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Abstract—The general approach to mathematical function
implementation consists of three stages: argument reduction,
approximation and reconstruction. The argument reduction step
is needed to reduce the degree of the approximation polynomial
and to simplify the error analysis. For some particular functions
(e.g. exp) it is done using its algebraic properties. In the general
case the whole domain is split into small subdomains to get low-
degree approximation on each of them. Here we present a novel
algorithm for the domain splitting that will be integrated soon
to Metalibm code generator.

I. INTRODUCTION

A call to a mathematical library (libm) is performed each
time we evaluate a mathematical function at some point in
some programming language. The standard libms are limited:
they support a limited set of functions with one manually coded
implementation for each of them. The functions in libm may
be too precise: if only 40 bits of accuracy are needed, all 53
bits of double precision have to be computed and then the
result is rounded. Handling NaNs and infinities as an input
may be a waste of time on large amounts of experimental
data when the domains for function evaluation are small and
known beforehand. Thus, a modern libm ought to contain
mathematical functions implementations in different variations
(we call them flavors). So, the different variations of function
implementation may come from the different result accuracies
(correctly rounded, 50 correct bits, 35 correct bits, etc.) or
various input domains.

As the quantity of all possible flavors is huge, it is not
feasible to manually reimplement a libm in a more flexible
way. That is why we propose to generate code for each flavor
automatically instead of implementing it manually [1], [2].
Besides the flavor implementations our generator (Metalibm)
certifies that the error in the produced code is not larger than
the target error from flavor specification [3]. The standard
libms provide implementations of elementary functions and
several special functions like Gamma, erf , while sometimes
there is a need of more “exotic” functions like Airy function
or Voigt profile. As our generator takes a function to implement
as a parameter, it can produce the code even for these specific
functions, if there is a mean to evaluate this function and its
few derivatives over an interval with an arbitrary accuracy.

The mathematical functions are manually implemented
within one scheme: argument reduction, approximation and
reconstruction. We use polynomial approximations with a
bounded degree: we add a parameter maximum degree dmax

in a flavor’s specification. As low-degree polynomials ap-
proximate a function well on a small domain only, we have
somehow to reduce the implementation domain I = [a; b] to a
smaller one [α;β]. There are methods of argument reduction
based on algebraic properties of the function [4], [5], [6], but
in general case for functions like asin, erf or any other black-
box function none of such properties may be applied. In this
case to reduce the argument domain splitting is used: we split
the domain into non-overlapping parts I0, . . . , Ik and build a
low-degree polynomial on each of the parts. The reconstruction
step is a transition from the small domain to the initial one that
allows us to evaluate function on the large domain from the
flavor specification. If domain splitting was performed on the
first step in the reconstruction procedure we have to determine
to which of the subdomains I0, . . . , Ik belongs the input x ∈ I
which is usually done with branching.

In this paper we present a novel algorithm for domain
splitting that is now implemented in Metalibm code generator.
To illustrate our algorithm we use the same function flavor
example in the whole paper: we generate the code for asin
function on a domain I = [0; 0.85] with target error ε̄ = 2−52

and a maximum degree bound dmax = 8. Other examples can
be found in Section V.

This paper is organized as follows: in Section II we observe
splitting examples, we notice the need of more sophisticated
algorithm that gives a good split. Section III contains useful
techniques from numerical analysis that are in a base of new
splitting algorithm. Section IV gives an idea and pseudo-code
of two algorithms based on the theory from the previous
section, Section V contains the results for different splitting
methods and different function flavors and Section VI con-
cludes the whole work.

II. STATE OF THE ART

The simplest way to perform the domain splitting is to take
some large k and split the domain I into k equal parts. For
the mentioned example we may take k = 50, the diagram
of the corresponding degrees may be found on Fig. 1. This
approach works but produces too many subdomains and as
there is head-room between dmax and the real polynomial
degrees the splitting can be improved.

Instead of a uniform splitting one can use the splitting
algorithm that takes into account the function behavior, for
example bisection (Fig. 2) that gives 23 subdomains. Even
if we reduce the number of subdomains k in the uniform
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Figure 1. Naive k-equal split for asin function. Polynomial degrees on the
domains
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Figure 2. Bisection splitting for asin function.

splitting, the least number in the uniform splitting is 45, so
bisection procedure saves memory.

However, a naive bisection procedure may be improved:
on some of the subdomains there is still head-room between
actual polynomial degree and dmax and in some cases the
actual degrees on the adjacent subdomains differ too much, so
the diagram of the degrees is not regular (see Fig. 3).

We need some theoretical background to perform an opti-
mized splitting that regularizes the diagram of the polynomial
degrees on each of the subdomains as much as it can.

III. THEORETICAL BACKGROUND

It was mentioned that that the function implementations use
approximations and our code generator computes polynomial
approximations. In this Section we consider the theoretical
base to find or to estimate the best polynomial approximation.

A. Minimax polynomials

1) Definition: There are a lot of methods to compute a
polynomial approximation, but the most accurate result is
obtained by computing a minimax polynomial. The minimax
polynomial p for a function f on a given interval I minimizes
the approximation error

ε̃ = ‖f − p‖
I

∞
= max

x∈I
|f − p|

among all the polynomials of a given degree d. The same
is applicable for relative error. Remez algorithm [7] with a

small modification is used to find a minimax polynomial [8].
The classical algorithm produces real coefficients and rounding
them to floating-point numbers yields to loss of accuracy.
The algorithm proposed in [8] and implemented in Sollya [?]
finds a minimax polynomial among all the polynomials with
floating-point coefficients.

2) Remez algorithm: Remez algorithm has quadratic con-
vergence to a minimax polynomial when the function f is
twice differentiable and with additional conditions for ap-
proximation points xi. We do not explain here the whole
algorithm, we just give an idea. It is an iterative algorithm
and first n + 2 points x0, . . . , xn+1 from [a, b] has to be
chosen. Then in a loop there are four actions repeated until
the needed approximation accuracy is reached. First, an ap-
proximation p of f has to be built on the chosen n+2 points.
Then, to compute the current accuracy, we have to compute
ε = maxi=0,...,n+1 |p(xi) − f(xi)|, we compute or estimate
the value of ‖p − f‖∞, take another set of n + 2 points and
repeat the loop. On the first step Chebyshev nodes are often
chosen as the set of n+ 2 points:

xi =
a+ b

2
+

b− a

2
cos

(

(n+ 1− i)π

n+ 1

)

, i = 0, . . . , n+ 1.

It is an expensive algorithm, we have to perform a lot
of function evaluations, compute infinite norms and make
comparisons. The infinite norm is computed with the algorithm
from [9]. For the example of asin Remez approximation
procedure makes about 9000 function evaluations for each of
the subdomains.

B. Theorem of de la Vallée-Poussin

However, to know error bounds for the best polynomial
approximation, it is not always mandatory to compute this
approximation itself. We may skip several computation steps
estimating the bounds for the approximation error as it will be
shown later.

1) Chebyshev nodes and the bounds for approximation
error:

Theorem 1 (of de la Vallée-Poussin). Let be f a continuous
function f ∈ C[a,b], p its approximation polynomial on n+ 2
points x0 < x1 < · · · < xn+1 from [a, b] such that the error
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Figure 3. Polynomial degrees for bisection splitting of function asin on
domain [0; 0.75]



f − p has a local extremum and its sign alternates between
two successive points xi, then the optimal error µ verifies

min
i=0,1...,n+1

|f(xi)− p(xi)| ≤ µ ≤ max
i=0,1...,n+1

|f(xi)− p(xi)|.

The mentioned approximation points xi for polynomial
p may be chosen as Chebyshev’s nodes [10]: from the al-
ternation Chebyshev theorem in this case the approximation
error oscillates perfectly between its extrema at least n + 2
times. Theorem of de la Vallée-Poussin takes a polynomial
p with an error oscillating n + 2 times and claims that the
quality of the approximation p is related to the quality of the
oscillations [11].

This theorem allows us to check the quality of the approx-
imation: polynomial p is considered as the best approximation
if ε and ‖f − p‖∞ are sufficiently close.

As Remez is an iterative algorithm, on each step we may
check where is the current approximation error relatively to
the optimal error. This theorem allows to write a procedure
checkIfSufficientDegree that checks if it is possible
to compute a polynomial of degree d that approximates a
function f on an interval I with error ε. You may find
a pseudo-code for the mentioned procedure below. It starts
with computation of Chebyshev approximation polynomial
of degree dmax and then it obtains the bounds for optimal
approximation (from de la Vallée-Poussin theorem). When
the target accuracy is larger than the upper bound for the
approximation error, the method returns true, when the target
accuracy is lower than the lower bound, it returns false. In the
case when the target accuracy is between the bounds, it is not
clear and a Remez iteration is needed.

Procedure checkIfSufficientDegree(f , I , d, ε):
Input : function f , domain I = [a; b], max. degree d, target

accuracy ε
Output: true in the case of success, false in the case of fail
chebNodes← computeChebyshevNodes(I, dmax);
p← computeApproximationOnChebyshevNodes(f ,
chebNodes, dmax);
m← minxi∈chebNodes |f(xi)− p(xi)| ;
M ← maxxi∈chebNodes |f(xi)− p(xi)| ;
if ε ≥M then result = true;
if ε ≤ m then result = false;
if ε > m and ε < M then

p←Remez(f, I, dmax, ε);
δ ← supnorm(f − p, I);
result← δ ≤ ε ;

end
return result;

This procedure is useful to compute domain splitting based
on bisection procedure.

C. The base for a new splitting algorithm

The upper-mentioned theory gives a base for a domain
splitting algorithm. We know how to solve a non-standard
approximation problem: for a given function F on an interval
I compute a polynomial of an unknown degree d that ap-
proximates f on I with an error ε, ε ≤ ε̃. We may use la
Vallée-Poussin theorem to compute the splitting. We will need

to compute a polynomial approximation p in Chebyshev nodes
and check the infinite norm of p against target error. This can
be done with checkIfSufficientDegree procedure.

IV. A NEW SPLITTING ALGORITHM

A. Bisection

The first improvement of the linear split on k equal
subdomains is bisection. There is a set of parameters for
the algorithm: a function f , needed approximation error ε̃,
minimal width of the subdomain wmin, maximum bound for
the polynomial degree dmax and the domain I . The algorithm
returns a list of split points.

So, we start to check if it is possible to approximate
the function f on the whole domain by a minimax poly-
nomial of degree dmax with the error bounded by ε̃. If
checkIfSufficientDegree returns true than the split-
ting is computed and the empty list has to be returned. If the
checking procedure returned false, we have to split the interval
I into two equal non-overlapping parts Ileft and Iright and to
repeat it recursively for the left part. We continue to bisect the
current interval until checkIfSufficientDegree returns
true for all the parameters and current interval Ileft. In this
case we append m = sup(Ileft) to the list of split points
and repeat the procedure for the rest of the initial interval, i.e.
[m, b]. The algorithm returns error if size of currently checked
interval is less than wmin.

Here is the pseudo-code for the bisection
splitting. It uses previously explained procedure
checkIfSufficientDegree for an interval, if it
returns false, it splits interval into two equal parts. The
procedure is repeated recursively.

Procedure computeOptimizedSplitting(f , I , d, ε):
Input : function f , domain I = [a; b], max. degree d, target

accuracy ε
Output: list ℓ of points in I where domain needs to be split
if checkIfSufficientDegree(f , I , d, ε) then return
ℓ = [ ];
m← b;
while not checkIfSufficientDegree(f , [a;m], d, ε)
do m← (a+m)/2 ;
J ← [m; b];
ℓ←prepend(m, computeOptimizedSplitting(f , J ,
d, ε));
return ℓ;

Thus, the algorithm returns only splitting points inside the
initial interval I , the resulting list does not contain its borders
a, b.

For the asin example bisection splits the domain into 23
subdomains and the degrees diagram is on the Fig. 3. The
other examples can be found in Section V.

B. Improved bisection

Bisection produces less intervals than the naive linear
approach, but it is still not optimal: some intervals may be
merged together to reduce the headroom between dmax and
actual polynomial degree. The improved version of splitting is



based on the bisection, but then, as soon as we find a suitable
interval on the left, we try to move its right border on some
δ. And then we repeat for the rest of the initial interval. This
algorithm contains of two procedures: bisection and enlarging.
The only difference with the previously described classical
bisection is in enlarging procedure: as soon as we find a
leftmost suitable interval, we try to move its right border. Then
this moved right border is added into a list of split points.

Procedure computeOptimizedSplitting(f , I , d, ε):
Input : function f , domain I = [a; b], max. degree d, target

accuracy ε
Output: list ℓ of points in I where domain needs to be split
if checkIfSufficientDegree(f , I , d, ε) then return
ℓ = [ ];
m← b;
while not checkIfSufficientDegree(f , [a;m], d, ε)
do m← (a+m)/2 ;
s←enlargeDomain(f , [a;m], [m; b], ε, d) ;
ℓ←prepend(s, computeOptimizedSplitting(f , [s; b],
d, ε));
return ℓ;

Procedure enlargeDomain(f , I , J , ε, d):
Input : function f , domain I = [a; b], remaining domain

J = [b; c], ε, d
Output: optimal split point location s ∈ J
δ ← (b− a)/3;

while δ > δ, δ a constant, and b < c do
s← b+ δ;
while checkIfSufficientDegree(f , [a; s], d, ε)
do s← s+ δ ;
s← b− δ;
δ ← δ/2;

end
return s;

For the asin example improved bisection method produces
21 subdomains, Fig. 4 shows the corresponding polynomial
degrees diagram. The degrees on 20 of the intervals are equal
to 8, and only on the last small interval the obtained degree is
6. Other examples can be found in Section V.

1) Left-to-right and right-to-left directions: As on each
step of the algorithm we try to enlarge the leftmost suitable
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Figure 4. Polynomial degrees for improved bisection splitting for asin
example.

interval, we may have a situation when the degrees on the
first intervals are close to dmax, but on the last one (or
even several last intervals) corresponding polynomial degree
is small. A similar algorithm may be obtained, when instead
of the leftmost suitable intervals we take the rightmost suitable
intervals. In the first case we compute the split points from left
to right, in the second case from right to left. For right-to-left
direction we enlarge the intervals from bisection procedure by
moving their left borders down. In this case we may have low
degrees on several first intervals, while on the other intervals
the degree is close to dmax.

V. RESULTS

For the results we provide here a table with different mea-
surements (in rows) for several different flavors (in columns).
We do not provide here performance measurements: we gain
in memory consumption with the improved bisection method
while performance stays the same. We do not give the results
for the uniform splitting here neither: simple bisection proce-
dure splits better. In Table I there are the flavor specifications
and then in Table II there are results of the domain splitting
procedures for these flavors.

VI. CONCLUSIONS

As it was mentioned, domain splitting is connected with
reconstruction procedure. When we try to evaluate function at
some point x ∈ [a, b], we have to take the right polynomial.
To do that the corresponding interval Ik that contains the
input x has to be determined first. It is done with several
if-else statements. However, one of the goals for Metalibm
was generation of vectorizable code, which means that the
branching has to be avoided.

In [12] a method to avoid branching in reconstruction is
proposed. The main idea is in computing an interpolation poly-
nomial on the split points. However, the polynomial computed
by technique from [12] does not always allow us to avoid
branching. However, there may be no need to compute an opti-
mal splitting if it makes vectorizable reconstruction impossible.
A new step in development of splitting algorithm is searching
for this connection with reconstruction and implementing a
compromise between splitting and reconstruction.

In this paper we have used numerical analysis results
(theorems) to solve a non-standard approximation problem.

name function f target accuracy domain I degree bound

f1 asin ε̄ = 2−52 I = [0, 0.75] dmax = 8

f2 asin ε̄ = 2−45 I = [−0.75, 0.75] dmax = 8

f3 erf ε̄ = 2−51 I = [−0.75, 0.75] dmax = 9

f4 erf ε̄ = 2−45 I = [−0.75, 0.75] dmax = 7

f5 erf ε̄ = 2−431 I = [−0.75, 0.75] dmax = 6
Table I. FLAVOR SPECIFICATIONS

measure f1 f2 f3 f4 f5
subdomain qty in bisection 24 15 9 12 39

subdomain qty in improved bisection 18 10 5 8 25

subdomains saved 25% 30% 44% 30% 36%

coefficients saved 42 31 27 24 79

memory saved (bytes) 336 248 216 192 632

Table II. TABLE OF MEASUREMENTS FOR SEVERAL FUNCTION

FLAVORS



Theorem of de la Vallée-Poussin is the base of the implemented
domain splitting algorithms. It allows us to compute a bisection
splitting, that produces less subdomains than the simplest
uniform splitting. However, it is possible to even improve
bisection splitting. The new bisection-based splitting saves us
about 30% subdomains, so reduces the memory consumption
as well. The new algorithm is now integrated to Metalibm.
As the splitting and reconstruction steps are connected, this
connection has to be identified.
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