c∗R)m2
Di FF FV (i, i, a) (A.24)

Now consider Majorana particles, which are written as

�Mi =
(
ξi

ξ
†
i

)
(A.25)

For those particles, the mass insertion matrix MI J has diag-
onal elements mMi . Lets consider i labelling a Dirac fermion
and j a Majorana fermion. Each mass insertion in Eq. (A.16)
can be from each of these fermions. If we take only MI I ′ to
be the Dirac mass insertions and MJ J ′ the Majorana mass,
this gives

ga
Li j g

a
Ri j m Di m M j FF FV (i, j, a). (A.26)

It can also be the other way round, which leads to

ga
L ji g

a
R ji m Di m M j FF FV (i, j, a). (A.27)
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Table 2 Summary of F FV , F FV , F F S, F F S contributions. The
contribution is given by V = k · coup · f (i, j, k) (for F FV , F F S
times mi m j ). The table shows the product k · coup for various cases.

Di D j c(r) stands for Dirac fermions with complex (real) scalars or vec-
tors, Mi M j c(r) for Majorana fermions

Di D j c Di D j r Di M j Mi M j c Mi M j r

V (2)
F FV , i �= j (|cL |2 + |cR |2) (|cL |2 + |cR |2) (|cL |2 + |cR |2) |c|2 |c|2

V (2)
F FV , i = j 1

2 (|cL |2 + |cR |2) 1
2 (|cL |2 + |cR |2) – 1

2 |c|2 1
2 |c|2

V (2)
F FV

, i �= j −2	(cL c∗R) −2	(cL c∗R) −2	(cL c∗R) 	(c2) 	(c2)

V (2)
F FV

, i = j −	(cL c∗R) −	(cL c∗R) – – 1
2	(c2)

V (2)
F F S, i �= j (|cL |2 + |cR |2) (|cL |2 + |cR |2) (|cL |2 + |cR |2) |cL |2 + |cR |2 |c|2

V (2)
F F S, i = j (|cL |2 + |cR |2) 1

2 (|cL |2 + |cR |2) – 1
2 (|cL |2 + |cR |2) 1

2 |c|2
V (2)

F F S
, i �= j 2	(cL c∗R) 2	(cL c∗R) 2	(cL c∗R) 2	(cL c∗R) 	((c)2)

V (2)
F F S

, i = j 2	(cL c∗R) 	(cL c∗R) – 	(cL c∗R)
1
2	(c2)

In total we have

V (2)
F FV
= 2	(ga

Li j g
a
Ri j )m Di m M j FF FV (i, j, a) (A.28)

= −2	(cL c∗R)m Di m M j FF FV (i, j, a). (A.29)

When two Majorana fermions interact via gauge coupling,
we find cR = −c∗L , so there is essentially just one coupling
cL(i, j). The indices of the mass insertion MI I ′ can again
give the mass mMi or mM j , so Eq. (A.16) simplifies to

V (2)
F FV
= 	((ga

Li j )
2)m Mi m M j FF FV (i, j, a). (A.30)

In the case of equal Majorana fermions, i = j , we get

V (2)
F FV ,i= j

= 1

2
	((ga

Lii )
2)m2

Mi FF FV (i, i, a). (A.31)

Example: In the case of the gluinos, the gauge interaction
term is usually introduced with an i ,

LGlu = ig f abcλa†σ̄ μAb
μλ

c, (A.32)

so here gb
L ,ac = ig f abc, which results in an overall Minus

sign in the contribution. f abc are the structure constants of
SU (3). Evaluating Eq. (A.31) for this case gives

V (2)
g̃ = −1

2
g2

⎛

⎝
8∑

a,b,c=1

( f abc)2

⎞

⎠

︸ ︷︷ ︸
=24

|M3|2 FF FV (M
2
3 ,M2

3 , 0)

(A.33)

= −12g2
∣∣∣M2

3

∣∣∣ FF FV (M
2
3 ,M2

3 , 0) (A.34)

This shows the emergence of the color factor of 24. The
result matches that of [25, Eq. (3.74)]. Now consider the
F FV contributions, given by

V (2)
F FV =

1

2

∑

I,J,a

∣∣ga
I J

∣∣2 FF FV (I, J, a). (A.35)

If one of the fermions is Dirac and the other Majorana (MD)
(or both Dirac, DD), there are two couplings gL , gR involved.
For a fixed pair I �= J , there are two equal terms in the sum
in Eq. (A.35).

V (2)
F FV,i �= j = (

∣∣∣ga
Li j

∣∣∣
2 +

∣∣∣ga
Ri j

∣∣∣
2
)FF FV (i, j, a) DD or MD

(A.36)

V (2)
F FV,i �= j =

∣∣∣ga
Li j

∣∣∣
2

FF FV (i, j, a) MM (A.37)

If the fermions are equal, the sum only collects terms I = J
and there is a factor of 2 less.

V (2)
F FV,i= j =

1

2
(
∣∣ga

Lii

∣∣2 + ∣∣ga
Rii

∣∣2)FF FV (i, i, a) DD (A.38)

V (2)
F FV,i= j =

1

2

∣∣ga
Lii

∣∣2 FF FV (i, i, a) MM (A.39)

All the different expressions are summarized in Table 2
together with F F S/F F S discussed next.

A.2: F F S and F F S

These contributions are similar in structure to F FV, F FV .
Consider a set of 4-component fermions�i and scalars φk =
(ϕk + iσk)/

√
2 and constants cL/R = cL/R(i, j, k). Again,

for simplicity, consider i, j, k fixed.

LF F S = −� i (cL PL + cR PR)� j · φk + h.c. (A.40)

= −(cLχiξ j + cRξ
†
i χ

†
j )φk + h.c. (A.41)

= −(cLχiξ jφk + c∗Rξiχ jφ
∗
k )+ h.c. (A.42)

= −
(

cL√
2
χiξ j Rk + icL√

2
χiξ jσk

+ c∗R√
2
χ jξi Rk + −ic∗R√

2
χ jξiσk

)
+ h.c. (A.43)

Note that scalars couple left to right handed parts. In R-
convention all scalars are real, labelled as RK = (ϕ1, σ1,
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ϕ2, σ2. . . . ). In this convention, the interaction is given by

LF F S = −1

2

∑

I,J,K

yI J KψIψJ RK + h.c. (A.44)

= −1

2

∑

I,K

yI I K (ψI )
2 RK

−
∑

I<J, K

yI J KψIψJ RK + h.c., (A.45)

so the coefficient of every term in Eq. (A.43) corresponds to
a different y I J K with I < J . The two-loop contributions to
F F S and F F S are

V (2)
F F S =

1

2

∑

I,J,K

∣∣∣y I J K
∣∣∣
2

FF F S(I, J, K ) (A.46)

V (2)
F F S
= 1

4

∑

I,J,K

yI J K y I ′ J ′k M∗I I ′M
∗
J J ′FF F S(I, J, K )+ h.c.

(A.47)

The sum runs freely over I, J, K . When evaluating this sum,
a symmetry factor of 2 appears in Eq. (A.46) because for each
pair I �= J there is an equal term with I, J interchanged. In
the F F S case, I can take 4 different indices, each of which
give the same expression in the sum.

V (2)
F F S =

(∣∣∣∣
cL√

2

∣∣∣∣
2

+
∣∣∣∣
icL√

2

∣∣∣∣
2

+
∣∣∣∣

c∗R√
2

∣∣∣∣
2

+
∣∣∣∣
−ic∗R√

2

∣∣∣∣
2
)

FF F S(i, j, k) (A.48)

= (|cL |2 + |cR |2)FF F S(i, j, k) (A.49)

V (2)
F F S
=
(

cL√
2

c∗R√
2
+ icL√

2

−ic∗R√
2

)

×m Di m Dj FF F S(i, j, k)+ hc (A.50)

= 2	(cLc∗R)m Di m Dj FF F S(i, j, k) (A.51)

If the scalar is real instead of complex, the
√

2 will disappear
everywhere and σk can be dropped. This leads to the exact
same results as Eqs. (A.49) and (A.51). If there is one Dirac
and one Majorana fermion, we can set χ j = ξ j in Eq. (A.43).
The result also stays the same, Eqs. (A.49) and (A.51). Con-
sidering two Majorana fermions, i.e. setting χ j = ξ j and
χi = ξi , we get

LF F S = −
(

cL + c∗R√
2

ξiξ j Rk + i
cL − c∗R√

2
ξiξ jσk

)
+ h.c..

(A.52)

Evaluating the contribution to the potential gives

V (2)
F F S =

(∣∣∣∣
cL + c∗R√

2

∣∣∣∣
2

+
∣∣∣∣i

cL − c∗R√
2

∣∣∣∣
2
)

FF F S(i, j, k) (A.53)

= (|cL |2 + |cR |2
)

FF F S(i, j, k) (A.54)

V (2)
F F S
= 1

2

∑

I<J

(y I J K )2mMi mM j fF F S(i, j, k)+ h.c. (A.55)

= 1

2

((
cL + c∗R√

2

)2

+
(

i
cL − c∗R√

2

)2
)

×mMi mM j fF F S(i, j, k)+ h.c. (A.56)

= 2	(cL c∗R)mMi mM j fF F S(i, j, k) (A.57)

If there are two Majoranas and one real scalar, the interaction
would be

L = −� i (cL PL + cR PR)� j Rk (A.58)

= −cLξiξ j Rk + cRξ
†
i ξ

†
j Rk . (A.59)

The complex conjugate is not needed, because the right-
handed part already serves that purpose, if cR = c∗L is
imposed. The contribution to V (2) is

V (2)
F F S = |cL |2 FF F S(i, j, k) (A.60)

V (2)
F F S
= 1

2
(cL)

2m Mi m M j FF F S(i, j, k)+ h.c. (A.61)

= 	((cL)
2)m Mi m M j FF F S(i, j, k) (A.62)

In the case of equal Dirac fermions and a complex scalar, the
interaction Lagrangian will be

LF F S = −� i (cL PL + cR PR)�i · φk + h.c. (A.63)

= −
(

cL + c∗R√
2

χiξi Rk + i(cL − c∗R)√
2

χiξiσk

)
+ h.c.,

(A.64)

which results in

V (2)
F F S = (|cL |2 + |cR |)FF F S(i, i, k) (A.65)

V (2)
F F S
= 1

2

((
cL + c∗R√

2

)2

+
(

i(cL − c∗R)√
2

)2
)

×m2
Di FF F S(i, i, k)+ h.c. (A.66)

= 2	(cL c∗R)m2
Di FF F S(i, i, k). (A.67)

In the case of equal Dirac fermions and a real scalar, the
interaction Lagrangian is

LF F S = −� i (cL PL + cR PR)�i · Rk + h.c. (A.68)

= −
(

cLχiξi + cRχ
†
i ξ

†
i

)
Rk, (A.69)

123
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where again cR = c∗L is required. This leads to

V (2)
F F S = |cL |2 FF F S(i, i, k) = 1

2

(
|cL |2 + |cR |2

)

×FF F S(i, i, k) (A.70)

V (2)
F F S
= 1

2
(cL)

2 m2
Di FF F S(i, i, k)+ h.c. (A.71)

= 	((cL)
2)m2

Di FF F S(i, i, k)

= 	(cLc∗R)m2
Di FF F S(i, i, k) (A.72)

Finally, there is the case of equal Majorana fermions and a
complex scalar, where we have to start with a factor of 1

2 in
L,

LF F S = −1

2
� i (cL PL + cR PR)�iφk + h.c. (A.73)

= −1

2

(
cLξ

2
i + cR(ξ

†
i )

2
)
φk + h.c. (A.74)

= −1

2

(
cL + c∗R√

2
ξ2

i Rk + i
cL − c∗R√

2
ξ2

i σk

)
+ h.c..

(A.75)

This time there is no symmetry factor in the sum over I, J ,
so we end up with

V (2)
F F S =

1

2
(|cL |2 + |cR |2)FF F S(i, j, k) (A.76)

V (2)
F F S
= 1

4

(
2cL c∗R

)
m2

Mi FF F S(i, i, k)+ h.c. (A.77)

= 	((cLc∗R)m2
Mi FF F S(i, i, k). (A.78)

If the scalar is real, we have cL = c∗R and

LF F S = −1

2
� i (cL PL + cR PR)�i Rk (A.79)

= −1

2
cLξ

2
i Rk + h.c. (A.80)

⇒ V (2)
F F S =

1

2
|cL |2 FF F S(i, i, k) (A.81)

⇒ V (2)
F F S
= 1

4

(
c2

L

)
m2

Mi FF F S(i, i, k)+ h.c. (A.82)

= 1

2
	(c2

L)FF F S(i, i, k) (A.83)

A.3: SSS

In the R-convention this interaction is given by

L = −1

6
λi jk Ri R j Rk (A.84)

=
∑

i

(−1

6
λi i i )R

3
i +

∑

i �= j

(−1

2
λi j j )Ri R2

j

+
∑

i< j<k

(−λi jk)Ri R j Rk (A.85)

with three real scalars and λi jk symmetric. The contribution
to V can be split up in a similar way,

VSSS = 1

12

∑

i jk

(λi jk)
2 FSSS(i, j, k) (A.86)

=
∑

i< j<k

1

2
(λi jk)

2 FSSS(i, j, k)

+
∑

i �= j

1

4
(λi j j )

2 FSSS(i, j, j)

+
∑

i

1

12
(λi i i )

2 FSSS(i, i, i) (A.87)

Consider complex scalars φi = (Ri + i Ii )/
√

2,

L = cφ1φ2φ3 + cc (A.88)

= c

2
√

2
(R1 R2 R3 − (I1 I2 R3 + I2 I3 R1 + I3 I1 R2)

−i(I1 I2 I3 − (R1 R2 I3 + R2 R3 I1 + R3 R1 I2)))+ cc

(A.89)

= c + c∗
2
√

2
(R1 R2 R3 − (I1 I2 R3 + I2 I3 R1 + I3 I1 R2))

(A.90)

+(−i)
c − c∗
2
√

2
(I1 I2 I3 − (R1 R2 I3 + R2 R3 I1 + R3 R1 I2))

(A.91)

= 	c√
2
(R1 R2 R3 − (I1 I2 R3 + I2 I3 R1 + I3 I1 R2))

(A.92)

+ �c√
2
(I1 I2 I3 − (R1 R2 I3 + R2 R3 I1 + R3 R1 I2))

(A.93)

Identifying the particles R1, R2, R3, I1, I2, I3 with labels
1 . . . 6, we get

	(c)√
2
= −λ123 = λ453 = λ561 = λ642 (A.94)

�(c)√
2
= −λ456 = λ126 = λ234 = λ315 (A.95)

The effective potential contribution is

VSSS = 1

12
(λi jk)

2 FSSS(i, j, k)

=
∑

i< j<k

1

2
(λi jk)

2 FSSS(i, j, k) = (	(c)2 + �(c)2)

×FSSS(m
2
1,m2

2,m2
3) = |c|2 FSSS(m

2
1,m2

2,m2
3)

(A.96)

123
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Now consider one real scalar, φ3 = R3 ∈ R.

L = cφ1φ2φ3 + cc = c

2
(R1 R2 − I1 I2 + i(R1 I2

+R2 I1))R3 + cc (A.97)

= 	(c)(R1 R2 − I1 I2)R3 − �(c)(R1 I2 + R2 I1)R3

(A.98)

The remaining five real scalars (R1, R2, R3, I1, I2) are
labelled 1 . . . 5.

	(c) = −λ123 = λ345 (A.99)

�(c) = λ134 = λ234 (A.100)

Plugging this into Eq. (A.87), we get

VSSS = 1

12
(λi jk)

2 FSSS(i, j, k)

=
∑

i< j<k

1

2
(λi jk)

2 FSSS(i, j, k) (A.101)

= (	(c)2 + �(c)2)FSSS(m
2
1,m2

2,m2
3)

= |c|2 FSSS(m
2
1,m2

2,m2
3) (A.102)

which is the same result as Eq. (A.96). There is an additional
factor of 2 in the coupling, but there are only half the number
of independent λ’s. Now, in the case of two real fields φ2, φ3

and one complex field φ1,

L = cφ1φ2φ3 + cc = c√
2
(R1 + i I1)R2 R3 + cc (A.103)

= √2	(c)R1 R2 R3 +
√

2�(c)I1 R2 R3 (A.104)

⇒ √2	(c) = −λ123 (A.105)

×√2�(c) = λ234, (A.106)

there is again a factor of 2 and half the number of real field
combinations. The result stays as in Eq. (A.96):

VSSS = |c|2 FSSS(m
2
1,m2

2,m2
3). (A.107)

In the case of three real fields, c is real from the start and+cc
can be omitted. There is only one λ123 = −c,

VSSS = 1

2
(c)2 FSSS(m

2
1,m2

2,m2
3). (A.108)

Now consider two equal complex scalars, φ2 = φ3.

L = c

2
φ1φ

2
2 + cc (A.109)

= 	(c)
2
√

2
(R1 R2

2 − (2I1 I2 R2 + I 2
2 R1)) (A.110)

+ �(c)
2
√

2
(I1 I 2

2 − (2R1 R2 I2 + R2
2 I1)) (A.111)

⇒ 	(c)√
2
= −λ122 = −λ155 = λ245 (A.112)

×�(c)√
2
= −λ455 = λ125 = λ224 (A.113)

Plugging this into Eq. (A.87), we obtain

VSSS =
∑

i �= j

1

4
(λi j j )

2 FSSS(i, j, j)

+
∑

i< j<k

1

2
(λi jk)

2 FSSS(i, j, k) (A.114)

= 1

2
|c|2 FSSS(m

2
1,m2

2,m2
2) (A.115)

with a factor of 1
2 compared to Eq. (A.96). If φ1 = R1 is real

instead of complex, L reads

L = c

2
R1φ

2
2 + cc (A.116)

= 	(c)
2
(R1 R2

2 − R1 I 2
2 )− �(c)R1 R2 I2 (A.117)

⇒ 	(c) = −λ133 = +λ144 (A.118)

�(c) = −λ134 (A.119)

⇒ VSSS =
∑

i �= j

1

4
(λi j j )

2 FSSS(i, j, j)

+
∑

i< j<k

1

2
(λi jk)

2 FSSS(i, j, k) (A.120)

= 1

2
|c|2 FSSS(m

2
1,m2

2,m2
2) (A.121)

In the case of two equal real scalars R2 = R3 and one com-
plex scalar φ1, we get

L = c

2
φ1 R2

2 + cc (A.122)

= 	(c)√
2
(R1 R2

2)+
�(c)√

2
(I1 I 2

2 ) (A.123)

⇒ 	(c)√
2
= −1

2
λ122,

�(c)√
2
= −1

2
λ455 (A.124)

and

VSSS =
∑

i �= j

1

4
(λi j j )

2 FSSS(i, j, j) (A.125)

= 1

2
|c|2 FSSS(m

2
1,m2

2,m2
2). (A.126)

Turning φ1 into a real scalar will produce only one term
( c

2 R1 R2
2) with a real c = −λ122. This results in

VSSS =
∑

i �= j

1

4
(λi j j )

2 FSSS(i, j, j) (A.127)

= 1

4
|c|2 FSSS(m

2
1,m2

2,m2
2) (A.128)
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Table 3 Prefactors for SSS contributions. The contribution is given by
V (2)

SSS = k · |c|2 FSSS(m2
1,m2

2,m2
3), where mi is the mass of φi . The

table shows k for various cases

Fields All different Two equal All equal (φ1 = φ2 = φ3)

φ1,2,3 ∈ C 1 1/2 1/6

φ1,2 ∈ C, φ3 ∈ R 1 1/2 –

φ1 ∈ C, φ2,3 ∈ R 1 1/2 –

φ1,2,3 ∈ R 1/2 1/4 1/12

Consider three equal complex scalars φ1 = φ2 = φ3.

L = c

6
φ3

1 + cc (A.129)

= 	(c)
6
√

2
(R3

1 − 3R1 I 2
1 )−

�(c)
6
√

2
(3R1 I 2

1 − I 3
1 ) (A.130)

⇒ 	(c)√
2
= −λ111 = λ122 (A.131)

�(c)√
2
= −λ222 = λ112 (A.132)

⇒ VSSS =
(

1

8
+ 1

24

)
|c|2 FSSS(m

2,m2,m2)

= 1

6
|c|2 FSSS(m

2,m2,m2) (A.133)

At last, if there are three equal real scalars, we get

L = c

6
R3

1 (A.134)

⇒ c = −λ111 (A.135)

⇒ VSSS =
∑

i

1

12
(λi i i )

2 FSSS(m
2,m2,m2). (A.136)

All these results are summarized in Table 3.

A.4: SS

The SS contribution is given by

V (2)
SS =

1

8

∑

i j

λi i j j FSS(m
2
i ,m2

j ) (A.137)

In the R-convention this interaction is described by

L = − 1

24

∑

i jkl

λi jkl Ri R j RK Rl (A.138)

with a real and completely symmetric λi jkl . Picking out only
terms where i = j and k = l (both fixed), the sum reads

L = −1

4
λi i j j R2

i R2
j (no sum, i �= j) (A.139)

If all four scalars are equal, the term is just

L = − 1

24
λi i i i R4

i (no sum) (A.140)

Because there are only two scalars in total in the loop, we
only have to distinguish the cases of different scalars and
equal scalars. In the C-convention with two charged scalars
φ1, φ2 we have

L = c |φ1|2 |φ2|2 (A.141)

L = c

4
|φ1|4 equal scalars (A.142)

where c is the vertex factor in both cases. Introducing φi =
(Ri + iσi )/

√
2, this leads to

L = c

4

(
R2

1 + σ 2
1

) (
R2

2 + σ 2
2

)
(A.143)

L = c

16

(
R4

1 + σ 4
1 + 2R2

1σ
2
1

)
equal scalars (A.144)

With this equation, the conventions can be matched. All
real scalars (R1, R2, σ1, σ2) can be labelled with indices
1, 2, 3, 4. The coefficients are

− c = λ1122 = λ1144 = λ3322 = λ3344 different scalars

(A.145)

−c = 2

3
λ1111 = 2

3
λ2222 = 2λ1122 equal scalars

(A.146)

Now simplify the potential contribution Eq. (A.137) for com-
plex different scalars. There is a factor of 2 because of sym-
metry in i, j .

V (2)
SS =

1

8
λi i j j FSS(i, j) (A.147)

= 2 · 1

8

(
λ1122 + λ1144 + λ3322 + λ3344

)
FSS(i, j)

(A.148)

= −cFSS(i, j) (A.149)

Now repeat the calculation for two equal complex scalars:

V (2)
SS =

1

8
λi i j j FSS(i, j) (A.150)

= 1

8

(
λR R R R + λσσσσ + 2λR Rσσ

)
FSS(i, i) (A.151)

= −1

8

(
3

2
c + 3

2
c + c

)
FSS(i, i) (A.152)

= −1

2
cFSS(i, i) (A.153)

For one real (R2) and one complex scalar, we get

L = c

2
|φ1|2 R2

2 (A.154)

= c

4
(R2

1 + σ 2
1 )R

2
2 (A.155)

⇒ −c = λ1122 = λ2233 (A.156)

⇒ V (2)
SS = 2 · 1

8

(
λ1122 + λ2233

)
FSS(i, j)

= − c

2
FSS(i, j) (A.157)

123
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In the case of two real scalar R1, R2, we get

L = c

4
R2

1 R2
2 (A.158)

⇒ −c = λ1122 (A.159)

⇒ V (2)
SS = 2 · 1

8

(
λ1122

)
FSS(i, j) = − c

4
FSS(i, j)

(A.160)

and finally, for two equal real scalars R1 = R2,

L = c

24
R4

1 (A.161)

⇒ −c = λ1111 (A.162)

⇒ V (2)
SS =

1

8

(
λ1111

)
FSS(i, i) = − c

8
FSS(i, i). (A.163)

The symmetry factors are summarised in Table 4.

A.5: SSV

In C-convention, the interaction between two complex
scalars φi , φ j and a complex vector W a

μ = (Aa
μ + i Ba

μ)/
√

2
is described by

LSSV = cφi
←→
∂μ φ j W a

μ + hc (A.164)

with c = c(a, i, j) (a, i, j fixed) and f
←→
∂μ g = f ∂μg −

g∂μ f . The same interaction in the R-convention is given by
[90, Eq. (2.12)],

LSSV = −
∑

A,I,J

g A
I J AA

μRI ∂
μRJ (A.165)

with g A
I J = −g A

J I , real scalars RI and real vectors AA
μ . The

potential in R-convention is

V (2)
SSV =

1

4

∑

A,I,J

(g A
I J )

2 FSSV (I, J, A) (A.166)

Now break down Eq. (A.164) to real parts,

LSSV = cφi
←→
∂μ φ j W a

μ + hc (A.167)

= c

2
√

2
(Ri + iσi )

←→
∂μ (R j + iσ j )(A

a
μ + i Ba

μ)+ h.c.

(A.168)

= 	(c)√
2

(
(Ri
←→
∂μ R j − σi

←→
∂μ σ j )A

a
μ

−(Ri
←→
∂μ σ j + σi

←→
∂μ R j )B

a
μ

)

−�(c)√
2

(
(σi
←→
∂μ R j + Ri

←→
∂μ σ j )A

a
μ + (Ri

←→
∂μ R j

−σi
←→
∂μ σ j )B

a
μ

)
. (A.169)

There are 4 terms for each 	(c) and �(c) which all involve
different fields, thus evaluating Eq. (A.166) gives

V (2)
SSV = 2 · 1

4

(
4

(	(c)√
2

)2

+ 4

(�(c)√
2

)2
)

= |c|2 FSSV (i, j, a) (A.170)

with a symmetry factor of 2 in front because of g A
I J = −g A

J I .
If the two scalars are complex conjugates of each other, φ j =
φ∗i , Eq. (A.169) reduces to

→ 	(c)√
2

(
−(Ri
←→
∂μ (−σi )+ σi

←→
∂μ Ri )B

a
μ

)

−�(c)√
2

(
(σi
←→
∂μ Ri + Ri

←→
∂μ (−σi ))A

a
μ

)
(A.171)

= 2	(c)√
2

(
Ri
←→
∂μ σi Ba

μ

)
− 2�(c)√

2

(
σi
←→
∂μ Ri Aa

μ

)
, (A.172)

which gives

V (2)
SSV = 2 · 1

4

(
2 (	(c))2 + 2 (�(c))2

)

= |c|2 FSSV (i, j, a). (A.173)

However, if the vector is real and φi = φ∗j , Eq. (A.167)
becomes

LSSV = ic(σi
←→
∂μ Ri )A

a
μ + h.c., (A.174)

where the Hermitean conjugate can be dropped if c is chosen
purely imaginary from the start. If that is the case,

V (2)
SSV =

1

2
|c|2 FSSV (i, j, a). (A.175)

If another field is considered real, a factor of
√

2 disappears
in the denominator and we end up with half the terms in
L, which gives again V (2)

SSV = |c|2 FSSV (i, j, a). Note that
for two real equal scalars, LSSV vanishes. All the cases are
collected in Table 5.

Table 4 Prefactors for SS. The contribution is V (2)
SS = k ·

(−c)FSS(m2
1,m2

2). The table shows k for various cases. The masses
of φ1,2 are m1,2

Fields φ1,2 different φ1 = φ2 equal

φ1,2 ∈ C 1 1/2

φ1 ∈ C, φ2 ∈ R 1/2 –

φ1,2 ∈ R 1/4 1/8

Table 5 This table gives k for the SSV contribution, V (2)
SSV = k ·

|c|2 FSSV (i, j, a)

Fields k

φi , φ j , V 1

φi = φ∗j , V ∈ C 1

φi = φ∗j , V ∈ R 1/2

Else 1

123



Eur. Phys. J. C   (2015) 75:32 Page 17 of 18  32 

Example: q̃b
i , q̃c∗

i , ga with c = − g3
2 (λ

a)cb and λa the Gell–
Mann matrices.

⇒ V (2)
q̃i q̃∗i g =

1

2

∣∣∣
g3

2

∣∣∣
2

⎛

⎝
8∑

a=1

3∑

b,c=1

∣∣λa
bc

∣∣2
⎞

⎠

︸ ︷︷ ︸
16

FSSV (q̃i , q̃i , 0)

(A.176)

= 2g2
3 FSSV (q̃, q̃, 0) c.f. [25], (3.48). (A.177)
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