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ABSTRACT 

This work, based on structure/properties relationships of associating polymers, aims to 

investigate the role of topology in the self-assembling behavior of responsive graft 

copolymers. For that purpose, two graft copolymers with inverse topologies were prepared 

with similar amounts of water-soluble chains (poly(N,N-dimethylacrylamide) = PDMA) and 

LCST polymer chains (poly(N-isopropylacrylamide) = PNIPA). In pure water, and above 3 

wt%, PNIPA-g-PDMA and PDMA-g-PNIPA exhibit very similar macroscopic properties 

with a sol/gel transition above 35 °C related to the microphase separation of PNIPA 

sequences. From complementary experiments, performed by DSC, 1H NMR and small angle 

neutron scattering, we show that the phase transition of PNIPA is more abrupt when NIPA 

units are located within the backbone, compared to side-chains. Nevertheless, well above their 

transition temperature, the two copolymers display very similar bicontinuous structures where 

PNIPA sequences self aggregate into concentrated percolating domains (about 70 wt% at 60 

°C) characterized by a frozen dynamics. On the other hand, when salt or surfactant molecules 

are added into unentangled semi-dilute  aqueous solution, the PNIPA-g-PDMA sample does 

not percolate anymore above the transition temperature while PDMA-g-PNIPA still 

demonstrate thermothickening properties that are correlated to the ability of water-soluble 

PDMA chains to bridge PNIPA aggregates.  

 

 

 

 

 

Keywords: poly(N-isopropylacrylamide), thermothickening, associating polymers, graft 

copolymers. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

3 

 

INTRODUCTION 

Associating polymers have known a tremendous development during the last decades due 

their enhanced viscoelastic properties that find applications in a wide range of domains like 

food, cosmetics, paints, drilling fluids, etc [1-3]. In this framework, responsive polymers, that 

are able to change their macroscopic behavior under environmental conditions like ionic 

strength, pH, temperature, light, red-ox activity or under external fields (electric or magnetic), 

are very useful for applications where enhanced properties are needed under certain 

conditions [4-6]. Among these various mechanisms, temperature is a common trigger that 

naturally occurs in many applications and thermoresponsive polymers have known a large 

development in different fields like oil recovery or biomedical applications [7-12]. Indeed, 

these systems can be efficiently used to increase or to control the viscosity of drilling fluids 

submitted to large temperature gradients in deep formations or to promote sol/gel transitions 

around body temperature with applications like injectable hydrogels and controlled drug 

release [3,12-13]. 

Although cellulosic derivatives [14-15] were the first thermothickeners to be used in aqueous 

media, thermoresponsive systems have been widely diversified during the last two decades 

[4,7,16]. They are generally designed on the basis of block or graft architectures containing 

hydrophilic and water-soluble moieties alternating with responsive blocks or grafts 

characterized by a Lower Critical Solution Temperature (LCST) in the range of application. 

Quite a lot of systems, mainly based on poly(N-alkylacrylamide) and poly(alkylene oxide) 

have been reported with various level of understanding of their structure/properties 

relationships [17-23]. For these copolymers the key parameters are the chemical nature of 

both LCST and hydrophilic sequences as well as the design of associating copolymers 

(distribution and relative ratio between hydrophilic and “hydrophobic” moieties) that directly 
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impact the level of the phase segregation (from nano- to macroscopic scale) and the final 

properties of aqueous formulations. 

In the case of thermothickening copolymer solutions, designed with poly(ethylene oxide-co-

propylene oxide) derivatives, the LCST sequences self-assemble into liquid-like aggregates 

above their transition temperature. These hydrophobic domains behave as efficient physical 

cross-links and viscoelastic analysis highlight the dynamic properties of these systems with a 

finite lifetime of the responsive stickers [16,22]. By comparison poly(N-isopropylacrylamide) 

(PNIPA) behaves rather differently as during the phase transition the PNIPA-rich phase 

reaches the so-called Berghmans point where it is supposed to become glassy [24-25]. 

Although this assumption remains controversial [26], the formation of frozen PNIPA domains 

above their transition temperature is often taken into account to explain the formation of 

stable colloidal PNIPA particles at high temperature with ineffectiveness of colloid 

aggregation [27] or the extraordinarily slow deswelling of macroscopic PNIPA hydrogels; the 

out-of equilibrium state of the gel being conserved for many days [28]. 

In the framework of thermothickeners with grafted architectures, the phase transition driven 

by LCST moieties must remain confined at a local scale to avoid the macro-phase separation 

and the ruin of the elastic properties. Although most of thermoresponsive graft copolymers 

are generally designed with a hydrophilic backbone and LCST side-chains [7,16], the inverse 

topology is also conceivable with similarities with weakly ionized PNIPA chains where 

electrostatic repulsions stabilized the transient network formed at high temperature [29]. 

Amazingly, a direct comparison between 3D self-assemblies of graft copolymers with similar 

composition but inverse topology (see Figure 1) has never been investigated so far although 

this comparison naturally raises a lot of questions about the structure/properties relationships. 

For instance we can reasonably wonder how these graft copolymers with inverse topologies 
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will behave below and above the transition temperature? How the responsivity of LCST 

stickers (association temperature, concentration of polymer rich phase…) will be affected by 

the topology? What will be the microstructure of 3D self-assemblies and the corresponding 

viscoelastic properties? What will be the relative sensitivity of these copolymers to 

environmental modifications induced by adding cosolute? 

In order to address the topological issue in thermoassociating graft copolymers, grafted 

macromolecules were prepared with similar amounts of water-soluble chains (poly(N,N-

dimethylacrylamide) = PDMA) and LCST polymer chains (poly(N-isopropylacrylamide) = 

PNIPA) which exhibit a LCST around 32 oC in water. These two Yin and Yang copolymers 

(PNIPA-g-PDMA and PDMA-g-PNIPA), sharing identical monomers with inverse topology, 

are represented in Figure 1.  

 

 
 

Figure 1. Schematic representation of Yin and Yang graft copolymers  

prepared from PDMA (▬) and PNIPA (▬). 

 

Based on this set of copolymers, a detailed comparative study has been performed on semi-

dilute solution as a function of temperature and added molecules like salt or surfactant. This 

original analysis, carried out by rheology, differential scanning calorimetry, NMR and 

light/neutron scattering techniques, surprisingly highlights very common features as well as 

large differences between the two copolymers that could be understood from their topology. 
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EXPERIMENTAL SECTION 

Materials 

N-isopropylacrylamide (NIPA, Aldrich), N,N-dimethylacrylamide (DMA, Aldrich), 

cysteamine hydrochloride (AET·HCl, Fluka), potassium peroxodisulfate (KPS, Aldrich), 

acrylic acid (AA, anhydrous > 99%, Fluka), dicyclohexylcarbodiimide (DCCI, Aldrich), 

ammonium persulfate (APS, Aldrich), sodium metabisulfite (SBS, Aldrich) were used as 

received. All organic solvents were analytical grade and water was purified with a Millipore 

system combining inverse osmosis membrane (Milli RO) and ion exchange resins (Milli Q) 

for synthesis and purification. 

Synthesis of thermosensitive linear copolymers 

The synthesis of responsive linear copolymers was performed according to a three-step 

process. Telomers were first synthesized through free radical polymerization. Then, the 

macromonomers were obtained by coupling amino-terminated telomers with acrylic acid and 

finally graft copolymers were prepared by free radical polymerization of monomers and 

macromonomers. An example is given in Figure 2 in the case of PDMA-g-PNIPA and the 

detailed procedure is described in supporting information. In order to simplify the 

nomenclature of the copolymers, PNIPA-g-PDMA and PDMA-g-PNIPA will be named PN-D 

and PD-N, respectively. 
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Figure 2. Three-step synthesis of graft copolymers exemplified  

with PDMA-g-PNIPA (PD-N). 
 

Size exclusion chromatography (SEC) 

Experiments were carried out with two different chromatographic systems. The first one, 

which was applied to the absolute characterization of polymer samples, is a Viscotek triple 

detector (TDA 302) equipped with three columns (OH-pak). During the analysis carried out at 

28 oC the flow rate was controlled at 0.6 mL·min-1 using 0.2 M NaNO3 as mobile phase. The 

molar masses were derived from a universal calibration curve based on Pullulan standards 

from Sopares (OmniSEC software). The other chromatographic system from Waters is 

equipped with similar Shodex OH-pak columns thermostated at 10 oC and a differential 

refractometer (Shimadzu RID-10A). This system was mainly used to follow, without 

purification, the conversion of the reactions. The flow rate was controlled at 0.90 mL.min-1 

using 0.5 M LiNO3 as mobile phase. 

Nuclear magnetic resonance (NMR) 

All the NMR measurements were performed on a Bruker Avance III HD spectrometer 

operating at 700 MHz for 1H, using a standard 5mm broadband Smart probe. The temperature 

control was achieved by a Bruker BCU II unit and a build in temperature control unit. 
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Following experimental conditions were employed for the variable temperature experiments: 

32 transients, 45 degree flip angle, 2.5 sec acquisition time, 2 sec relaxation delay. The 

sample was allowed to equilibrate for ~ 10 minutes at each temperature. The 1H chemical 

shifts were referred to residual HOD peak at each temperature [30]. 3wt % solutions of PD-N 

and PN-D in D2O were used for the NMR measurements. 

 Rheology 

The viscoelastic properties of the copolymers were studied in aqueous solutions, in the semi-

dilute regime, using a stress-controlled rheometer (AR 1000 from TA Instruments) equipped 

with a cone/plate geometry (diameter 40 mm, angle 2, truncature 55.9 µm). The experiments 

were performed in the linear viscoelastic regime which was established for each sample by a 

stress sweep at the lowest frequency. The temperature was controlled by a high power Peltier 

system that provides fast and precise adjustment of the temperature during heating and 

cooling stages. Typically, the experimental conditions were fixed at constant frequency (1 Hz) 

and shear stress (2 Pa). A particular care was taken to avoid the drying of the sample by using 

a homemade cover which prevents from water evaporation during experiment. In these 

conditions, dynamic moduli (G' and G'') as well as complex viscosity (η*) were recorded 

between 20 and 60 oC by applying heating and cooling scans of 2 oC.min-1. 

Differential Scanning Calorimetry (DSC) 

The phase transition of PNIPA-based copolymers in aqueous solution was investigated by 

Differential Scanning Calorimetry using a DSC Q200 from TA instrument. Polymer solutions 

(80 mg), equilibrated with a reference filled with the same quantity of solvent, were submitted 

to temperature cycles between 10 and 70 oC. The heating and cooling rates were similarly 

fixed at 2 oC.min-1. 
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Dynamic Light Scattering (DLS)  

Dynamic Light Scattering (DLS) was carried out on a CGS-3 goniometer system equipped 

with He-Ne laser illumination at 633 nm and an ALV/LSE-5003 correlator. All samples were 

initially filtered through 0.45 µm Millipore syringe filters. The samples were stabilized at 

constant temperature for 10 min prior to measurement. The data were collected by monitoring 

the light intensity at a scattering angle of 90 o. DLS experiments were performed on dilute 

solution (0.1 g.L-1) and each measurement lasts 120 s. 

Small Angle Neutron Scattering (SANS) 

SANS experiments were performed at Laboratoire Léon Brillouin (CEA-Saclay, France) on 

the PAXY spectrometer. The wavelength of the incident neutron beam was set at λ = 12 Å 

with a corresponding sample-to-detector distance of 4.7 m. This configuration provides a 

scattering vector modulus [q=4π/λsin(θ/2)] ranging between 0.002 and 0.04 Å-1 (where θ is 

the scattering angle). All the samples were prepared at room temperature in D2O and 

transferred into 2- or 5-mm-thick quartz containers for SANS experiments.  For the data 

treatment, the scattering from the empty quartz cell was subtracted, the efficiency of the 

detector cell was normalized by the intensity delivered by a pure water cell of 1-mm thickness 

and absolute measurements of the scattering intensity I(q) (cm-1 or 10-8 Å-1) were obtained 

from the direct determination of the incident neutron flux and the cell solid angle.  

RESULTS 

Synthesis and characterization of graft copolymers 

Let us first recall that PN-D has PNIPA backbone and graft PDMA chains, while PD-N has 

the inverse topology with PDMA backbone and PNIPA grafts. Graft precursors and 

copolymers were characterized by 1H NMR and SEC (Table 1). In the case of amino-
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terminated PDMA and PNIPA, the molar masses are 15 and 23 kg/mol, respectively, in good 

agreement with similar telomerizations performed with NIPA, DMA and other hydrophilic 

comonomers [31-32].  

Table 1 Structural characterization of linear copolymers 

copolymers 

Molar mass and dispersity index molar (weight) 
monomer ratio in 
backbone / grafts 

from 
feed monomer 
composition 

molar (weight) 
monomer ratio in 
backbone / grafts 

from 
copolymer 

composition 

Graft 
Graft 

copolymer 

PD-N 
Mn=23.0 kg/mol 
Ð≅1.4 

Mn=370 kg/mol 
Ð≅2.6 

1.14/1 (50/50) 1.44/1 (56/44) 

PN-D 
Mn=14.5 kg/mol 
Ð≅1.5 

Mn=460 kg/mol 
Ð≅2.7 

1/1.14 (50/50) 1.12/1 (56/44) 

 

After coupling the amino end-group with a large excess of acrylic acid, and assuming a 

quantitative yield of this reaction, we can see that the level of macromonomer incorporation in 

the graft copolymer is relatively high for the two macromonomers. 1H NMR analysis gives a 

relative conversion of about 80 % for the copolymerization of vinyl-terminated PDMA and 

PNIPA with respect to the other comonomer. Starting from the same feed 

monomer/(macromonomer) weight ratio (50/(50)), the final weight composition of graft 

architectures is 56/(44) for both PN-D and PD-N. Even if these topologically inverse 

copolymers do not have exactly the same DMA/NIPA weight content, their equilibrated 

composition remains in good agreement with our initial goal as it provides a good 

compromise between solubility and aggregation at high temperature. Moreover, the high 

molar mass of the copolymer chains (Mn ~ 400 kg/mol) is favorable for the physical gel 

formation, as high molar mass means 1) low overlap concentration with the possibility to 

develop a percolated network at low concentration, and 2) a higher number of side-chains per 

macromolecule (between 8 and 12 in average for PD-N and PN-D) increasing the probability 

of inter-chain contacts.  
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Thermothickening behavior: sol/gel transition 

As shown in Figure 3, the two copolymer solutions studied at 3 wt% in the linear regime 

exhibit very similar thermothickening properties.  

20 30 40 50 60

0.1

1

10

100

G
', 

G
'' 

(P
a)

temperature (oC)
  

Figure 3. Temperature dependence of dynamic moduli (��for G’ and �� for G’’) of PD-N 
(hollow symbols) and PN-D (filed symbols) aqueous solutions (Cp = 3 wt %, f = 1 Hz, heating 

rate=2 oC.min-1). 
 

 

At low temperature, typically below 35 °C, the backbone and the side chains are soluble in 

water and the copolymer solutions are mainly fluids with a very weak elastic contribution that 

is negligible and not measurable in our conditions. In this range of temperature the complex 

viscosity (see Figure S1 in supporting information), which is also the Newtonian viscosity at 

this frequency, decreases smoothly following an Arrhenius dependence. When the transition 

takes place, above Tas = 35 °C, PNIPA sequences start to self-associate giving rise to a sol/gel 

transition with a huge increase of elasticity, mainly between 35 and 45 °C. Then at high 

temperature, (T>45-50 °C), well above the phase transition, the dynamic moduli and 

particularly the elastic one still increases slightly with temperature. In these conditions, the 

copolymer solutions behave as elastic gels with a very weak frequency dependence of the 
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modulus and very long relaxation times which are out of scale in these experiments (see 

Figure S2 in supporting information). Here, we have to mention that the associating process 

is totally reversible with temperature with almost no hysteresis in the conditions of the study 

(see Figure S1). Interestingly, the two graft copolymers display very similar 

thermothickening properties that emphasize at the first order a common self-assembling 

process despite their inverse topologies. The main difference that can be underlined from 

Figure 3 is the rise of the elastic modulus that takes place a few degrees before for PN-D 

solution compared to PD-N. From another macroscopic point of view, the two copolymer 

solutions, initially transparent, remain translucent above the association temperature but more 

whitish for PN-D. By comparison, graft copolymers prepared by grafting shorter PNIPA side 

chains onto well water-soluble backbones like poly(sodium acrylate) or polyacrylamide 

remain totally transparent, even at high temperature and for high fraction of responsive 

stickers [23, 31-32]. 

Phase transition 

The LCST-type phase transition of PNIPA in aqueous solutions is a very well-known 

phenomenon that has been widely reported in the literature [24,33]. At low temperature, 

PNIPA chains are soluble in water and exhibit a coiled conformation in order to maximize 

their hydrogen bonds with water molecules. Crossing the transition temperature, the chains 

start to undergo a sharp coil-to-globule transition in water, changing from hydrophilic state to 

hydrophobic one. During demixing, energy is required to disrupt the interactions between 

water molecules and amide groups and the phase transition of PNIPA is an endothermic 

process that can be easily followed by calorimetry. For instance, DSC experiments have 

shown that the characteristic parameters of the transition, typically the temperature and the 

transition enthalpy, are strongly coupled to the structure of the chain (molar mass, chemical 
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composition and topology) and to the environmental conditions (pH, ionic strength, co-

solvent …) [24,33-35]. A typical thermogram is given in inset of Figure 4 for a 3 wt% 

aqueous solution of PN-D, along with the transition enthalpies (∆H in kJ/mol of NIPA) of 

PN-D and PD-N solutions obtained after integration of endotherms. 
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Figure 4 
 

DSC analysis of PN-D 
(dash line) and PD-N 
(solid line) aqueous 
solution (C=3 wt%, 

heating rate=2 oC.min-1). 
The thermogram of PN-D 
(heat flow vs temperature) 

and its integration 
(cumulated enthalpy) are 

shown in inset. 
 

The two copolymer solutions are characterized by a rather broad endotherm that spans over 

10 °C as already observed for the viscoelastic transition in Figure 3. The broadness of the 

transition does not originate from the relatively high heating rate applied in DSC (2 °C.min-1), 

since similar thermograms were obtained at lower rates. For instance, Tas and transition width 

decrease of approximately 1 °C by decreasing the heating rate from 2 to 0.5 °C.min-1 while 

the transition enthalpy remains unchanged. The transition broadness probably arises from the 

relatively low molar mass of PNIPA sequences and their dispersity index but the topology of 

PD-N and PN-D, alternating PNIPA with hydrophilic PDMA inside the same covalent 

structure, certainly accounts for this behavior. As we can see from Figure 4, similar 

endotherms were obtained for both copolymers upon increasing temperature but the PN-D 

sample with the PNIPA backbone definitely shows the highest enthalpy (4.7 kJ/mol NIPA) 

and the lowest transition temperature (36 °C). By comparison, the transition of the PD-N 
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solution starts at slightly higher temperature (~ +2 °C), around 38 °C, with an enthalpy of 2.6 

kJ/mol NIPA: the architecture of PD-N with PNIPA as pendant chains does not favor the 

association process between grafted chains that are not topologically close to each other. By 

comparison, the PNIPA precursor of the PDN copolymer displays a lower association 

temperature (Tas=36 °C) and a higher transition enthalpy (∆H=4.3 kJ/mol NIPA) at the same 

relative concentration. This comparison supports the idea that there is some energetic barrier 

in the association process due to the steric hindrance from the water-soluble backbone. 

Complementary experiments have been carried out by 1H NMR as a function of temperature. 

From the series of NMR spectra obtained between 15 and 55 °C with the PD-N solution 

(Figure 5a), we can see that the signal of methyl groups of DMA, around 3 ppm, becomes to 

broaden with increasing temperature but its area remains almost unchanged or just slightly 

decreases with increasing temperature as reported in Figure 5b.  
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Figure 5. (a) Temperature variation of 1H NMR spectrum of PD-N and (b) normalized area 
of CH3 signal from DMA (square) and NIPA (circle) of PD-N (hollow symbols) and PN-D 

(filled symbols) aqueous solutions (C=3 wt%, D2O). 
 

In the same conditions, the signals of methyl and methine groups of NIPA, observed at 1 and 

4 ppm respectively, show a dramatic decrease above 35 °C and practically disappear at 55 °C. 
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This feature, that has been widely reported with PNIPA copolymers or gels [36-39], can be 

assigned to the formation of a solid-like rich-PNIPA phase close to its glass transition [24] 

and where the motions of the functional groups are strongly reduced. As shown in Figure 5b, 

the PN-D sample undergoes a more abrupt transition than PD-N as already described by DSC. 

The main conclusion that holds for the two copolymer solutions, is that at high temperature 

most of PNIPA sequences are aggregated into PNIPA-rich domains of low mobility. The low 

exchange rate of PNIPA sequences at high temperature is also responsible for the “covalent 

network” pattern obtained with the two copolymers in the gel state (Figure S2 in supporting 

information).  

Nanostructure from small angle neutron scattering 

Scattering experiments have been performed at different temperatures with copolymer 

solutions in D2O. As shown in supporting information (Figure S3), there is no significant 

modification of the thermodynamic behavior of PNIPA replacing H2O with D2O; or at least 

the difference remains within 1 °C as already reported in the literature [40]. As shown in 

Figure 6a, the thermo-association process of PN-D in aqueous solution takes place abruptly 

upon heating. As soon as the transition temperature is reached, above 33 °C as measured in 

the sample holder, the scattering intensity immediately increases on the whole q-range 

figuring fluctuation concentrations related to the phase separation of PNIPA. With increasing 

temperature, the intensity still increases with a characteristic length that can be more easily 

observed at higher polymer concentrations (see Figure 7a). This means that hydrophilic 

PDMA side-chains efficiently stabilize the phase separation process of PNIPA backbone at a 

microscopic level; the characteristic size of the micro-phase separation being D=2π/qmax. 

Concurrently, as soon as the transition takes place, the Porod’s law (I(q) ~ q-4) is observed in 
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the asymptotic regime, in agreement with the formation of a biphasic system with sharp 

interfaces. 
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Figure 6. Double logarithmic plots of the scattering intensity of 3 wt% PN-D (a) and PD-N 
(b) solutions at different temperatures (T °C): 33.0 (�), 35.0 (�), 36.0 (�), 37.0 (�), 38.5 

(�), 40.0 (�), 43.0 (�), 45.5 (�), 51.0 (�) and 57.5 (). 
 

By comparison, the thermo-association process of PD-N in aqueous solution takes place more 

progressively upon heating. As soon as the transition temperature is reached, the scattering 

intensity starts to increase at low q with the formation of heterogeneities at long distance. 

Then, above 35 °C, the scattering intensity increases progressively and its q-dependence 

finally reaches the Porod’s law at high temperature, above 45-50°C. These scattering patterns, 

typical from microphase separation, have been already described for water-soluble polymers 

grafted with PNIPA or other LCST side-chains [18,41] and for weakly charged PNIPA gels 

[42] or linear copolymers [29]. From Figure 7, we notice that at high temperature the two 

microphase separated systems are characterized by similar correlation lengths, about 500 Å. 

Nevertheless, the PN-D solution clearly shows a higher upturn at low q (higher osmotic 
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compressibility) underlining the presence of concentration fluctuations at closer distance. This 

can be related to a decrease of the contribution of PDMA side-chains to steric repulsions with 

increasing temperatures. 
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Figure 7. Double logarithmic plots of the scattering intensity of 8 wt% PN-D (a) and PD-N 
(b) solutions at different temperatures (T °C):  

29.0 (�), 33.0 (�), 35.0 (�), 36.0 (�), 38.5 (�), 43.0 (�), 51.0 (�) and 57.5 (). 
 

In order to get more details on the formation of PNIPA domains, the experimental invariant 

(Qexp) was determined from the scattering curve: 

∫
∞

=
0

2
exp )( dqqIqQ           {1} 

In the case of incompressible biphasic systems, as it is for PNIPA copolymer solutions above 

their transition temperature, the invariant is in theory a constant that only depends on volume 

fraction (φi) and difference between the scattering length densities (the contrast (ρi) ) of the 

two phases: 
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21
2

21
2 )(2 φφρρπ −=thQ   {2} 

As the contrast 
2

21 )( ρρ −  itself is a function of the scattering length density and volume 

fraction of the phase component, it is then possible to estimate the composition of the 

segregated phase. Here we assume that PDMA segments are totally excluded from the 

segregated phase and remain in the outer medium with water and possibly a fraction of non 

aggregated PNIPA chains (1-fPNIPA). On this basis, two extreme hypotheses can be 

considered: 

1) all PNIPA segments are embedded into micro-domains (fPNIPA = 1) at a volume fraction 

φPNIPA <1 ; considering the presence of water inside the aggregates, 

2) only a fraction of PNIPA chains (fPNIPA < 1) contributes to the formation of dry aggregates 

(φPNIPA = 1). 

As shown in supporting information (Figure S4), the extrapolated values of fPNIPA times 

φPNIPA do not strongly differ from one hypothesis to the other. Considering that all the other 

situations lie between these two limits, we have used the average value of fPNIPA*φPNIPA in the 

following discussion to describe the “level of the phase separation”. Such data treatment is 

exemplified in Figure 8 with PN-D and PD-N solutions at 3 and 8 wt% in water. As we can 

see, the self-assembling of PNIPA sequences mainly takes place between 35 and 45 °C where 

the level of the phase separation reaches about 60 to 70%, with a relative accuracy of about 10 

%. Above 45 °C, the extent of the phase segregation increases more gently up to 70-80% at 

60 °C. These results are in good agreement with previous data obtained by DSC, 1H NMR and 

rheology where the PD-N sample (with PNIPA grafts) was shown to self-associate more 

gradually with temperature compared to the inverse PN-D structure (with PNIPA backbone). 

Above 45 °C, the phase transition is almost over for PN-D, as seen from DSC and NMR 
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(fPNIPA ≅ 1), and the dynamic moduli increase more gently. This can be correlated with a small 

increase of the PNIPA concentration inside the microdomains, with or without some 

reorganisation at the mesoscopic level. For the PD-N sample, this strong segregation regime 

where all PNIPA side-chains are embedded into aggregates, is observed only at higher 

temperature; typically above 55 °C. In these conditions where most PNIPA side-chains 

participate to the association behavior the invariant analysis shows that the microdomains are 

not totally dry and contain around 20 to 30 wt% of water. This result is in good agreement 

with the literature that generally describes the phase transition of PNIPA by the formation of 

glassy-like aggregates; the glass transition of the PNIPA/water system being close to room 

temperature for PNIPA volume fraction around 70 wt%[21].  
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Figure 8. Temperature dependence of the PNIPA-rich phase with fPNIPA the fraction of 
PNIPA embedded in the segregated phase and φPNIPA their volume fraction estimated from 

the SANS invariant analysis . 
 

 

From the asymptotic behavior obtained at high temperature (I(q) ~ q-4), the total interface area 

of microdomains (S) in the scattering volume (V) can be calculated using the following 

relation : 
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)(lim 4

12

qIq
QV

S
S

q
spe

→∞
=≅ π

φφ
 {3} 

As Vφ2 is the total volume of microdomains and φ1 is close to 1 for all the copolymer 

solutions in the segregated regime, the left hand term in equation {3} can be identified with 

the specific surface of PNIPA microdomains (Sspe). Interestingly, at high temperature, this 

specific surface is almost the same whatever the topology (PN-D or PD-N) and the 

concentration of copolymers (Cp = 3 and 8 wt%) : Sspe	≅		0.022 Å-1. One could see perhaps 

some close relation with the internal structure of the Yin and Yang copolymers having similar 

PDMA/PNIPA composition (close to 50/50). While the specific surface can be easily 

calculated, the real size of the microphase separated domains cannot be precisely determined. 

Indeed domains size is closely related to the possible morphology : S2/V2 being equal to 1/t for 

platelets of thickness t (t=46 Å), 2/R for cylinders of radius R (R=93 Å), 3/R for spheres of 

radius R (R=140 Å) and 4/ξ or 6/ξ for various random biphasic models with a correlation 

distance ξ (ξ = 186 or 280 Å, respectively)[43-45].  

Concentration dependence 

As shown in supporting information (Figure S5), there is no major difference concerning the 

thermodynamic behavior as a function of the copolymer concentration. Indeed, for both series 

of copolymer solutions, the same endotherm with similar association temperature and 

enthalpy were obtained whatever is the concentration investigated between 1 and 10 wt%. 

Looking at the macroscopic properties, the conclusion is rather different. For simplicity we 

have plotted in Figure 9 the complex viscosity versus the temperature as this single parameter 

η* is proportional to both loss and storage moduli in the liquid (solution) and solid (gel) 

states, respectively. Working at low concentration (1 wt%), in the semi-dilute regime, the PD-

N solution exhibits a very weak increase of viscosity above 40 °C (about 1 decade) followed 
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by thermo-thinning at higher temperatures. In this case, the elastic modulus remains 

negligible at all temperatures and the solution is mainly viscous. While 1 wt% is too low to 

form a percolating network with the PD-N copolymer, this situation becomes more favorable 

at higher concentrations as a dramatic increase of elasticity and complex viscosity is observed 

from 2 wt%. In the case of the PN-D sample, the formation of an elastic network at high 

temperature is obtained at higher concentration than PD-N, typically 3 wt%. Indeed, the 

solution at 1 wt% does not really show any thermoviscosifying effect while, at 2 wt%, only a 

weak thermothickening is observed between 35 and 40 °C followed by a collapse of the 

macromolecular assembly at higher temperature. 
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Figure 9.  Temperature dependence of viscoelastic properties of PD-N (a) and PN-D (b) 
aqueous solutions as a function of polymer concentration (f = 1 Hz, heating rate=2 oC.min-1). 

 

Even if both the level of viscosity and concurrently the level of overlapping of copolymers 

PD-N and PN-D are similar at low temperature and the average molar mass of PN-D is higher 

than PD-N, we have to consider that contrary to PD-N, the PN-D sample undergoes a strong 

collapse of its pervaded volume at the transition threshold. There is consequently an important 

competition between intra- and inter-chain associations in the vicinity of the transition 

temperature and concentration will have a huge impact on the connectivity of the self-
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assembly. Conversely, as the PDMA backbone has a weak temperature dependence, we can 

reasonably assume that inter-chain associations will become favorable as soon as the 

overlapping of the chains will be effective in the low temperature range. Whatever is the 

copolymer, stable and thermo-reversible gels are readily obtained above the critical 

percolation concentration.  

Addition of salt 

It is well known that the addition of salts in aqueous media generally destabilizes the 

hydration state of LCST polymers and leads to a decrease of their transition temperature. This 

effect, known as salting-out, has been extensively used to control the phase separation on a 

very broad range of temperature [17] that can extend well beyond ∆T= 100 °C. In the present 

study we have used potassium carbonate which is known to strongly modify the solubility of 

PNIPA. As shown in Figure 10, the addition of K2CO3 0.3 M decreases the association 

temperature from 36-38 °C to 23 °C in a very similar manner for the two copolymers.  
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Figure 10 

Influence of added potassium 
carbonate on the association 
behavior of 3 wt% aqueous 

solutions of PD-N ( and dash 
line) and PN-D (� and solid 

line).  
(heating rate=2 °C.min-1) 

 

We can also notice that the addition of salt increases the transition enthalpy of the PD-N 

sample that reaches about 4.5-4.7 kJ/mol of NIPA like the PN-D copolymer and the graft 

PNIPA precursor as well. We can assume that the dehydration process of PNIPA grafts with 
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formation of intra-molecular hydrogen bonding is more efficient at high temperature in the 

presence of salt. 

The viscoelastic properties of the same solutions, reported in Figure 11, display a dramatic 

difference between the two copolymers. In the case of PD-N, with PNIPA grafts, the addition 

of salt mostly shifts the association temperature along the x-axis towards lower temperature as 

observed from DSC. The complex viscosity or dynamic moduli only show a weak decrease 

with added salt that can be related to a slight deswelling of the PDMA backbone as the quality 

of solvent becomes worse. This behavior is well documented with solutions of poly(sodium 

acrylate) grafted with poly(ethylene oxide) which have been studied on a very high range of 

K2CO3 concentrations (up to 1.2 molar) [46]. By comparison, the impact of salt on a 3 wt% 

PN-D solution is much more critical as the percolation and thermothickening properties 

rapidly vanish. Indeed, if addition of salt effectively decreases the association temperature, 

only a weak thermothickening is observed with K2CO3 0.1 M with a decrease of the moduli at 

high temperature of more than one decade compared to the same solution in pure water. 

Beyond these conditions, the formation of non percolating clusters in the solution gives rise to 

an unstable viscous behavior. Similarly, neutron scattering data show a better stability of the 

micro-phase separated PD-N sample in the presence of salt, compared to PN-D (see Figure 

S6 in supporting information). These experiments, probing the structure at a local scale, point 

out a large increase of the characteristic length of microphase separation (more than 50%) 

when K2CO3 0.3 M is added into the PN-D solution while this characteristic size remains 

almost unchanged with the PD-N sample. In this later case the main difference arises from the 

formation of a more concentrated PNIPA phase at high temperature as already underlined by 

DSC thermograms. Even if there is a lack of information at the mesoscopic scale, that could 

bridge neutron scattering to rheology, we can assume that the high sensitivity of the PNIPA 

backbone in the vicinity of the phase transition and its lower stability in the presence of salt 
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are responsible for the weak thermothickening performance observed at 3 wt%. This problem 

can nevertheless be avoided by working at higher polymer concentration where inter-chain 

association will dominate over the intra-molecular collapse occurring during the micro-phase 

separation (see Figure S7 in supporting information).   
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 Figure 11. Influence of salt on viscoelastic properties of PD-N (a)  
and PN-D (b) aqueous solutions (Cp=3 wt%, f=1 Hz, heating rate=2 oC/min). 

K2CO3 concentrations: 0 (�), 0.1 (�), 0.2 (�) and 0.3 mol/L (�). 
 

Addition of surfactant 

The addition of ionic surfactant, either anionic such as SDS (sodium dodecyl sulfate) or 

cationic like CTAC (cetyltrimethyl ammonium chloride), is known to dramatically modify the 

phase transition of PNIPA derivatives in aqueous solution. In the case of SDS, it was 

proposed that above a critical aggregation concentration (~ 0.8 mM), that is well below the 

critical micelle concentration of SDS (8.6 mM), surfactant micelles bound to PNIPA 

segments via hydrophobic interactions, forming polyelectrolyte necklaces that progressively 

hinder the formation of PNIPA aggregates at high temperatures [38,47-48]. Indeed, as shown 

in Figure 12, the addition of SDS into PD-N and PN-D solutions has the opposite effect of 

salt with an increase of the association temperature and a decrease of the transition enthalpy. 

A weaker segregation state at high temperature was also observed by 1H NMR in the presence 
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of 2.5 mM of SDS (Figure S8 in supporting information). We can also mention that from 2D 

NOESY experiments (not shown here) it was emphasized that in the range of concentration 

studied, SDS molecules efficiently interact with NIPA units, as already reported in the 

literature [49], but not with DMA. Again the two copolymers behave very similarly from the 

thermodynamic point of view but their macroscopic properties are totally different at this 

polymer concentration. 
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Figure 12 
 

Influence of added SDS on 
the association behavior of 
3 wt% aqueous solutions of 
PD-N ( and dash line) and 

PN-D (� and solid line).  
(heating rate=2 °C.min-1) 

 

As shown in Figure 13, the viscoelastic properties of the PD-N solution is shifted to higher 

temperature with increasing SDS concentration in agreement with DSC data. Concurrently the 

thermothickening properties progressively decrease and we could expect to totally suppress 

the thermoassociation behavior at very high SDS concentrations, when all PNIPA chains will 

be saturated by surfactant micelles forming water-soluble polyelectrolyte necklaces [47]. Such 

behavior is expected at high temperature for weight ratio SDS/PNIPA (S/P) higher than 0.4 

[38,47], i.e. SDS concentration higher than 20 mM in our conditions. By comparison, the 

sol/gel transition is totally suppressed for the PN-D solutions, even for the lowest 

concentration of added surfactant (2.5 mM, i.e. S/P ≅ 0.05). In this case, where the gelation 

threshold relies on the percolation of PNIPA aggregates, the solubilization of PNIPA chains 
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or sequences with the formation of polyelectrolyte necklaces will be critical for the 

percolation process, especially at 3 wt% which is just above the concentration threshold. The 

neutron scattering data plotted in supporting information (see Figure S6) also indicate a 

higher sensitivity of the PN-D sample with added SDS as the characteristic length is reduced 

from about 15%, qmax being shifted towards higher q values. For the two samples, the relative 

concentration fPNIPA*φPNIPA that can be calculated from the invariant highlights a decrease of 

10 to 20 % when 2.5 mM SDS is added, in very good agreement with DSC and NMR 

experiments (see Figure S8 in supporting information). As directly shown by NMR, this 

result can be attributed to the decrease of the number of PNIPA sequences that participate to 

the association process (fPNIPA<1). 
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Figure 13. Influence of SDS on viscoelastic properties of PD-N (a) and PN-D (b) aqueous 
solutions (Cp=3 wt%, f=1 Hz, heating rate=2 oC.min-1). 

SDS concentrations: 0 (�), 2 (�), 5 (�) and 10 mM (�). 
 

Self-assembling in dilute solution 

Dynamic Light Scattering (DLS) has been used to investigate the variation of the size 

distribution profile of copolymer chains during the phase transition process. For that purpose 

very dilute solutions (0.01 wt%) have been prepared at room temperature and the size of the 
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copolymer chains was followed as a function of temperature. The results reported in Table 2 

show that the PN-D chain with the PNIPA backbone has a high tendency to collapse upon 

heating. Its pervaded volume decreases 20 times between 25 and 55 °C but the collapsed 

conformation remains stable with a steric corona formed by PDMA side-chains.  

Table 2 Dynamic light scattering of copolymers in dilute solutions. 

Solvent T (oC) 
Radius (nm) PDI 

PN-D PD-N PN-D PD-N 
H2O

a 25 37 33 0.25 0.25 
H2O

a 35 29 25 0.29 0.26 
H2O

a 45 17 47 0.06 0.24 
H2O

a 55 14 36 0.04 0.25 
H2O

b 55 34 - 0.27 - 
[K2CO3] 0.1 Ma 55 76 60 0.39 0.43 
[SDS] 2.5 mMa 55 24 18 0.32 0.37 

a/ Samples were prepared at concentration 0.1 g/L at room temperature and used for 
test at designate temperature directly. 
b/ Samples were initially prepared at 30 g/L at room temperature and left at 55 oC for 
1 h. Then the sample was diluted by water (55 oC) and used for test at 55 oC.  

 

This result is in good agreement with the theoretical predictions of Borisov and coworkers 

concerning the conformation of comb-like copolymers upon inferior solvent strength for the 

main chain while the solvent remains good for the side chains [49,50]. Indeed, in the case of 

weakly asymmetric graft copolymers, as it is for the PN-D sample where the size of the 

individual side chain in good solvent is close to the average size of the spacer under Θ-

conditions, they predict the formation of stable collapsed structures (necklace of star-like 

micelles) in poor solvent conditions for the backbone. The main difference between our 

copolymers and the theoretical predictions is that dynamics is highly reduced in the case of 

PNIPA assemblies.  

If the phase transition is activated in the semi-dilute regime (3 wt%) prior to dilution, 

aggregates of higher polydispersity are obtained, showing their propensity to form inter-

molecular aggregates at higher concentration. By comparison, PD-N chains studied in dilute 
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conditions show larger dimensions above the transition temperature with the formation of 

both intra- and inter-molecular associations. This behavior is very similar to the self-assembly 

of polysoaps reported by Borisov et al. [51] in dilute solutions where bridging attractions are 

responsible for inter-chain aggregation and macrophase separation. Although addition of salt 

favors the formation of larger inter-chain aggregates, the opposite tendency is observed in the 

presence of SDS at high temperature. 

 

DISCUSSION 

As shown in this work, the solution properties of the two copolymers PD-N and PN-D, having 

similar compositions but inverse topologies, display close resemblance and critical differences 

in aqueous media. 

Water-soluble copolymers grafted with LCST stickers have been well studied during the last 

two decades and their structure determined from scattering techniques is generally described 

with the formation of LCST microdomains connected by water-soluble macromolecular 

backbones. The exact structure strongly depends on the nature and number of the LCST 

stickers, but also on the nature of the backbone which could be polyelectrolyte or neutral, in 

very good solvent or in theta-solvent. All these parameters will have critical impacts on the 

microphase separation as they will control the size and the stability of domains. In the case of 

PDMA which could be considered in good solvent in water, the neutron scattering data 

obtained with PD-N solutions show a rather continuous process for the microphase separation 

with the formation of an increasing number of PNIPA aggregates of increasing concentration 

that finally leads to sharp interfaces with the outer medium at high temperature. As PNIPA 

chains are relatively short and chemically anchored on the hydrophilic backbone, they are less 

prompt to self-associate. The self-assembling is then a relatively continuous process taking 
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place mainly between 40 and 55 °C as shown by DSC, NMR and SANS. In the schematic 

description of the self-assembling of PD-N sample given in Figure 14, the main idea is that 

the phase transition of PNIPA side-chains (from coil to globule) leads to a micro-phase 

separated structure where the rich PNIPA aggregates, drawn as spheres for simplicity, can be 

either randomly dispersed within the PDMA/solvent matrix or connected forming a 

bicontinuous morphology.  

 
�

 

 

�

 
 

Figure 14. Schematic representation of the thermoassociation behavior of 
PD-N (�) and PN-D (�) copolymers in aqueous media. 

 

In the first case, the percolation and the viscoelastic properties originate from the PDMA 

backbones making bridges between PNIPA domains. In the other situation, both PDMA 

chains and percolating PNIPA aggregates will behave as physical bridges in the macroscopic 

properties. By comparison, DSC, NMR and SANS data show that PN-D chains undergo an 

abrupt micro-phase separation above the transition temperature that rapidly leads to the 

formation of concentrated PNIPA domains with sharp interface. Contrary to the copolymer 
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with PNIPA side-chains, the phase transition of the PNIPA backbone is almost achieved 

between 35 and 40 °C. Above this temperature, the mobility of PNIPA, as seen by NMR, is 

highly reduced in agreement with the vicinity of the glass transition of the binary 

PNIPA/water system, and the slight increase of composition observed at higher temperatures 

can be attributed to a continuous release of water from the aggregates. As PN-D chains are 

able to form a stable percolating network with elastic properties above 3 wt%, we can 

reasonably assume that PNIPA sequences of the backbone self-assemble into a bicontinuous 

two-phase structure. According to the schematic description given in Figure 14, PNIPA 

sequences inserted between PDMA side-chains collapse above their transition temperature 

and form sticky globules that self-associate into a percolating 3D structure. This mechanism 

can be compared to the one reported with aqueous solutions of pure linear PNIPA as they also 

form physical networks during phase separation above some overlap concentration [52,53]. 

Nevertheless for pure PNIPA, the non-equilibrium morphologies, which are kinetically 

controlled, are much less stable with time or under high deformation. This is not the case with 

graft copolymers, PD-N and PN-D, as PDMA sequences stabilize in water the morphologies 

above the LCST and the macroscopic properties remain totally reversible by cycling the 

temperature. The fact that we also consider in Figure 14 the possibility for PD-N chains to 

form a percolating network of PNIPA aggregates, like PN-D, comes from the strong similarity 

of their viscoelastic properties in spite of their inverse topologies. On the one hand, this 

similarity is quite reasonable for the complex viscosity at low temperature as, in the non-

associating state, similar solubility and swelling behaviors are expected for the two 

copolymers having close average molar masses and composition. As shown in Figure 15, the 

viscosities are in agreement with theoretical scaling exponents calculated for unentangled 

(x=5/4) and entangled (x=15/4) semi-dilute solutions of polymer in good solvent [54]; the 

entangled regime starting around 5 wt%. Quantitatively, the overlap concentration can be 
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calculated at 25 °C from the radius of gyration (RG=35 nm in Table 2) and the molar mass of 

the copolymers (M=400 000 g/mol; see Table 1). This gives C* ≈ 0.4 wt% for both PN-D and 

PD-N, in good agreement with experimental data of Figure 9 if we assume that the solution 

viscosity at C* should be twice the viscosity of the solvent (η≈0.002 Pa.s) [55]. Similarly, if 

we consider that C* is about 0.4 wt% for both copolymer samples, this means that at 5 wt% 

each chain overlaps with at least 10 others which is a good criterion for the beginning of the 

entangled regime according to Dobrynin et al. [56]. 

While these rheological data are quite expected at room temperature, the results are more 

surprising at high temperature where similar elastic moduli were obtained for both PN-D and 

PD-N solutions. This leads us to believe that a similar self-assembly of PN-D and PD-N in 

water underlies their macroscopic properties. 

In this framework, one of the main features of the micro-phase separation of PNIPA 

sequences is the important slowing down of the polymer dynamics. The “glassy” behavior, or 

more precisely the low dynamics of PNIPA aggregates, is of prime importance as the lifetime 

of the associations is responsible for the covalent-like 3D network observed at high 

temperature. Moreover the abrupt transition of the PN-D sample, together with the formation 

of concentrated aggregates of low mobility, gives the possibility to freeze the micro-phase 

separated structure during the early stage of the transition. 

In the case of PN-D solution, the concentration is a critical parameter and a stable 

thermothickening behavior was observed only at a sufficiently high concentrations (3 wt% 

and above), mainly in the semi-dilute entangled regime where intermolecular associations 

overcome the intramolecular collapse of the chains. Below this concentration, the formation 

of loosely connected or unconnected clusters will only provide poor viscous properties. On 

the other hand, the PD-N copolymer is more stable at lower concentration (below 3 wt%): this 
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gives rise to viscosity enhancement through the formation of PDMA bridges between 

unconnected PNIPA clusters.  

It is interesting to notice that when stable gels are formed, either with PN-D or PD-N, they 

exhibit very similar elastic modulus at the same polymer (or PNIPA) concentration with a 

quadratic dependence of G’ on concentration (see Figure 15).  
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Figure 15 
 

Concentration dependence of 
complex viscosity at 20 °C (�) 

and elastic modulus at 60 °C (��) 
for PD-N (hollow symbols) and 
PN-D (filled symbols) aqueous 

solutions. 
 

Dotted lines are used as guide lines 
 
 

 

Taking into account the picture of a bicontinuous structure, where the mechanical properties 

are mainly brought by the concentrated PNIPA phase, this mechanical behavior is comparable 

with open-cell polymer foams where the elastic modulus of the material varies with the 

modulus of the wall and the square of their volume fraction [57]. Working close to the 

concentration threshold of the copolymers (3 wt%), the addition of salt or surfactant reveals 

real differences with opposite macroscopic behaviors. For the PD-N sample, addition of salt 

(or SDS) decreases (or increases) the association temperature as expected from the solubility 

of PNIPA chains. These additives also modify the elastic modulus in the gel state as 1) salt 

slightly deswells the PDMA backbone, decreasing the degree of overlapping, and 2) SDS 
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decreases the number of PNIPA stickers by forming polyelectrolyte necklaces. On the other 

hand, while the shift of the association temperature is similar for PN-D compared to PD-N, 

both salt and SDS dramatically ruins the 3D scaffold initially formed in water. In the first 

situation, the loss of connectivity can be correlated to a lower stabilization of PNIPA domains 

by PDMA hydrophilic side-chains; the characteristic wavelength of the microphase separation 

increasing with salt concentration. In the presence of SDS, the opposite effect is observed 

with the formation of smaller PNIPA aggregates which become more repulsive with the 

binding of SDS molecules. 
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Highlights 

• Two LCST-based graft copolymers with reverse topologies were prepared from PNIPA and 
PDMA. 

• Aqueous solution properties were studied by DSC, NMR, neutron scattering and rheology. 

• The two copolymers undergo similar sol/gel transition upon heating in the entangled regime. 

• Transition is more abrupt when PNIPA is used as backbone (PN-D) instead of grafts (PD-
N). 

• When unentangled, PN-D chains do not percolate in the presence of salt or surfactants. 
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Influence of topology of LCST-based graft copolymers on responsive assembling in 

aqueous media. 
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Synthesis of thermosensitive linear copolymers 

The synthesis of responsive linear copolymers was performed according to a three-step 

process that is summarized as follows. 

1) Synthesis of Amino-Terminated Telomers 

The synthesis of functional chains was achieved by radical polymerization using an efficient 

chain transfer agent AET. This telomerization allows controlling the end group of the polymer 

as well as its molar mass. In a three necked flask, 100 mmol of monomers (NIPA or DMA) 
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was dissolved in 100 mL of water and the solution was deoxygenated for 1 h with nitrogen 

bubbling. The redox initiators, KPS (1.0 mmol) and AET·HCl (2.0 mmol), were separately 

dissolved in 10 mL of water and deoxygenated for 30 min before adding to the monomer 

solution. The reaction was allowed to proceed in an ice bath, in order to avoid the phase 

separation of the reaction medium in the case of PNIPA. SEC was applied to monitor the 

polymerization process. After 4 h, no monomer was left according to SEC, and an appropriate 

amount of sodium hydroxide was added to neutralize the hydrochloride ions and the polymer 

was recovered by dialysis against pure water (membrane cut-off=3.5 kDa) for one week and 

freeze-dried. The telomers were obtained with a yield of 70 wt%.  

2) Synthesis of linear macromonomers 

Typically for the PNIPA macromonomer, 6.0 g of amino-terminated telomers (about 0.26 

mmol) and 0.29 g of AA (4 mmol) were initially dissolved in 50 mL of NMP at room 

temperature. After dissolution, 0.8 g of DCCI (4 mmol), initially dissolved in a minimum of 

NMP, was introduced rapidly and the reaction was allowed to proceed overnight under 

stirring at room temperature. After dilution with 100 mL of water, the polymer was purified 

by dialysis against pure water (membrane cut-off=3.5 kDa) for one week, and the aqueous 

solutions were filtered and freeze dried. The reaction was almost quantitative and the PNIPA 

macromonomer was obtained with a yield of 95 wt%. A similar process was applied for 

PDMA macromonomers, with a yield of 95%. 

3) Synthesis of graft copolymers 

The reaction was carried out in aqueous solution in a three necked flask immersed in an ice 

bath. Typically, for the synthesis of PDMA-g-PNIPA, 5 g of PNIPA macromonomer (0.22 

mmol), 5 g of DMA (51 mmol) and 3.4 mg of SBS (0.018 mmol) were dissolved at low 

temperature in 100 mL of water and let for 1h under nitrogen atmosphere. Then, ammonium 
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peroxodisulfate (14.4 mg, 0.063 mmol) was dissolved in a small amount of water, 

deoxygenated, and transferred under nitrogen atmosphere into the reaction medium. The 

reaction was allowed to proceed below 10 °C and the conversion with time of both monomer 

and macromonomer was controlled by SEC. At the end of the reaction, the copolymer 

solution was purified by dialysis directly against pure water (membrane cut-off=50 kDa) for 

three weeks and freeze-dried. The PDMA-g-PNIPA was obtained with a yield of 88 wt%. A 

similar process was applied for PNIPA-g-PDMA, with a yield of 90%. 

Viscoelastic analysis 

As shown in Figure S1, the complex viscosity (η*) can be used to describe the 

thermothickening behavior of graft copolymer solutions as this single parameter is 

proportional to the loss modulus in the liquid state (low temperature) and to the storage 

modulus in the gel state (at high temperature). 
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Figure S1  
 

Temperature dependence of 
complex viscosity of PD-N (��) 
and PN-D (��) aqueous solutions 
under heating (regular triangles) or 

cooling (inverted triangles) 
 (Cp = 3 wt %, f = 1 Hz, heating or 

cooling rate=2 oC/min). 
 

 

At high temperature, well above the transition threshold, the copolymers solutions behave like 

elastic gels with a high elastic modulus (compared to the viscous modulus) that is almost 

independent of the frequency (Figure S2). 
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Figure S2 
 

Frequency dependence of elastic 
(�) and loss (��) moduli of 3 
wt% aqueous solutions of PD-N 

(full) and PN-D (hollow) at 60 °C. 
 

As shown in supporting information (Figure S3), there is no significant modification of the 

thermodynamic behavior of PNIPA replacing H2O with D2O; or at least the difference 

remains within 1 °C as already reported in the literature. 

Temperature (°C)

20 30 40 50 60

η*
 (

P
a.

s)

0.01

0.1

1

10

100

1000

PDN H2O 
PDN D2O
PND H2O
PND D2O

 

 
 
 

Figure S3 
 

Temperature dependence of 
complex viscosity (η*) of  PD-N 

and PN-D aqueous solutions 
(Cp = 8 wt %, f = 1 Hz, 
heating rate=2 oC.min-1) 

in H2O and D2O. 

 

In the case of incompressible biphasic systems, the invariant is a constant that only depends 

on volume fraction (φi) and contrast (ρi) between the two phases:

21
2

21
2

exp )(2 φφρρπ −== thQQ . From scattering data analyses performed with PD-N and PN-

D solutions above their transition temperature, it is possible to determine the invariant 
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experimentally as shown in Figure S4a. Although the extrapolation of ∫
∞

=
0

2
exp )( dqqIqQ  is 

performed within a limited q-range (q < 0.05 Å-1), the relative error on the experimental value 

can be considered lower than 10 %.  
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Figure S4. SANS data treatment for a 8 wt%  
PD-N solution: a) experimental determination 
of the invariant Qexp at T=57.5 °C, b) 
temperature dependence of Qexp above Tas,  c) 
variation of the theoretical invariant (Qth) 
with the fraction of PNIPA embedded into the 
segregated phase (fPNIPA) time its volume 
fraction (φPNIPA) according to the following 
hypotheses:  
() fPNIPA = 1: all PNIPA segments are 
embedded into micro-domains at a volume 
fraction φPNIPA <1, 
(�) φPNIPA = 1: only a fraction of PNIPA 
chains contribute to the formation of dry 
aggregates. 

 

The determination of Qexp as a function of temperature (see Figure S4b) can be used to 

determine the fraction of PNIPA embedded in the segregated phase (fPNIPA) time their volume 

fraction (φPNIPA) according to two different hypotheses:  
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1) all PNIPA segments are embedded into micro-domains (fPNIPA = 1) at a volume fraction 

φPNIPA <1 ; considering the presence of water inside the aggregates, 

2) only a fraction of PNIPA chains (fPNIPA < 1) contribute to the formation of dry aggregates 

(φPNIPA = 1). 

The theoretical plot given in Figure S4c, shows how to calculate the so-called “level of phase 

separation” (fPNIPA * φPNIPA) from the invariant (Qexp=Qth) according to the different 

hypotheses. As previously discussed, a relative accuracy of about 10 % can be considered on 

the extrapolated data.  

As shown in Figure S5, the transition enthalpy of graft copolymers PN-D and PD-N does not 

really depend from the copolymer concentration. 
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Figure S5. Concentration dependence of the LCST-type phase transition for the two 
copolymers PD-N (a) and PN-D (b) in aqueous solution.  

(Cp from 1 to 10 wt%, heating rate=2 o.min-1).  
 

In the process of the microphase separation of copolymer solutions, the characteristic size of 

concentration fluctuations may be calculated using the Bragg law d=2π/qmax where qmax is the 

position of the maximum in the Lorentz-corrected scattering intensity, i.e. q2I(q) vs q. As the 

position of qmax cannot be accurately defined at low concentration (here 3 wt%) from the 
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original curve I(q) vs q, the Lorentz-corrected intensity has been used in Figure S6 to 

highlight the variation of this characteristic wavelength at high temperature in the presence of 

additives. 
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Figure S6. SANS patterns of PD-N (left) and PN-D (right) copolymers at 3 wt % in water 
(), K2CO3 0.3 M (�) and SDS 2.5 mM (�). 

All the experiments have been performed at high temperature : T = 57 °C. 
 

Working well above the percolation threshold, both PD-N and PN-D solutions exhibit similar 

thermothickening behaviors with sharp sol/gel transitions in the presence of salt (see Figure 

S7). 
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Figure S7. Influence of salt on viscoelastic properties of PD-N (a) and PN-D (b) aqueous 

solutions (Cp=10 wt%, f=1 Hz, heating rate=2 oC.min-1); 
[K2CO3] = 0 mol/L () and 0.3 mol/L (�)  

 

As shown by 1H NMR, the binding of SDS molecules on PNIPA sequences will modify the 

phase separation of PNIPA above their transition temperature by increasing the water content 

as well as their mobility inside the aggregates (see Figure S8). 
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Figure S8. Normalized area of CH3 signal from NIPA units without () and with 2.5 mM of 
SDS (�) in PN-D (a) and PD-N (b) aqueous solutions (C=3 wt%, D2O). 

 

 




