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Abstract  

Through several examples we show that following sea-level fall and marginal erosion during 

the Messinian salinity crisis (MSC), clastic inputs into the eastern and western Mediterranean 

Sea are not distributed evenly in space and time but are mainly limited to the lower section of 

the Messinian salinity crisis depositional megasequence. Significant similarities around the 

basin allow us to propose a Mediterranean Messinian salinity crisis depositional episode that 

can be divided into two seismic megasequences: the Messinian lower megasequence (MLM) 
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and the Messinian upper megasequence (MUM). Their distinctive seismic facies correspond 

to systems tracts deposited during three main stages that represent a complete sea level cycle. 

(1) A falling stage systems tract including mass transport deposits and forced regressive 

clinoforms deposited in in the early part of the falling stage, and related to the increasing rate 

of relative sea level fall.  This stage is characterized by a marked shift in the depocenter 

towards the deep basins. (2) An early lowstand characterized by massive clastic inputs from 

major Messinian rivers (the Rhone, Nile, and Antalya Gulf rivers) or smaller river systems 

(offshore south Lebanon). These clastics were deposited in an oversaturated basin, as 

evidenced by the interfingering chaotic and transparent seismic facies of the Messinian lower 

megasequence (MLM). (3) A late lowstand, starting with rapid deposition of massive halite, 

with no detrital inputs into the deep basin. The upper part of the evaporites clearly onlaps the 

Messinian erosional surface at the margins and is evidence for a transition between a late 

lowstand stage and an early transgressive stage. These deposits belong to the Messinian upper 

megasequence (MUM). We interpret the transition between the two megasequences as the 

peak of the “salinity” crisis, the end of the relative sea level fall, and the maximum dispersal 

of sands into the deep Mediterranean basins.   

 

Key words: 

Messinian salinity crisis, Deep Mediterranean basins, Seismic stratigraphy, Messinian lower 

megasequence (MLM), Messinian upper megasequence (MUM), dual low stand. 

 

1. Introduction  

The Messinian event and its repercussions have been the subject of renewed interest both in 

academia and industry in recent years. MSC paleoceanography continues to be one of the 

most fascinating topics in its own right, but the potential existence of petroleum systems in 
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the subsalt pre-Messinian successions in both eastern and western Mediterranean provinces 

has also piqued the interest of industry (Belopolsky et al., 2012; Roveri et al., 2014). The 

MSC was triggered by a combination of tectonic and climatic mechanisms and its effects on 

Holocene margins are still being felt in terms of deep karsts (Audra et al., 2004), recent slope 

instabilities (Savoye and Piper 1991), and Quaternary submarine canyons that occupy old 

topographies (Tassy et al., 2013 and 2014).  At the peak of the MSC, the depocenters shifted 

to the deepest basins (Chumakov, 1973; Ryan, 1978; Barber, 1981; Clauzon, 1982; Gorini et 

al., 2005; Lofi et al., 2005). Old seismic profiles in the deep Mediterranean basins suggested 

the presence of evaporites on the seafloor (Mauffret, 1968; Ryan and Hsu, 1970; Mauffret et 

al 1973; Montadert et al., 1978), and these were ground-truthed in 1970 by the Deep Sea 

Drilling Program (DSDP) (Ryan, 1973).  Since then, three more drilling expeditions (DSDP 

Leg 42: Hsü et al., 1978; ODP Leg 107: Kastens, et al., 1987; ODP Leg 161: Zahn et al., 

1999) were able to sample only the upper veneer of the Messinian upper unit (Lofi et al., 

2011b; Fig. 1). The lower part of the Messinian salinity crisis (MSC) megasequence was only 

poorly seismically imaged (e.g. Hsü et al., 1973a and 1973b; Ryan, 1976; Hsü et al., 1978a; 

Ryan and Cita, 1978; Mart and Ben Gai, 1982; Garfunkel and Almagor, 1987; Stampfli and 

Höcker, 1989; Savoye and Piper, 1991; Escutia and Maldonado, 1992), until extensive 

hydrocarbon exploration in the offshore Mediterranean basins in the last three decades 

increased both available high-quality seismic lines and well log data. These advances led to 

new interpretations and publications (since the year 2000: Guennoc et al., 2000; Lofi et al., 

2005; Sage et al., 2005; Bertoni and Cartwright, 2006; Maillard et al., 2006; Netzeband et al., 

2006; Schattner et al., 2006; Bertoni and Cartwright, 2007a and 2007b; Lofi and Berné; 2008; 

Bache et al., 2009; Ghielmi et al., 2010; Urgeles et al., 2011; Garcia et al., 2011; Lofi et al., 

2011a and 2011b; Maillard et al., 2011; Obone Zue Obame et al., 2011; Bowman, 2012; 

Geletti et al., 2014; Gaullier et al., 2014). In the eastern Mediterranean Sea, the Messinian 
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evaporites in the Nile cone and the Levant areas have been the subject of a number of studies 

focused on the depositional context of the evaporites (Mart, 1982; Druckman et al., 1995; 

Buchbinder and Zilberman, 1997; Manzi et al., 2013) and the post-evaporitic structural 

deformation (Garfunkel and Almagor, 1987; Abdel Aal et al., 2000; Loncke, 2002; Hübscher 

and Netzeband, 2007; Cartwright and Jackson, 2008; Hübscher and Dümmong, 2011; Reiche 

et al., 2014).  However, there have been few attempts to make a detailed comparison of the 

stratigraphic architecture of Messinian deposits in the eastern and western Mediterranean 

(apart from the Atlas, by Lofi et al., 2011a). This paper presents a general pan-Mediterranean 

scenario for the Messinian erosional and salinity crisis that could alter our view of the 

potential presence of hydrocarbon reservoirs. In addition, it could help plan academic IODP 

drilling locations in both the western and eastern Mediterranean. 

 

2. Brief review of knowledge of the different sub-basins 

The sequestration of the Mediterranean Sea from the adjacent oceans at the end of the 

Miocene caused significant evaporation of seawater and increased the evaporitic 

concentration of the Mediterranean Sea (Blanc, 2000, 2006; Meijer and Krijgsman, 2005; 

Meijer, 2006; Gargani and Rigollet, 2007; Gargani et al., 2008). As a result, a thick (up to 2 

km) sequence of evaporites was deposited in the center of its deep basins (Hsü et al., 1973; 

Cita, 1973; Ryan, 1973; Garfunkel and Almagor, 1987). This deposition coincided with 

intense subaerial erosion of the basin margins (Denizot, 1952; Barr and Walker, 1973; 

Chumakov, 1973; Clauzon, 1973, 1978, 1982; Gvirtzman and Buchbinder, 1978; Hsü et al., 

1978a; Ryan and Cita, 1978; Barber, 1981; Savoye and Piper, 1991; Druckman et al., 1995; 

Guennoc et al., 2000; Lofi et al., 2005; Ryan, 2009; Bache et al., 2009). The Messinian 

salinity crisis ended with catastrophic re-flooding (Garcia-Castellanos et al., 2009; Estrada et 

al., 2011). However, it took a few million years for sedimentation in the Mediterranean to 
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rebuild its slopes and shelves to the modern and pre-MSC configurations (Lofi et al., 2003; 

Urgeles et al., 2011; Leroux et al., 2014). Contemporaneously, Messinian valleys and canyons 

identified on seismic lines and in drill cores, were infilled and buried (Druckman et al., 1995; 

Buchbinder and Zilberman, 1997; Guennoc et al., 2000). The amplitude of the sea level rise 

that led to the reestablishment of marine conditions in the Mediterranean is attested by the 

geometries of the deltaic progradational-aggradational wedges above the MES (Lofi et al., 

2003; Duvail et al., 2005; Gorini et al., 2005, Kertznus and Kneller, 2009; Hawie et al., 

2013b, Leroux et al., 2014). In addition, clinoform geometries are good paleodepth indicators 

(Urgeles et al., 2011; Rabineau et al., 2014) that provide an estimated sea level rise of 800-

1000 m (above the last Messinian lowstand paleoshore position, Leroux et al., 2014). Since 

the Oligocene, the Levant margin and basin sediments have been sourced mostly from the 

Nile (Hawie et al., 2013b; Tibor et al, 1992; Druckman et al., 1995, Fig. 1). Sediments in the 

western Mediterranean basin mainly originated from the Rhone and Ebro since the Tortonian 

(Gorini et al., 2005; Lofi et al., 2005; Bache et al., 2009; Garcia et al., 2011; Urgeles et al., 

2011; Estrada et al., 2011; Fig. 1). The paroxysm of the MSC started around 5.6 Ma (CIESM 

Consensus Report, 2008).  The debate concerning the amplitude of sea-level drop associated 

with this crisis continues (see for example: Lugli et al., 2013; Roveri et al., 2014). Also, the 

amount of erosion and clastic input in the deep basin is not wholly agreed upon (see e.g., Lofi 

and Berné, 2008 vs. Bache et al., 2012).  

 

3. Imaging the Eastern Mediterranean Messinian Deep Basin  

3.1. The NW Levant Basin: A stratigraphic type section 

Understanding the seismic stratigraphy of the Messinian evaporites is challenging in that it is 

often hindered by the ductile state of the mobile unit (MU) and its subsequent internal 

deformation [(e.g., in the Herodotus Basin (Loncke et al., 2006) or next to the Levantine 
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eastern margin (Netzeband et al., 2006; Hübscher and Dümmong 2011; Reiche et al., 2014)]. 

Nevertheless, most of the Levant basin remains rather undeformed. Therefore, investigating 

the Levant basin is crucial to unravelling the stratigraphic evolution of the Messinian 

evaporites.  

Figure 2 shows the seismic stratigraphic subdivisions used along a seismic profile located in 

the NW Levant basin (Fig.2a). Five major units can be identified within the 1,500 m thick 

layer of Messinian evaporites (Fig. 2b).  

- Unit A is limited to the base and top by high-amplitude reflectors. The configuration of the 

internal seismic facies is similar to the underlying Miocene units, with presumably high 

detrital content. The base of the Messinian salinity crisis (MSC) depositional sequence can be 

identified exactly at the base of Unit A (see Figs. 2b and 3b, and the discussion section). 

- Unit B is transparent, with intercalations of high frequency reflectors. Deformation is visible 

within this unit, indicating the presence of mobile/ductile materials (i.e. halite, Hübscher and 

Dümmong, 2011). 

- Unit C is composed of a set of high amplitude reflectors separated by more transparent 

intervals that may represent halite. The nature of the high amplitude reflectors is uncertain 

(e.g. acoustic impedance contrast between evaporites of different nature or detritic levels). 

Results of the inversion of seismic data collected in the northern Levantine basin suggest the 

presence of clastics (Fig. 2c, Montadert et al., 2014). 

- Unit D is similar to Unit B with transparent seismic facies indicating another mobile unit 

(halite deposits) with some intercalated high frequency reflectors that are more frequent 

towards the top of the unit. 

-Unit E is characterized by high frequency reflectors, pointing to high frequency hydrological 

changes at the top of the MSC Megasequence. This unit corresponds to the uppermost 

stratified Messinian unit ME V previously described by other authors (Hübscher and 
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Dümmong 2011; Dümmong and Hübscher, 2011; Gvirtzman et al., 2013; Reiche et al., 2014). 

It shows reduced refraction velocities (3,700-3,600 m/s), suggesting intercalated gypsum and 

clastics.  A high amplitude reflector marks the top of unit E (Top erosion surface: Hübscher 

and Dümmong 2011; Reiche et al., 2014) and the boundary with the Pliocene sediments 

characterized by low seismic velocities (2,600m/s; Gvirtzman et al., 2013).  

Other authors agree with a basic subdivision of the succession into five main units 

[(Netzeband et al., 2006) see also: (Cartwright et al., 2012) on the Israeli margin with their 

M1-M5 units], although six units have been described in the westernmost part of the basin 

[Bertoni and Cartwright, 2007 (T1-T4 and L1-L2); Hübscher et al., 2008; Cartwright and 

Jackson, 2008; Maillard et al., 2011; Dümmong and Hübscher, 2011; Gvirtzman et al., 2013]. 

These areas show thin-skinned salt tectonic activity.  

In the northern part of the Levant margin, the onshore drainage basin is characterized by 

carbonate dominated rocks and restricted river systems (Hawie et al., 2013a, 2013b), which 

limit siliciclastic inputs. Offshore the Lebanon margin, the Messinian clastics are limited to 

the lower slope and the lower half of the evaporite interval (Fig. 3b).  

 

3.2. Correlation with the Nile margin: Thick clastic unit at the base of the Messinian event 

In the Nile deep sea fan in the Herodotus Basin, considerable amounts of sediments have been 

deposited along the Egyptian margin since the Oligocene (Fig. 1). The Messinian sea level 

drop increased the role of the Nile as a conduit for sediments. Subaerial erosion affected large 

areas of the former Miocene Nile cone (Montadert et al., 2014). Seismic profiles suggest that 

during this period as well as during the Pliocene-Pleistocene, most of the sediments were 

diverted westward by the prominent Eratosthenes continental block (Montadert et al., 2014; 

Fig.1). The seismic lines (Fig. 4b and 4c) in the lower part of the Nile cone display 

intercalation of a large, thick clastic unit (about 2,000 m thick) at the base of the MSC 
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megasequence. This unit corresponds to the Messinian lowstand Nile delta-fed clastics 

(gravity flow deposits). In detail, stacked channel complex systems characterize this seismic 

facies (Montadert et al., 2014).  

The change in the lateral facies between this clastic deposits (low frequency, high amplitude, 

low continuity reflections) and halite (transparent seismic facies), which is clearly visible in 

Figs. 3b, 4b and 4c, is evidence that these clastics accumulated in a restricted hypersaline 

Messinian basin. Messinian clastics were eroded from the shelf margins and redeposited in 

the deep basins during the early stages of the Upper Messinian sea level drop. They 

interfinger with evaporite deposits and therefore fully belong to the MSC event. Caution is 

therefore called for in defining the base of the MSC event on seismic profiles in the deep 

Mediterranean basin, e.g., choosing the base of the transparent layer (halite) as the base of the 

Messinian salinity crisis deposits, particularly in front of the big rivers, would lead to 

false/incomplete interpretations. Hence the base of the MSC event must be located at the base 

of these high frequency reflections. 

 

3.3. Correlation with the Florence Ridge: the Antalya Basin 

The Antalya Basin is located north of the Florence Ridge (Biju-Duval et al., 1978, 1979; Fig. 

5a) and is part of the Cyprus arc system. This basin was formed after the emplacement of the 

Cyprus arc during the Late Cretaceous and later infilled by a thick Cenozoic cover with 

sediments sourced from Turkey (Fig. 1 and Fig. 5a). Thick Messinian evaporites are observed 

in this basin similar to those seen in the nearby Herodotus Basin (Fig 5b). The Antalya and 

Herodotus basins used to be connected, whereas isolated Messinian islands persisted along 

the Florence Ridge (Biju-Duval et al., 1978, 1979). 

In the seismic profiles (Fig. 5b), the same stratigraphic stacking pattern can be seen as in the 

Levant Basin (Fig. 2b and Fig. 3b). Continuous reflectors (Unit C) can be observed in 
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between more transparent facies (Units B and D, we interpret as halite). Fig. 5b depicts a 

large clastic body that laterally corresponds to Units A, B and C. It is consequently located 

within the lower half of the MSC depositional megasequence. The top of sequence C marks 

the transition from the lower part of the MSC megasequence, where clastic inputs dominate, 

to the upper part of the MSC megasequence, where evaporites dominate. 

  

4. Geometries and facies distribution in the western and eastern Mediterranean: a 

comparison 

The MSC seismic stratigraphy off the Rhone River was defined by Ryan et al. (1973), Bessis 

(1986), Bache et al. (2009), Ryan (2009), Lofi et al. (2011a, 2011b). Differences in facies and 

geometries between the western and eastern Mediterranean were identified by these authors.  

The MSC megasequence is commonly subdivided into three units: the lower unit (LU), the 

mobile unit (MU) and the upper unit (UU). However, we propose to subdivide the thick 

megasequence into two layers in both basins that are comparable in terms of thickness and 

seismic signature (Fig.6a and Fig.6b): the Messinian lower megasequence (MLM) and the 

Messinian upper megasequence (MUM). An improved correlation between the two deep 

basins is provided here.  

 

4.1. The MSC Lower Megasequence (MLM) 

In the eastern Mediterranean the A, B and C subunits are grouped in the Messinian lower 

megasequence (MLM).  In front of the biggest Messinian rivers, like in the distal part of the 

Nile Messinian cone, or off the Rhone deep sea fan, the MLM unit is imaged by a chaotic 

seismic facies we interpret as stacked systems of mixed silicoclastic sediments and evaporites.  

In the eastern basin, units A B and C are stacked in one seismic facies in front of the Nile, 

Levantine and Antalyan rivers (Figs.3b, 4b, 4c and 5b). The seismic facies and the thickness 
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of this lower unit resemble those of the lower unit (LU) described by Bache et al. (2009) and 

Ryan (2009) in the western basin (labelled 2 in Fig. 6a). Note that the LU described by Bache 

et al., (2009) is much thicker than the LU described by Lofi et al., (2011a). In the western 

basin, this unit is up to 2.5 km thick using ESP velocity (Leroux, 2012). We interpret the 

complex features and internal erosions in both the Rhone deep sea fan and in the Nile cone as 

channels (labelled 2 in Fig. 6a and Fig. 6b).  On top of this MLM, chaotic facies are also 

visible (labelled 5 in Fig. 6a) and that we suggest are the result of instabilities triggered by the 

rapid sea level drop (Gargani et al., 2014),which was still underway at the peak of the 

Messinian crisis.  As stated in section 3, the change in the lateral facies from high-amplitude 

seismic facies to the transparent seismic facies in the eastern basin (Figs. 3 to 6) shows that 

the clastics were redeposited in a hypersaline environment. High P wave velocities in the 

Messinian lower megasequence, point to the probable alternation of evaporate sedimentation 

and clastics in both the western Mediterranean (Leroux, 2012) and eastern Mediterranean 

(Montadert et al., 2014). The explanation for these alternations is that in front of the big 

rivers, saline concentrations were diluted by fluxes of riverine water leading to the deposition 

and intercalation of shale, gypsum and halite.  In this interpretation, clastic deposits are 

synchronous with the deposition of evaporites in the deep basins.  

Upslope, high angle clinoforms have been described (Bache et al., 2009; Leroux, 2012, 

labelled 1 in fig. 6) with an underlying surface of marine erosion (regressive surface of marine 

erosion, RSME). We interpret these clinoforms as forced regressive deltas related to the 

increasing rate of MSC sea level fall. Similar (but smaller) forced regressive systems have 

been described on the outer shelf and were deposited during the glacio-eustatic falling stages 

in the Late Quaternary (Berné et al., 2004; Rabineau et al., 2005, 2006) and were later 

ground-truthed by drilling (Bassetti et al., 2008). These forced regressive deltas are related to 

100,000 year glacio-eustatic cycles with an overall sea level fall of 120 m. The observed 
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Messinian prisms are located much deeper and more seaward on the slope, with steeper 

clinoforms, indicating a much larger drop in sea level (Bache et al., 2009; Urgeles et al., 

2011), i.e. between 800 m and 1,500 m.  

 

4.2. The Messinian Upper Megasequence (MUM) 

We divide the MUM into two corresponding to unit D and E in the eastern Basin (Figs.3b, 4b, 

4c and 5b) and to the mobile unit (MU, labelled 6 in Fig.6a) and upper unit (UU, labelled 7 in 

Fig. 6a) of (Lofi et al., 2011a, 2011b) in the western basin. In the western and eastern area, the 

MUM is comparable in terms of thickness (0.5 TWT) and seismic facies (high amplitude 

reflections on top of a thick transparent unit). In detail, the top of the MUM shows lateral 

variations, e.g., transparent facies between high amplitude reflections (Reiche et al., 2014; 

Geletti et al., 2014; Fig. 5b). In the western basin, the upper part of the MUM clearly onlaps 

the Messinian canyons and the incised valleys (Fig. 7). This architecture has already been 

described in proximal settings throughout the western Mediterranean (Montadert et al, 1978; 

Sage et al., 2005, Lofi et al., 2011a, 2011b; Figs. 7a, 7b, 7c) and the eastern Mediterranean 

(Gargani and Rigollet, 2007).  

The top of the MSC megasequence has been strongly eroded in most parts of the eastern and 

western deep basins. For example, on the Florence Ridge west of the island of Cyprus, the 

thick Messinian evaporites are clearly eroded, resulting in a flat surface (Fig. 8). The same 

substantial erosion of the top of the MSC megasequence is also visible in the western basin 

(labelled top erosional surface, TES on Fig. 6, a”).  

 

4.3. Partial ground-truthing 

A review of drilling sites and samples in the Mediterranean shows that:  
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1- In medium water depths (~1,500 m; Sites 371, 372, 375 376 and GLP2, Fig.1) the 

intercalation of sands, marls, gypsum and halite characterize the upper part of MUM (labelled 

7 in Figs. 6a and 6b). These evaporites onlap the Messinian maximum regressive erosional 

surfaces (MES in Fig. 7c). In the most proximal part of the margins, this sequence 

corresponds to aggrading fluvial conglomeratic deposits (Fig.7c) during the late MSC 

lowstand related to a drainage network with tributaries, terraces and meandering rivers, i.e. 

the incised valley fill described by Savoye and Pipper (1991) and Urgeles et al., (2011).  

2- The Mediterranean reflooding was much more erosive than often described, even at great 

depth. In most drill cores, the upper part of the MUM revealed reworked evaporitic deposits 

and sands deposited during the uppermost Messinian (5.46-5.33 Ma, Bache et al., 2012). 

These observations are consistent with an early slower apparent transgression inducing wave 

ravinement reworking (with sands and evaporites) followed by the rapid and erosive 

reflooding event (Garcia-Castellanos et al., 2009; Estrada et al., 2011). 

 

5. Proposed conceptual model  

Based on our observations and on our interpretation of the new seismic lines, we assume that 

the complete sedimentary record of the MSC is preserved only below the present-day 

Mediterranean seafloor of the deep central basins. The deep central Messinian basins (Fig. 1) 

match the present-day Mediterranean slopes and bathyal plains around the Ligurian-Provencal 

Basin (30 My old basement) and the eastern basin (Tethysian basement). Peripheral and 

intermediate basins accessible in the field and described in the literature refer to their position 

with respect to these deep basins. A set of terms was taken from the sequential stratigraphy 

(Catuneanu et al., 2011) to facilitate the description and the proposed interpretation, but the 

Messinian depositional megasequence requires the definition of a model-independent 

methodology for the deep Messinian Mediterranean basin, which was disconnected from the 
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global ocean during the MSC and characterized by a giant salt deposit. We have divided the 

MSC depositional megasequence associated with a complete relative sea level (RSL) cycle 

into two MSC sub-units of the same RSL cycle in both the eastern and western deep basins, 

and we have refined the earlier observations (Lofi et al., 2011a).  

The Messinian Lower Megasequence (MLM) 

The onset of the MSC relative sea level fall is marked by a regressive surface of marine 

erosion (RSME, Fig. 10). Mass transport complexes (MTCs) and forced regressive prisms 

(labelled 1 on fig 10) are visible at the transition between the slope and the deep Messinian 

basin. Clastics were deposited at the mouth of the first Messinian incised valleys. The RSME 

is an erosional truncation we interpret as scars of mega slides triggered by the high rate of the 

sea level fall at that time. The thick chaotic seismic facies at the transition between the 

Miocene slope and the deep basin (labelled 1 in Fig. 6) is evidence for the occurrence of 

instabilities during the uncommonly high rate and amplitude of sea level variation during the 

MSC megacycle. In the deep basin, the continuation of this surface is a correlative conformity 

(MES-CC*, Fig. 10) in the sense of Posamentier and Allen (1999) and defines the base of the 

MLM in the deep basin. In the distal part of the big deltas, the MLM is characterized by 

seismic facies we interpret as deep-water clastics deposited in a hypersaline environment. The 

major drop in sea level occurred when the connections were restricted, at 5.6 Ma according to 

a now widely accepted time model, CIESM (2008). Observations from paleoshelves indicate 

high rates of erosion of at least 1 km during the event (Lofi et al., 2005; Rubino et al 2005, 

Bache, 2008; Bache et al., 2009); more recently quantified at 1.3 km (Rabineau et al., 2014).  

The high rate of the sea level fall, coupled with a high sediment flux in front of major rivers, 

led to a strongly decreasing accommodation/sediment supply ratio. This paper shows that in 

the deep eastern Mediterranean basin, the falling stage is clearly associated with the beginning 

of evaporite/halite precipitation, the subsidence at that time allowed the accumulation of more 
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than 2,000 m of mixed silicoclastic/evaporitic sediments (early low stand).  We envisage 

deposition occurring below relatively deep-water conditions (600-1,000 m below wave base) 

with a coeval Mediterranean-wide halite deposition.  In this scenario, halite accumulated in a 

subaqueous environment during the sea level drop and its deposition was ended by a quasi-

instantaneous salt precipitation on top of the Lower Messinian megasequence. We 

hypothesize that the strong net evaporation, which concentrated Mediterranean seawater prior 

to drawdown, resulted in this rapid precipitation of halite at the lowest sea level. The strong 

acoustic impedance contrasts within eastern halite deposits (Units A, B and C) were 

interpreted as clastic intercalations (Bertoni and Cartwright 2007b, Figs. 2b and 2c). 

Tributaries located around the margins were the source of clastic and meteoric waters (Figs. 4 

and 5). These facies were previously interpreted as turbidite deposits due to their distribution 

at the mouth of Israeli canyons (Lugli et al., 2013) and Lebanon canyons (Hawie et al., 

2013b). On the Levant margin, canyon incisions were superimposed on preexisting canyons 

(Druckman et al., 1995; Gardosh et al., 2008; Hawie et al., 2013b). Israeli canyons are filled 

by MTD deposited interpreted by others as subaqueous gravity flows (reworked evaporites 

and clastic sampled in Mavqi’im and Be’eri evaporites, Lugli et al., 2013). We hypothesize 

that these “gravity flows” (mass transport deposits) originated during the initial falling stage 

and are coeval with the MLM depositional sequence. This is not incompatible with the 

formation of subaerial incisions upslope (valleys) and the later development of a widespread 

erosion surface characterizing the Mediterranean fluvial network on platforms at the 

continental margins (Rubino et al., 2010). Large-scale mass wasting processes along the shelf 

margins and slopes following or coeval with the Messinian drawdown are reported all around 

the Mediterranean (Gargani et al., 2014, Bowman, 2012).  

 A combination of several sea level drawdown events in the Mediterranean, associated with 

limited seawater inflow and continuous river discharge, is needed to explain the quantity of 
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evaporites deposited in a very short time and could explain the alternation between clastics 

and evaporites suggested by the indentation between Messinian Nile lowstand and salt (Figs. 

4b and 4c).  

In the saline eastern basin, the top of the MLM corresponds to unit C. This group of reflectors 

at the top of the MLM constitutes a sharp regional contrast between the MLM and the MUM 

(Figs. 2 b and 2c, 3 to 6). Based on seismic velocities, other authors have interpreted this 

stratified unit as embedded clastics, or a more diluted facies, such as limestone, anhydrite, or 

high salinity deliquescent facies (Sylvinite, Carnallite; Vp 3-3.9 Km/s eg. Bertoni and 

Cartwright, 2006; Hübscher et al., 2008; Lofi et al., 2011a).  Several hypotheses can be 

proposed to explain the nature of the transition between the MLM and the MUM throughout 

the Mediterranean (Figs. 2, 3 and 5). A layered seismic facies is widely observed in evaporitic 

systems and has generally been linked to changes in lithology, i.e. to the alternation of 

bitterns, dolomite, anhydrite, halite and/or siliciclastic sediments (e.g. Upper Permian basin in 

the North Sea: Birrel and Courtier, 1999; Aptian evaporites of the Santos basin: Gamboa, 

2004). A definitive interpretation of the seismic facies is not possible at this stage, and will 

require direct well calibration. Nevertheless, we propose a theory to explain the nature of the 

transition between the two seismic megasequences. The sharp reflectors at the top of the 

MLM are either detrital or diluted sediments. In either case they correspond to the increase in 

the influx from the rivers around the Mediterranean in a period when the connections between 

the deep basins and the world oceans were at least seriously limited. When the sea level was 

at its lowest, the salinity concentration and the flux of clastics and meteoric water in the deep 

basins were at their highest.  Moreover, the influx from North African rivers to the basin may 

have been higher at that stage due to a major change in monsoon intensity after 6.2 My (Colin 

et al., 2014).  
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Our observations (Figs. 2, 3, 4, 5, 6) suggest that the top of the MLM corresponds to the 

maximum spread of clastics and meteoric water in the deep MSC basins. This “turning point” 

is equivalent to the correlative conformity in the sense of Hunt and Tucker (1992), which we 

interpret as the peak of the “salinity” crisis. The clastics fans in the deep basin (2 in Fig. 10) 

and the evaporites (3 in Fig. 10) are comparable to the early low stand systems tract described 

in the Exxon models (Catuneanu et al., 2011). The MLM depositional sequence generated 

during the MSC falling stage thus corresponds to an early low stand deposited during a high 

rate of MSC relative sea level fall. MLM clastic fans and evaporates are the equivalent of a 

falling stage systems tract (FSST in Fig. 11, Catuneanu et al., 2011) at the scale of the MSC 

depositional megasequence (more than 2,000 m of sediments).  

The Messinian Upper Megasequence: 

Significant changes in the paleogeography of the Mediterranean Sea at the end of the MSC 

led to the reorganization of the atmospheric circulation and drier conditions over North Africa 

(Colin et al., 2014).  At that point, salt started to precipitate, probably very rapidly (lower part 

of the MUM). 

The MUM has already been described by other authors (Lofi et al., 2005; Bache et al., 2009; 

Lofi et al., 2012) and has been partially drilled at its top (Fig. 9). It consists of a transparent 

unit (halite, e.g. a mobile unit, Lofi et al., 2011a) and a more diluted facies at the top (Unit E, 

alternations between gypsum and fine marine clastics, upper unit described by Lofi et al., 

2011a).  

The characteristic transparent seismic signature of the MUM is due to the prevailing 

conditions when the river flux into the basin was minimal. This points to a major change in 

the depositional environment, e.g. (1) detrital material that was trapped upslope due to a rapid 

increase in accommodation coeval with the rapid precipitation of salt (relatively reflection-

free seismic facies resulting from a very high rate of halite precipitation) infilling canyons in 
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their deeper parts; (2) a change in the climate to more arid conditions; (3) rivers reached their 

base level. Even if the onset of the MSC was initially affected by the tectonically-driven 

reduction in the hydrological exchange with the Atlantic Ocean, some authors point out that it 

was finally triggered by glacial conditions in the northern Hemisphere and by arid conditions 

in North Africa around 5.55 Ma (Manzi et al., 2013; Roveri et al., 2014). At that stage, the 

MUM (and its deposits labelled 5 and 6 and 7 in Fig.10) started to be precipitated/deposited 

on a flat Messinian “erosional or bypass surface” on top the intermediate basins seafloor (of 

which the bottom was located near the Messinian base level) e.g. the Valence basin (Maillard 

et al., 2006; Garcia et al., 2011), the Algerian basin (see Fig. 3 in Lofi et al., 2011a, and Fig. 

10), and the Sicilian basin (Bowan, 2012; Roveri et al., 2008, 2014).  

Whatever the reason for this change in the depositional environment, salt/evaporites 

continued to precipitate in the deep basins until the sea started to transgress widely. This is 

illustrated by the seismic facies and geometries at the top of the MUM (Figs. 7 and 9). At that 

stage, evaporites (gypsum and salt (Geletti et al., 2014, Fig. 9)) altering with marls/shales 

(Fig. 9) started to be deposited in the “deep basin” passing upslope to late lowstand aggrading 

fluvial conglomerates infilling the Messinian valleys (Fig. 7c, Maillard et al., 2006; Urgeles et 

al., 2011; Sage et al., 2005; Obone Zue Obame et al., 2011; Sage and Déverchère, 2011). The 

MES-CC** (correlative conformity of the MES, in the sense of Hunt and Tucker (1992) in 

Catuneanu et al., 2011, Fig. 10) is the base of the MUM. The mobile unit (labelled 5 in Fig. 

10), the upper unit (labelled 6 in Fig. 10) and the fluvial incised valleys fill (7a on Fig. 10) 

onlapping the MES surface were coeval with an MSC RSL rise (low rate). During this event, 

the deep basin was still restricted and the accommodation space was rapidly filled by the 

evaporites. Thus the evaporites and fine clastics (shales) of the MUM correspond to the MSC 

late lowstand systems tract (LST in Fig. 10). At the top of the Messinian upper megasequence 

(MUM) transgressive marine sands (7b) and material reworked by the giant reflooding (8) 
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were deposited during an early transgression. The marine ravinement surface eroded and 

flattened the irregular morphology of the MES (Garcia et al., 2011; Bache et al., 2011).  In the 

eastern basin, the Messinian upper megasequence was associated with sequences D and E of 

the type section of the NW Levant Basin (M-IV, ME-5, ME-VI of Dümmong and Hübsher, 

2011). This late lowstand onlapping (aggrading) on the margin progressively hindered the 

arrival of clastic material in the basin (apparent transgression). The late stage of this lowstand 

was characterized by an increase in base level with onlap onto the MES of evaporites/or 

clastic materials [Fig 7; Lofi et al., 2011a (Fig. 7), Luigli et al., 2013 (Fig. 7); Geletti et al., 

2014 (Fig.12)]. The dilution and shift towards an evaporite series mainly composed of marls, 

anhydrite and salt occurred in the later stages in both the western and eastern basins, although 

it is more obvious in the western basin. During the deposition of fluvio-deltaic clastics of the 

uppermost Messinian upslope in the incised valleys (Fig 7c, labelled 7a on Fig. 10), a 

minimum water level most likely persisted downslope in the deep basins, meaning that 

complete desiccation did not take place (Hardie, and Lowenstein, 2004). During the MUM 

deposition in the deep basin, Messinian continental facies were full lacustrine when perched 

lakes were disconnected from the deep basin. The variability in depositional environments 

during the MSC depositional megasequence explains the variety of Messinian seismic facies 

[e.g. the bedded unit (BU)], Maillard et al., 2006; Guennoc et al., 2011; Thinon et al., 2011). 

At the peak of the MSC, the currently visible erosion of the upper part of these facies interpreted 

as lago-mare facies (Bowman, 2012), could have been caused by the rapid draining of the 

perched lakes (Thinon et al., 2011). A recent model establishes an interesting scenario that 

attempts to correlate these intermediate settings with a deep setting (Roveri et al., 2014). 

However these authors based their models on incomplete seismic records of the MSC (Lofi et 

al., 2011a and b).  
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As our first conclusion, we propose that the Messinian sedimentary evolution of both western 

and eastern basins was similar. Therefore, we propose a regional model that unites the 

western and eastern Mediterranean (Fig. 10). This model is based on observations and 

previous works throughout the Mediterranean and the margins outlined above: Strong net 

evaporation concentrated Mediterranean seawater was coeval with drawdown and resulted in 

the rapid precipitation of halite during the sea level fall, with an optimum marking the 

transition between the top of the Messinian lower megasequence (MLM) and the Messinian 

upper megasequence (MUM). We assume that the rapid infilling of the Messinian 

accommodation by clastics and evaporites in the deep basin resulted from a marked reduction 

in the seaway connections at the Gibraltar arc region at 5.6 Ma. This ended with the 

reconnection/reopening of the world’s oceans via the Gibraltar Straights at around 5.46 Ma.  

However, without a proven age model, it is risky to give ages to this sequential interpretation. 

The variability of facies throughout the Mediterranean basin, including the variations in the 

thickness of the mobile unit, can be explained by:  

1) the paleogeographic position of the basins and their margins during the MSC;  

2) by the presence or absence of large clastic and meteoric water pathways flowing into the 

saline basins.  

From 5.97 to 5.6 evaporites precipitated in shallow sub-basins (Manzi et al, 2013); the MSC 

peaked when evaporite precipitation shifted at 5.6 to the deepest depocenters and the 

peripheral basin started to be eroded (purple area in Fig. 10; Topped by the MES);  

The two major seismic megasequences in the two Mediterranean deep basins correspond to 

five major stages: (1) an initial stage of progressive increase in salinity; (2) a falling stage 

with detrital and evaporite deposition; (3) a late lowstand with rapid precipitation of salt, (4) 

the final stages of the MSC with a decrease in salinity due to the beginning of dilution, (5) an 
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early transgressive stage with the deposition of marine sands. This Messinian depositional 

megasequence ended with a reflooding coeval with a worldwide rise in sea level (5.46-5.33) 

The Messinian lower megasequence (MLM) corresponds to a rapid relative sea level fall in a 

hyper saline deep basin. The water column still represented by 500-1,000 m of dense water. 

The systems tract associated with this seismic megasequence is characterized by: (1) forced 

regressive deltas and instabilities (upslope scours and MTD in the basin and canyon flanks), 

(2) widening of canyons and the deposition of turbidites in front of the big deltas. River 

profiles tended to readjust with time leading to the continuous generation of Messinian 

subaerial erosional surfaces (MES in Fig. 10) on top of peripheral basins (PB in Fig. 10). 

Clastic sedimentation was not distributed evenly over time but was localized in the MLM 

(eastern basin and northwestern basin) and the deposition of deep sea fans located in front of 

major deltas/canyons in the deep basins (2 in Fig. 10) was synchronous with the first 

evaporite deposition in the eastern basin (seismic facies) and probably synchronous with the 

evaporite deposition in the western basin (based on seismic velocities and detailed seismic 

facies). All the Messinian depressions shallower than 1,500 m became subaerially exposed 

after the maximum drop in the base level, and underwent erosion and/or eventual bypass. The 

basinward extension of the MES, i.e. its correlative continuity, in front of the big Messinian 

river canyons will likely be traced to a much lower position than previously defined. The 

deposition of MLM massive evaporites and detritals resulted in significant loads and predicts 

differential acceleration of basement subsidence between the young western basins 

(Oligocene-Aquitanian) and the eastern deep basin located on Tethysian remnants. The 

differential subsidence between deep basins and their platform as well as the sea level drop, 

caused major instabilities. The sharp transition between MLM and MUM is coeval with the 

lowest sea level that occurred in the Messinian megacycle. The MUM corresponds to an 

apparent base level rise with onlaps on the MSC erosional surfaces. This can be linked to a 
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constant marine water flux leading to the deposition of thick halite in both basins and 

reducing influxes from rivers. The MUM constitutes an upper succession of shallow to 

moderately deep-water deposits (5, 6, 7, 8b, 8a on Fig. 10). Geometrical features and seismic 

facies in the dataset are evidence for an increasing accommodation/sediment supply ratio 

during the deposition of these “upper evaporites”. This aggradation was commonly coupled 

with maximum regression. From these observations, we interpret this complex MUM 

megasequence as a late lowstand.  This stage could have begun with a period characterized by 

large-scale environmental fluctuations in a Mediterranean transformed in some places to 

brackish water (suspended lakes in an intermediate position between the peripherals basins 

and the deep basins) and the rapid precipitation of massive halite in the deep settings, 

controlled by a drier climate. MUM could correspond to the uppermost units of Sicily and 

Cyprus (5.5 Ma to 5.46 Ma) described previously. This scenario ends with catastrophic 

flooding due to the collapse of the Straights of Gibraltar. Polyphasic Messinian erosional 

surfaces (MES, RS and TES) are fossilized by the Zanclean hemi-pelagic marls (labelled 9a 

in Fig. 10). Reworked evaporites and deep water sands are widely observed in ODP drilling 

lithology (labelled 8 in Fig. 10) attesting to the permanency of high energy and erosive sea 

bottom currents during the Zanclean. In the Alboran Basin, the huge seawater flow 

significantly eroded the Messinian subcropping units (Estrada et al., 2011). The missing 

material could correspond to thick “chaotic / channelized” units on top of the upper 

megasequence of the Algero-Baleares basin. 

 

6. Conclusion 

We propose that during the salinity crisis, the Messinian evolution of both the eastern and 

western deep basins is recorded in two seismic megasequences corresponding to a dual 

lowstand depositional model: The Messinian lower megasequence (MLM) corresponds to the 
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shift of Messinian clastics depocenters to the deeper parts of the hypersaline waters of the 

basins. The top of the MLM is coeval with the lowest MSC sea level and with the sharp 

transition to the Messinian upper megasequence (MUM). The MUM records the rapid 

precipitation of massive halite that filled the accommodation space. We interpret the MUM as 

a late lowstand related to a decreasing rate in the RSL fall accompanied by a progressive 

increase in the accommodation (relative sea level) and sea water supply. Our seismic 

interpretation of the Messinian series on the Mediterranean shows that it is important (but 

challenging) to distinguish between geometries due to three processes: (1) erosional 

truncations that occurred during the Messinian falling stage; and (2) marine ravinement 

surfaces caused by an early transgression at the end of the MSC; (3) severe erosion at the top 

of the Messinian Alboran Sea floor and the basinal evaporites caused by the strong currents 

during the reflooding period. The previous partial record of the MSC was due to the 

peripheral/intermediate position of the basins. In the deep offshore, deposits related to the 

MSC are a major component of the petroleum system with thick extensive sandstones or mass 

transport complexes with evaporites, sealed by Messinian evaporites and sourced by 

Messinian or older source rocks. 
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Figure captions 

Fig. 1:  Map showing the distribution of the Messinian salinity crisis (MSC) deposits in the 

deep and intermediate basins. “Deep basins” refers to their position in the deep central 

Messinian basins that are approximately delineated by the present-day Mediterranean slopes 

and abyssal plains around the Ligurian-Provencal basin (with a 30 Myr old basement) and the 

eastern basin (with an older Tethyan basement). The outlines of the Pliocene-Quaternary 

deep-sea fans of major Mediterranean rivers are indicated by dotted lines: the Rhone (1), the 

Ebro (2), the Nile (3), Levantine margin rivers (4), and Antalya margin rivers. In front of the 

Nile River, the Pliocene-Quaternary sediments and the Messinian clastics were sourced 
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westward from the prominent Eratosthenes Continental Block (Montadert et al., 2014 

modified). “Deep” IODP sites are located both in the eastern and western deep basins. This 

map is not palinspastically restored in its Messinian configuration, and some contours of the 

Messinian depocenters are consequently impacted by more recent tectonic episodes. The 

current locations of the main thrust fronts (Apennines, Calabrian wedge and Mediterranean 

Ridge) are indicated, as well as a tentative restoration of the active Messinian fronts 

(Apennines, Hellenides adapted from Jolivet et al., 2006). The eastern and western sub-basins 

were (and still are) located in distinct geodynamic environments: foreland flexure of a thick 

and cold lithosphere in the case of the eastern basin, back-arc basins impacted by thermal 

subsidence on a hot thin lithosphere in the case of the western Mediterranean and Tyrrhenian 

Basins. Early Messinian connections with the world ocean are in yellow (adapted from 

Esteban et al., 1996 and Martin et al., 2001).  

 Fig. 2:  in Fig. 2b, Stratigraphic subdivisions of the MSC depositional Megasequence. Units 

A, B and C are grouped as the Messinian lower megasequence (MLM) and sequences D and 

E are grouped as the Messinian upper megasequence (MUM). (For explanation see section 3 

in the text. The position of the seismic line is shown in Fig. 2a). The nature of the high 

amplitude reflectors in the middle of the Messinian evaporites type section (Unit C) is 

debatable. Indeed few exploration wells in the southern Levant Basin crossed evaporites in 

the deep basin setting, and results have not been published. Nevertheless in offshore Lebanon 

(Chbat et al., 2014, Fig. 2b) stratigraphic inversion of seismic data and facies analysis is 

strong evidence that unit C consists of clastics, locally porous sands or claystones.  

Fig. 3 Stratigraphic subdivisions of the MSC Messinian seismic megasequence. Compare 

with Fig. 2 MLM (sequences A, B and C). Note that laterally seismic facies change from high 

amplitude facies to transparent facies. (1) Messinian-Pliocene reworked evaporites and sands 

(see explanation in section 3 in the text); (2) Pliocene-Quaternary. Along the western part of 
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the seismic lines (in the area shielded from river inputs) the same stratigraphic stacking can be 

seen as in Fig. 2.  However both the Pliocene and pre-Messinian series are affected by high 

angle faults, or shallower gravitational listric faults, making stratigraphic interpretation 

challenging in this area (See comment in section 3.3 in the text).  

Fig. 4: Seismic lines (Figs. 4b and 4c) located along the lower part of the Nile cone (Fig. 4a) 

reveal intercalation of a thick clastic unit (~2,000 m) at the base of the MSC megasequence. 

The seismic facies of this unit corresponds to the MSC early lowstand distal deposits of the 

Nile River termed Messinian lower megasequence (MLM), in this paper. When seen in detail, 

the stacked channel complexes characterize this seismic facies. We interpret the high-

amplitude reflections in Units A, B and C in the halite toward the north of the line as clastic 

intercalations. The Messinian Nile River was the major source of clastic and meteoric waters 

to this area. We interpret these facies as turbidite deposits due to their distribution (see section 

3 in the text for explanations). Note the alternation between clastics and salt suggested by the 

indentation between Messinian Nile clastics and the transparent halite. Post Messinian reverse 

faults can be seen in Fig. 4 b. Even if they are rooted in the Messinian salt, they may be 

associated with deeper duplexes that could generate the local doming on top of the MSC 

depositional megasequence visible in Figs. 4a and 4b. 

Fig. 5: Seismic section of the Antalya Basin: This seismic profile shows the same 

stratigraphic stacking as in the Levant Basin (compare with Figs. 2 and 3). Continuous 

reflectors (Unit C) are visible between more transparent facies (Units B and D, we interpret as 

halite). Fig. 5 illustrates a large clastic body that laterally matches Units A, B and C, 

corresponding to the MLM, and Units D and E corresponding to MUM (see explanations in 

section 3 in the text). It is clear from these examples that choosing the base of the transparent 

layer (halite) as the base of the Messinian salinity crisis deposits would be misleading when 

dealing with big river systems. In this area reverse faults are visible. Doming and tilting of the 
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Messinian clastics west of the line and layer C deformation east of the profile are controlled 

by compressional features (with a transport direction from the north). 

 

Fig. 6: This figure is a comparison between the geometries and the seismic facies in the 

western and eastern Mediterranean in front of two major rivers: The Rhone River and the Nile 

River (see explanations in section 4 in the text). (1) Forced regressive Messinian deltas; (2) 

deep sea fans of the Rhone and Nile; (3) the Messinian seismic unit corresponding to units A, 

B and C in the Levantine Basin. Both (2) and (3) seismic units belong to the MLM; (4) the 

transition point. This point corresponds to the sharp transition between the MLM and MUM. 

It represents the lowest sea level in the Messinian megacycle. The mobile unit (6, halite) and 

the upper unit (7) were combined in the Messinian upper megasequence. MES: Messinian 

erosional surface; RS: ravinement surface; TES: Top erosional surface. The onset of the early 

transgression refers to a marine ravinement surface RS (flat abrasion surface, AS, after Bache 

et al., 2009). The mobile unit (unit 6, halite) ascribed to an increase in accommodation and 

aggradation (on-laps on the MES as it appears in the dataset) does not necessarily mean 

transgression but is linked with maximum regression (decrease in the rate of sea level fall).  

 

Fig. 7: Line drawings (Figs. 7a and 7b, after Montadert et al., 1978) and seismic line (Figs. 7c, 

after Sage et al., 2011) showing the geometric relationships between the upper part of the 

MUM (7) and late lowstand fluvial conglomerates/ early transgressive marine sands (7’). Fig. 

7c shows the seismic facies of the upper part of the MUM that onlaps the MES (1) all around 

the western Mediterranean. This unit was sampled by Savoye and Pipper (1991) across the 

Cirque Marcel and clearly infills the Messinien erosion surface (MES). Red conglomerates 

described by Savoye and Piper, 1991 at the base of these units are topped by Messinien 

marine sands. More recent seismic lines (Sage et al., 2011) show clear lateral continuity with 
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the upper unit of Lofi et al., 2011 in the deep basin. These fluvial and coastal sediments 

illustrate the transition between a late Messinian lowstand onlapping the MES and an early 

transgressive systems tract (Early TST). In this area the forced regressive prisms are poorly 

imaged. (See explanations and comments in section 4.2, 4.3, and 5 in the text). 

Fig. 8: Seismic line crossing Florence Ridge, west of the island of Cyprus. The thick 

evaporites of the MUM are clearly eroded, resulting in a flat surface (top erosional surface, 

TES) which can be confounded with Bottom Simulating Reflection (BSR). 

Fig 9: Partial ground-truthing of the MUM: Site 372 on the eastern Menorca Rise (Fig. 9 a, 

Fig. 9 b, 2,699 m water depth) and the GLP2 industrial hole (Fig.9 c, 1,246 m water depth)  

sampled the upper part of the MUM evaporites (alternation of salt, gypsum beds and 

dolomitic marls) and the upper Miocene deposits. These evaporites cover the Messinian 

erosional surface on top of Serravalian marine siltstones (the Tortonian unit is absent). The 

location of the evaporites on top of the MES, probably re-eroded by a marine wave cut (flat 

abrasion surface), identifies the transgression of the upper part of MUM on the MES. This is 

consistent with the sparseness of sediments at the top of the MUM. Above these Messinian 

evaporites poor coring recovery hints at a potential sand layer at the transition to the early 

Pliocene. Site 371 in the South Balearic Basin (2,792 water depth, Fig. 1) recovered in situ 

anhydrite and dolomitic mudstone, on top of the MUM. Early Pliocene transgressive marine 

sands were recovered on top of this unit.  

Fig. 9 c: The GLP2 borehole on the Gulf of Lion Margin (1,246 m water depth) revealed that 

Langhian-Serravalian age calcareous mudstones are overlain by 266 meters of alternating salt, 

calcareous evaporitic mudstones, and anhydrite (from 3,703 to 3,437 m) that are separated 

from the Upper Miocene by what we interpret as the MES. On top of the MUM evaporites, 52 

m of transgressive marine sands (3385-3437m depth) were sampled, showing good aquifer 

reservoir quality. At the top of the MUM, we interpret the transition to seismic facies 
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corresponding to the alternation of gypsum, salt and marls as the transition to an early 

transgression (ET) clearly illustrated by marine sands sampled in well GLP2 and linked to the 

flat marine abrasive surfaces (wave cut). 

Fig. 10: Regional integrated model combining the western and eastern Mediterranean with the 

implicit notion that sedimentary development in the western and eastern basins happened in 

parallel (see discussion in section 5 in the text). PB peripheral basins;  MTCs: Mass transport 

complexes; 1: forced regressive deltas; 2: deep basin clastics; 3: Lower Halite in the eastern 

basin (1 through 3 are included in the MLM); 4: Top of the MLM; 5: Mobile unit in the 

western basin (=Upper Halite in the eastern Basin); 6 Upper evaporites in the deep basin; 7a: 

fluvio-lacustrine sediments/ incised valley fill; 7b: Marine sands and conglomerates; 8: 

transgressive sands and reworked evaporites (5, 6, 7, 8 are included in the MUM); 9a: 

Pliocene bottomsets with Globorotalia margaritae on the distal part of the platforms 

(condensed interval); 9b: Pliocene prograding clinoforms; 10: Pliocene deep sea fans; 11: 

Pliocene-Quaternary hemipelagic sediments; 12: Pliocene-Quaternary contourites. 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Highlights: 

-New industrial seismic lines reveal the first full image of Messinian deposits;  

-Efficient guideline to interpret the Messinian salinity crisis (MSC) megasequence. 

- Major improvement in the understanding of the MSC. 

-Critical west-east similarities led to a comprehensive MSC depositional model  

 


