S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, Basic local alignment search tool, Journal of Molecular Biology, vol.215, issue.3, pp.403-410, 1990.
DOI : 10.1016/S0022-2836(05)80360-2

R. Amann, B. Binder, R. Olson, S. Chisholm, R. Devereux et al., Combination of 16S rRNA- 501 targeted oligonucleotide probes with flow cytometry for analysing mixed microbial populations, p.502, 1990.

A. Bates, Feeding strategy, morphological specialisation and presence of bacterial episymbionts in lepetodrilid gastropods from hydrothermal vents, Marine Ecology Progress Series, vol.347, pp.87-99, 2007.
DOI : 10.3354/meps07020

A. Bates, Persistence, morphology, and nutritional state of a gastropod hosted bacterial symbiosis in different levels of hydrothermal vent flux, Marine Biology, vol.15, issue.11, pp.557-568, 2007.
DOI : 10.1007/s00227-007-0709-x

A. Bates, V. Tunnicliffe, and R. Lee, Role of thermal conditions in habitat selection by hydrothermal vent gastropods, Marine Ecology Progress Series, vol.305, pp.1-15, 2005.
DOI : 10.3354/meps305001

A. Bates, T. Harmer, G. Roeselers, and C. Cavanaugh, Phylogenetic characterization of episymbiotic 510 bacteria hosted by a hydrothermal vent limpet (Lepetodrilidae, Vetigastropoda), Biol Bull, vol.220, pp.511-118, 2011.

R. Beinart, J. Sanders, B. Faure, S. Sylva, R. Lee et al., Evidence for the role of endosymbionts in regional-scale habitat partitioning 514 by hydrothermal vent symbioses, PNAS, vol.109, issue.47, 2013.

D. Bergquist, J. Eckner, I. Urcuyo, E. Cordes, S. Hourdez et al., Using stable isotopes and quantitative community characteristics to determine a local hydrothermal vent food web, Marine Ecology Progress Series, vol.330, pp.49-65, 2007.
DOI : 10.3354/meps330049

C. Borowski, O. Giere, J. Krieger, R. Amann, and N. Dubilier, New aspects of the symbiosis in the 519 provannid snail Ifremeria nautilei from the North Fiji Back Arc Basin, Cah Biol Mar, vol.43, pp.321-324, 2002.

M. Bright and O. Giere, Microbial symbiosis in Annelida, Symbiosis, vol.38, pp.1-45, 2005.

B. Campbell, J. Stein, and S. Cary, Evidence of chemolithoautotrophy in the bacterial community 522 associated with Alvinella pompejana, a hydrothermal vent polychaete, Appl Environ Microbiol, vol.69, issue.9, pp.523-5070, 2003.

B. Campbell, A. Engel, M. Porter, and K. Takai, The versatile ??-proteobacteria: key players in sulphidic habitats, Nature Reviews Microbiology, vol.17, issue.6, pp.458-468, 2006.
DOI : 10.1038/nrmicro1414

S. Cary, M. Cottrell, J. Stein, F. Camacho, and D. Desbruyères, Molecular identification and 527 localization of filamentous symbiotic bacteria associated with the hydrothermal vent Annelid 528, 1997.

G. Garrity and J. Tiedje, The ribosomal database project: improved alignments and new toolds 531 for rRNA analysis, Nucleic Acids Res, vol.37, pp.141-145, 2009.

M. De-burgh and C. Singla, Bacterial colonization and endocytosis on the gill of a new limpet species from a hydrothermal vent, Marine Biology, vol.96, issue.1221, pp.1-6, 1984.
DOI : 10.1007/BF00394520

A. Toulmond, Biology and ecology of the "Pompeii worm, 1998.

L. Desbruyères, Biology and ecology of the ???Pompeii worm??? (Alvinella pompejana Desbruy??res and Laubier), a normal dweller of an extreme deep-sea environment: A synthesis of current knowledge and recent developments, Deep Sea Research Part II: Topical Studies in Oceanography, vol.45, issue.1-3, pp.383-422
DOI : 10.1016/S0967-0645(97)00083-0

D. Desbruyères, M. Segonzac, and M. Bright, Handbook of deep-sea hydrothermal vent fauna. 540 Second completely revised edition, 2006.

N. Dubilier, C. Bergin, and C. Lott, Symbiotic diversity in marine animals: the art of harnessing chemosynthesis, Nature Reviews Microbiology, vol.214, issue.10, pp.725-740, 2008.
DOI : 10.1264/jsme2.22.136

H. Felbeck and G. Somero, Primary production in deep-sea hydrothermal vent organisms: roles of sulfide-oxidizing bacteria, Trends in Biochemical Sciences, vol.7, issue.6, pp.201-204, 1982.
DOI : 10.1016/0968-0004(82)90088-3

N. Forget and K. Juniper, Free-living bacterial communities associated with tubeworm (Ridgeia 546 piscesae) aggregations in contrasting diffuse flow hydrothermal vent habitats at the Main 547 Endeavour Field, Juan de Fuca Ridge, pp.259-275, 2013.

M. Fox, S. Juniper, and H. Vali, Chemoautotrophy as a possible nutritional source in the 549 hydrothermal vent limpet Lepetodrilus fucensis, Cah Biol Mar, vol.43, pp.371-376, 2002.

F. Gaill and B. Shillito, Chitin from deep sea hydrothermal vent organisms, p.551, 1995.

S. Gaudron, S. Lefebvre, N. Jorge, A. Gaill, F. Pradillon et al., Spatial and temporal variations in food web structure from newly-opened habitat at hydrothermal vents, Marine Environmental Research, vol.77, pp.129-140, 2012.
DOI : 10.1016/j.marenvres.2012.03.005

URL : https://hal.archives-ouvertes.fr/hal-00806893

S. Goffredi, A. Waren, V. Orphan, V. Dover, C. Vriejenhoek et al., Novel Forms of Structural Integration between Microbes and a Hydrothermal Vent Gastropod from the Indian Ocean, Applied and Environmental Microbiology, vol.70, issue.5, pp.3082-3090, 2004.
DOI : 10.1128/AEM.70.5.3082-3090.2004

S. Goffredi, W. Jones, H. Ehrlich, A. Springer, and C. Vriejenhoek, Epibiotic bacteria associated with the recently discovered Yeti crab, Kiwa hirsuta, Environmental Microbiology, vol.268, issue.10, pp.2623-2634, 2008.
DOI : 10.1111/j.1462-2920.2008.01684.x

M. Gutowska, J. Drazen, and B. Robison, Digestive chitinolytic activity in marine fishes of Monterey 560, 2004.

A. Haddad, F. Camacho, P. Durand, and S. Cary, Phylogenetic characterization of the epibiotic 562 bacteria associated with the hydrothermal vent polychaete Alvinella pompejana, pp.1679-1687, 1995.

M. Henry, J. Childress, and D. Figueroa, Metabolic rates and thermal tolerances of chemoautotrophic 565 symbioses from Lau Basin hydrothermal vents and their implications for species distributions. 566 Deep-Sea Res Pt, pp.679-695, 2008.

C. Jeuniaux, [111] Chitinases, Methods Enzymol, vol.8, pp.644-650, 1966.
DOI : 10.1016/0076-6879(66)08117-5

S. Kaehler and E. Pakhomov, Effects of storage and preservation on the ??13C and ??15N signatures of selected marine organisms, Marine Ecology Progress Series, vol.219, pp.299-304, 2001.
DOI : 10.3354/meps219299

S. Katz, C. Cavanaugh, and M. Bright, Symbiosis of epi-and endocuticular bacteria with 571, 2006.

. Helicoradomenia-spp, Aplacophora, Solenogastres) from deep-sea hydrothermal vents. 572, Mollusca Mar Ecol Prog Ser, vol.320, pp.89-99

A. Kohn, Feeding biology of Gastropods The Mollusca, pp.1-63, 1983.

A. Kouris, K. Juniper, G. Frebourg, and F. Gaill, Protozoan?bacterial symbiosis in a deep? sea 576 hydrothermal vent folliculinid ciliate (Folliculinopsis sp.) from the Juan de Fuca Ridge, Mar Ecol, vol.577, issue.28, pp.63-71, 2007.

L. Bris, N. Zbinden, M. Gaill, and F. , Processes controlling the physico-chemical micro-environments 579 associated with Pompeii worms. Deep-sea Res Pt I, pp.1071-1083, 2005.

C. Levesque, K. Juniper, and H. Limén, Spatial organization of food webs along habitat gradients at deep-sea hydrothermal vents on Axial Volcano, Northeast Pacific, Deep Sea Research Part I: Oceanographic Research Papers, vol.53, issue.4, pp.726-739, 2006.
DOI : 10.1016/j.dsr.2006.01.007

H. Limén, C. Levesque, and K. Juniper, POM in macro-/meiofaunal food webs associated with three 583 flow regimes at deep-sea hydrothermal vents on Axial Volcano, Juan de Fuca Ridge, Mar Biol, vol.153, pp.584-129, 2007.

P. López-garcía, F. Gaill, and D. Moreira, Wide bacterial diversity associated with tubes of the vent worm Riftia pachyptila, Environmental Microbiology, vol.141, issue.4, pp.204-215, 2002.
DOI : 10.1093/nar/25.24.4876

. Decapoda, Anomura) from the hydrothermal vents of the Pacific-Antarctic Ridge, Zoosystema, vol.592, issue.4, pp.27-709

W. Manz, R. Amann, M. Wagner, and K. Schleifer, Phylogenetic Oligodeoxynucleotide Probes for the Major Subclasses of Proteobacteria: Problems and Solutions, Systematic and Applied Microbiology, vol.15, issue.4, pp.593-600, 1992.
DOI : 10.1016/S0723-2020(11)80121-9

B. Meyer and J. Kuever, Phylogeny of the alpha and beta subunits of the dissimilatory adenosine-5'-phosphosulfate (APS) reductase from sulfate-reducing prokaryotes - origin and evolution of the dissimilatory sulfate-reduction pathway, Microbiology, vol.153, issue.7, pp.2026-2044, 2007.
DOI : 10.1099/mic.0.2006/003152-0

S. Mills, L. Mullineaux, and P. Tyler, Habitat Associations in Gastropod Species at East Pacific Rise Hydrothermal Vents (9??50???N), The Biological Bulletin, vol.212, issue.3, pp.185-194, 2007.
DOI : 10.2307/25066601

H. Miyake, M. Kitada, S. Tsuchida, Y. Okuyama, and K. Nakamura, Ecological aspects of hydrothermal vent animals in captivity at atmospheric pressure, Marine Ecology, vol.23, issue.1, pp.86-92, 2007.
DOI : 10.1017/S0025315404009841h

J. Petersen, A. Ramette, C. Lott, M. Cambon-bonavita, M. Zbinden et al., Dual symbiosis 606 of the vent shrimp Rimicaris exoculata with filamentous gamma-and epsilonproteobacteria at four 607, 2010.

M. Polz, J. Robinson, C. Cavanaugh, V. Dover, and C. , Trophic ecology of massive shrimp aggregations at a Mid-Atlantic Ridge hydrothermal vent site, Limnology and Oceanography, vol.43, issue.7, pp.1631-1638, 1998.
DOI : 10.4319/lo.1998.43.7.1631

V. Cueff-gauchard and P. Compère, Inorganic carbon fixation by chemosynthetic ectosymbionts 612 and nutritional transfers to the hydrothermal vent host-shrimp, Rimicaris exoculata, ISME Journal, vol.613, issue.7, pp.96-109, 2013.

E. Pruesse, C. Quast, K. Knittel, B. Fuchs, W. Ludwig et al., SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB, Nucleic Acids Research, vol.35, issue.21, pp.7188-7196, 2007.
DOI : 10.1093/nar/gkm864

J. Ravaux, B. Shillito, F. Gaill, L. Gay, M. Voss-foucart et al., Tubes synthesis and 618 growth process in the hydrothermal vent tube-worm Riftia pachyptila, Cah Biol Mar, vol.39, pp.325-326, 1998.

H. Saito and J. Hashimoto, Characteristics of the Fatty Acid Composition of a Deep-Sea Vent 620, 2010.

P. Sarradin, J. Caprais, P. Briand, F. Gaill, B. Shillito et al., Chemical and thermal 622 description of the environment of the Genesis hydrothermal vent community (13°N, EPR) Cah 623, Biol Mar, vol.39, pp.159-167, 1998.

T. Sasaki, A. Warén, Y. Kano, T. Okutani, and K. Fujikura, Gastropods from recent hot vents and cold 625 seeps: systematics, diversity and life strategies (ed) The Vent and Seep Biota, 2010.

M. Segonzac, M. De-saint-laurent, and B. Casanova, L'énigme du comportement trophique des 628 crevettes Alvinocarididae des sites hydrothermaux de la dorsale médio-atlantique, Cah Biol Mar, vol.629, issue.34, pp.535-571, 1993.

S. Sievert and C. Vetriani, Chemoautotrophy at Deep-Sea Vents: Past, Present, and Future, Oceanography, vol.25, issue.1, pp.218-233, 2012.
DOI : 10.5670/oceanog.2012.21

URL : http://darchive.mblwhoilibrary.org/bitstream/1912/5172/1/25-1_sievert.pdf

Y. Suzuki, T. Sasaki, M. Suzuki, S. Tsuchida, K. Nealson et al., Molecular phylogenetic 633 and isotopic evidence of two lineages of chemoautotrophic endosymbionts distinct at the 634 subdivision level harbored in one host-animal type: the genus Alviniconcha, p.635, 2005.

Y. Suzuki, T. Sasaki, M. Suzuki, Y. Nogi, T. Miwa et al., Novel Chemoautotrophic Endosymbiosis between a Member of the Epsilonproteobacteria and the Hydrothermal-Vent Gastropod Alviniconcha aff. hessleri (Gastropoda: Provannidae) from the Indian Ocean, hessleri (Gastropoda: Provannidae) from the Indian 639 Ocean, pp.5440-5450, 2005.
DOI : 10.1128/AEM.71.9.5440-5450.2005

Y. Suzuki, S. Kojima, T. Sasaki, M. Suzuki, T. Utsumi et al., Host-symbiont relationships in 642 hydrothermal vent gastropods of the genus Alviniconcha from the southwest Pacific, pp.1388-1393, 2006.

K. Tamura, G. Stecher, D. Peterson, A. Filipski, and S. Kumar, MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0, Molecular Biology and Evolution, vol.30, issue.12, pp.2725-2729, 2013.
DOI : 10.1093/molbev/mst197

A. Thurber, W. Jones, and K. Schnabel, Dancing for Food in the Deep Sea: Bacterial Farming by a New Species of Yeti Crab, PLoS ONE, vol.569, issue.174, 2011.
DOI : 10.1371/journal.pone.0026243.s003

H. Urakawa, N. Dubilier, Y. Fujiwara, D. Cunningham, S. Kojima et al., Hydrothermal vent gastropods from the same family (Provannidae) harbour e- and gamma-proteobacterial endosymbionts, Environmental Microbiology, vol.193, issue.5, pp.750-754, 2005.
DOI : 10.1128/AEM.68.1.316-325.2002

R. Vetter and B. Fry, Sulfur contents and sulfur-isotope compositions of thiotrophic symbioses in bivalve molluscs and vestimentiferan worms, Marine Biology, vol.132, issue.3, pp.453-460, 1998.
DOI : 10.1007/s002270050411

A. Warén and P. Bouchet, New gastropods from East Pacific hydrothermal vents, Zoologica Scripta, vol.57, issue.3, pp.654-67, 1989.
DOI : 10.1086/397374

D. Desbruyères, M. Segonzac, and M. Bright, Handbook of deep-sea hydrothermal vent fauna, p.657