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ABSTRACT 

Three vertical ocean carbon pumps have been known for almost three decades to sequester 

atmospheric carbon in the deep-water and sediment reservoirs, i.e. the solubility pump, the 

carbonate pump, and the soft-tissue (also known as organic, or biological) carbon pump 

(BCP). These three pumps maintain the vertical gradient in total dissolved inorganic carbon 

between the surface and deep waters. The more recently proposed microbial carbon pump 

(MCP) would maintain a gradient between short- and long-lived dissolved organic carbon 

(DOC; average lifetimes of <100 and >100 years, respectively). Long-lived DOC is an 

additional proposed reservoir of sequestered carbon in the ocean. This review: examines 

critically aspects of the vertical ocean carbon pumps and the MCP, in particular their physical 

dimensions and their potential roles in carbon sequestration; normalises the dimensions of the 

MCP to allow direct comparisons with the three vertical ocean carbon pumps; compares the 

MCP and vertical ocean carbon pumps; organises in a coherent framework the information 

available in the literature on refractory DOC; explores the potential effects of the globally 

changing ocean on the MCP; and identifies the assumptions that generally underlie the MCP 

studies, as bases for future research. The study: proposes definitions of terms, expressions and 

concepts related to the four ocean carbon pumps (i.e. three vertical pumps and MCP); defines 

the magnitude for the MCP as the rate of production of DOC with an average lifetime of 

>100 years and provides its first estimate for the World Ocean, i.e. 0.2 Pg C year
-1

; and 

introduces an operational “first-time-sequestration” criterion that prevents organic carbon 

fluxes from being assigned to both the BCP and the MCP. In our review of the potential 

effects of predicted climate-related changes in the ocean environment on the MCP, we found 

that three of the seven predicted changes could potentially enhance carbon sequestration by 

the MCP, and three could diminish it. 
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1. Introduction 

In the World Ocean, there is a strong vertical gradient in the concentration of dissolved CO2, 

and there are several different forms that make up total dissolved inorganic carbon (CT): 

CT = CO2 (dissolved) + H2CO3 + HCO3
-
 + CO3

2-
  (1) 

where H2CO3, HCO3
- and CO3

2- are carbonic acid, and bicarbonate and carbonate ions, 

respectively. In the literature, CT is also called dissolved inorganic carbon (DIC) and total 

CO2 (TCO2 or ∑CO2). The global mean CT in deep waters below 1200 m is higher than in the 

surface mixed layer, i.e. 2284 and 2012 µmol kg
-1

, respectively (Volk and Hoffert, 1985, and 

Fig. 1). This requires that physical, chemical and biological processes counteract the 

continuous erosion by diffusive ocean mixing (on timescale of ~1000 years) of the vertical 

differences in the concentration of CT. Volk and Hoffert (1985) referred to the processes that 

maintain the CT gradient in the World Ocean as the “ocean carbon pumps”, and these pumps 

have an important effect on the air-sea CO2 fluxes on century timescales (IPCC, 2013, 

Section 6.3.2.5.5). 

In their seminal paper, Volk and Hoffert (1985) defined three vertical ocean carbon 

pumps, corresponding to different forms of carbon in the marine environment: the solubility 

pump for CT, the carbonate pump for particulate inorganic carbon (CaCO3), and the soft-tissue 

pump (also called organic carbon pump, but more generally biological carbon pump) for 

particulate organic carbon (POC) although this pump can also include dissolved organic 

carbon (DOC). The expression “biological carbon pump” (BCP) refers to either the organic 

component of the ocean carbon pump only, or both the organic and CaCO3 components. Volk 

and Hoffert (1985) and Passow and Carlson (2012) used biological carbon pump for the sum 

of the two components. In this review, BCP refers only to the organic component, consistent 

with the Glossary in IPCC (2013, Annex III). 

Recently, another ocean carbon pump, called the microbial carbon pump (MCP), was 

proposed by Jiao and collaborators (Jiao et al., 2010; Jiao and Azam, 2011; Jiao et al., 2011). 

The MCP concept was developed within the context of marine microbiology with proposed 

links with marine biogeochemistry. A key assumption of the MCP is that the production 

mechanisms of long-lived DOC in the ocean are largely microbial. In contrast, the BCP 

concept was mostly developed, studied and modelled within the context of marine food webs 

and ocean biogeochemistry. The BCP has been central to studies that explore the present and 

future responses of biogeochemical fluxes to the globally changing ocean, which are critical 
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to help inform governmental policy decisions (e.g. Passow and Carlson, 2012). If the 

oceanographic community is to consider the MCP along with the other ocean carbon pumps in 

assessments of the biologically mediated biogeochemical fluxes of carbon in the changing 

ocean, it is important that the MCP concept be expressed in the same units as the three other 

ocean carbon pumps (i.e. normalised). 

Although well accepted now, the three vertical ocean carbon pumps were, at their 

origin, conceptual constructions that were based on a few observations and aimed at providing 

frameworks for the development and testing of hypotheses and models. This was clear in the 

seminal paper of Volk and Hoffert (1985), e.g. “distinguishing the strengths and efficiencies 

of the pumps may help formulate questions about models and possible ocean changes in the 

future”. Similarly in the recent paper of Jiao et al. (2010), the authors proposed “the microbial 

carbon pump as a conceptual framework to address the role of microbial generation of RDOM 

and relevant carbon storage”. The vertical ocean carbon pumps concept was proposed almost 

30 years ago whereas the MCP concept is quite recent, hence the first now rests on extensive 

quantitative evidence (e.g. Sarmiento and Gruber, 2006) and has produced well accepted 

numerical models (e.g. Kwon et al., 2009), whereas the second (e.g. DeVries et al., 2014) is 

still largely hypothetical. 

In the literature, expressions such as ocean carbon pump (biological, carbonate, 

organic, soft tissue, or solubility), carbon export and carbon sequestration are often used by 

authors differently, hence potentially creating confusion. Here, we propose and define a 

coherent set of expressions for use by the research community. The acronyms and symbols of 

quantities, their definitions and areal dimensions, and the corresponding units are summarised 

in Table 1. For easy reference, the definitions proposed in the text are assembled in a logical 

framework in Table 2, and schematised in Fig. 2. Our definitions are largely consistent with 

those of Passow and Carlson (2012). For the different fractions of dissolved organic carbon, 

we use the definitions proposed by Hansell (2013). Because our study examines ocean carbon 

pumps, we will refer below to DOC and POC instead of dissolved and particulate organic 

matter (DOM and POM, respectively).  

A recent paper by Jiao et al. (2014) presented a general overview of the field and 

addressed future research directions for studies on the MCP based primarily on 

microbiological considerations. The objectives of the present in depth review are sequentially 

to: (1) critically examine key aspects of the vertical ocean carbon pumps, in particular their 

physical dimensions and their roles in carbon sequestration; (2) critically examine key aspects 
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of the MCP, and normalise its dimensions to allow direct comparisons with the three vertical 

ocean carbon pumps; (3) compare the MCP with the vertical ocean carbon pumps; 

(4) organise in a coherent framework the information available on refractory dissolved 

organic carbon; (5) explore the potential effects of the globally changing ocean on the MCP; 

and (6) identify the assumptions that generally underlie the MCP studies, as bases for future 

research. 

In the following sections, we briefly describe and compare the functioning of the three 

vertical ocean carbon pumps, and examine carbon sequestration in the ocean, the DOC 

fractions and the microbial carbon pump. We then compare the microbial and the vertical 

ocean carbon pumps, review reports of refractory dissolved organic carbon processes in the 

ocean, and examine potential effects of climate change on the microbial carbon pump. We 

conclude by reviewing the main assumptions found in the major publications on the MCP. 

2. The three vertical ocean carbon pumps 

The carbon processed by the three vertical ocean carbon pumps originates in the atmosphere. 

The dissolution of atmospheric CO2 into the upper ocean is represented by downward-

pointing arrow @ in Fig. 2 (the numbers in full or open circles in this section refer to arrows in 

Fig. 2). The steps of the solubility pump are as follows. Firstly, dissolved atmospheric CO2 in 

surface waters combines with water molecules (H2O), which produces bicarbonate and 

carbonate ions (HCO3
-
 and CO3

2-
, respectively) and protons (H

+
): 

CO2 + H2O ↔ HCO3
-
 + H

+
 ↔ CO3

2-
 + 2H

+ 
(2) 

This modifies the pH of seawater. Conversely, dissolved CO2 may also be released to the 

atmosphere (reverse of eq. 2). Secondly, the dissolution of CO2 in surface waters is followed 

by deep mixing of the CO2-rich water, which is represented by downward-pointing arrow @ in 

Fig. 2 (labelled “solubility carbon pump”). Deep mixing occurs at high latitudes in winter in 

areas of deep convection, which include the North Atlantic Nordic Seas and the Weddell Sea 

in the Southern Ocean. 

The carbonate pump (i.e. the expression introduced by Volk and Hoffert, 1985) is also 

called carbonate counter-pump (e.g. Heinze et al., 1991; Zeebe, 2012), because the 

precipitation of CaCO3 in the ocean is accompanied by the release of CO2 to surrounding 

waters, and thus the atmosphere, as shown by the calcification equation: 

Ca
2+

 + 2HCO3
-
 → CaCO3 + CO2 + H2O (3) 
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Equation 3 shows that the carbonate pump both releases CO2 to the surrounding waters, and 

from there to the atmosphere, and precipitates CaCO3, thus creating bio-mineral particles that 

could sink to depth. In the ocean, there is release of ca. 0.6 mole of CO2 into the surrounding 

water and the atmosphere for each mole of CaCO3 precipitated, different from theoretical 

eq. 3 where CO2:CaCO3 = 1.0 (Ware et al., 1992; Frankignoulle et al., 1994). On the one 

hand, the release of CO2 from the upper-water-column to the atmosphere (represented by 

upward-pointing arrow @ in Fig. 2) decreases sea-surface CT. On the other hand, the sinking 

of CaCO3 particles (represented by downward-pointing arrow @ in Fig. 2; labelled “carbonate 

pump”) and their dissolution at depth, which releases HCO3
- (reverse of eq. 3; represented by 

rightward-pointing arrow @ in Fig. 2), increase deep-water CT. The depth at which CaCO3 

particles dissolve depends on the crystal form of the mineral (i.e. aragonite or calcite, the first 

dissolves more rapidly than the second) and several environmental factors, mostly hydrostatic 

pressure and water temperature (more dissolution at higher pressure, i.e. greater depth, and 

lower temperature). A more complete treatment of carbonate chemistry can be found in Zeebe 

(2012). The two effects of the carbonate pump, i.e. decreasing CT at surface and increasing it 

at depth, contribute to maintain the vertical CT gradient. 

The carbonate pump also creates a vertical gradient in total alkalinity (AT, or TA; 

Fig. 1): 

AT = [HCO3
-] + 2[CO3

2-] + [B(OH)4
-] + [OH-] - [H+] + minor compounds (4) 

AT is a measure of the balance of electric charges in seawater. The list of minor compounds in 

eq. 4 can be found in Dickson (1981). The addition (or removal) of CO2 to seawater has no 

direct effect on AT because the net reaction produces the same number of equivalents of H+ as 

of HCO3
-
 and/or CO3

2-
(eq. 2). Calcification at surface decreases AT by consuming 

HCO3
-
 (eq. 3), which reduces the ability of surface waters to absorb atmospheric CO2 (eq. 2). 

Conversely, the dissolution of CaCO3 at depth releases HCO3
-
 (reverse of eq. 3), which 

increases both AT and the ability of deep waters to absorb atmospheric CO2 (eq. 2) when these 

are brought back to the surface (at the timescale of the ocean circulation, i.e. ca. 1000 years). 

The sinking of carbonate particles is represented by downward-pointing arrow @ in Fig. 2 

(labelled “carbonate pump”), and the water-column CO2 release by rightward-pointing 

arrow @ in Fig. 2. The carbonate pump is also called alkalinity pump. 

The first step of the BCP is the photosynthetic uptake of inorganic carbon and synthesis 

of organic carbon by phytoplankton, i.e. primary production (PP). The resulting organic 
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matter is transformed (e.g. lysis, grazing, respiration, incorporation into larger particles) by 

the pelagic food web in the euphotic zone, and the POC and DOC that are not remineralised 

(i.e. decomposed, respired) in the upper water column (i.e. ca. 100 m) are exported 

downwards below the euphotic zone or the seasonal surface mixed layer, or are exported 

laterally. The exported organic carbon that is not remineralised during its downward transit 

through the mesopelagic layer (also called the twilight zone) is transferred into deep ocean 

waters. These various steps are represented in Fig. 2: upper-water-column synthesis DOC and 

POC (equation above the carbon pumps) and carbon respiration by the food web (rightward-

pointing arrow @), loss of some respiratory carbon to the atmosphere (upward-pointing 

arrow @), downward export of organic carbon (downward-pointing arrow @, labelled 

“biological carbon pump”), and water-column CO2 release (rightward-pointing arrow @). 

More detailed information on the BCP can be found in Sigman and Haug (2003), Honjo et al. 

(2014) and Turner (2014). 

Even if the removal of CO2 by photosynthesis and its addition by respiration have no 

direct effect on AT (see above), these two processes are accompanied by the assimilation 

(anabolism) or dissimilation (catabolism) of NH4
+, NO3

-, and HPO4
2+, which liberate or take 

up OH
-
 or H

+
 (or take up H

-
 or OH

-
). As a result, photosynthesis is accompanied by a net 

increase in AT, and respiration by a net decrease (Gattuso et al., 1999, their eqs. 2a and 2b). 

The general mechanism of the three vertical ocean carbon pumps includes both the 

downward export of carbon from the surface ocean (defined here as the deepest of either the 

base of the euphotic zone or the base of the seasonal surface mixed layer), and the downward 

transfer of the exported carbon into deep waters (i.e. below the maximum depth of the 

permanent pycnocline of ca. 1000 m). The permanent pycnocline, also called intermediate 

layer, is the stable density gradient that separates the surface mixed layer and the deep waters, 

and extends from about 200-300 m in the open ocean down to ca. 1000 m. This depth of 

1000 m is operationally equivalent to the 1200 m depth horizon that separates the upper water 

column with an average CT concentration of 2012 µmol kg-1 from the deep waters with 

2284 µmol kg-1 (Volk and Hoffert, 1985). In this review, the downward transfer of carbon 

from the surface ocean that does not reach deep waters (i.e. bottom of the permanent 

pycnocline) is called “carbon export”. The vertical carbon pumps (sensu stricto, Volk and 

Hoffert, 1985) maintain the vertical CT gradient by transferring (and thus effectively 

sequestering) carbon below the permanent pycnocline. 
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The physical dimensions of the three vertical ocean carbon pumps are [ML
-2

T
-1

], and 

the units in most oceanographic studies are g C m-2 year-1 or mol C m-2 year-1, or for the whole 

ocean, Pg C year-1 or Gt C year-1 or Pmol C year-1. The solubility, carbonate and biological 

pumps transfer downwards DIC, CaCO3 and organic carbon, respectively, and the carbonate 

pump also transfers upwards CO2 to the atmosphere. Because the dissociation of CaCO3 at 

depth produces HCO3
-
 (eq. 3), and organic carbon in deep waters is ultimately remineralised 

to CO2, the compounds transferred vertically by the three pumps contribute to maintain the 

vertical CT gradient. The magnitude of the solubility pump is the rate of DIC transfer to depth. 

In contrast, the magnitude of the carbonate pump is the rate of transfer of CaCO3 (and the 

HCO3
-
 resulting from its dissociation) into deep waters plus the rate of transfer of CO2 into 

the atmosphere (eq. 3). The two terms are added together because the downward transfer of 

CaCO3 increases CT in deep waters and the release of CO2 to the atmosphere decreases CT in 

surface waters, i.e. the combination of the two processes strengthens the vertical CT gradient, 

which corresponds to the definition of ocean carbon pump given above (Volk and Hoffert, 

1985). The magnitude of the biological pump is the rate of transfer of organic carbon (and the 

CO2 resulting from its remineralisation) to depth. 

The above paragraphs described the effects of the three vertical ocean carbon pumps on 

CT and AT separately. In Fig. 3, we illustrate the combined effects of the carbon pumps on 

these two variables. This figure was modified from Zeebe and Wolf-Gladrow (2008; their 

Fig 2), which illustrated the carbonate chemistry of a water parcel in the surface ocean. In our 

Fig 3, we added the combined effects of the above three pumps and the MCP (to be fully 

described in Section 4.2) on CT and AT. Heterotrophic respiration was included in the original 

diagram of Zeebe and Wolf-Gladrow (2008) and is also part of our Fig. 3 because of its direct 

effect on CT and its indirect effect on AT (see above). In our application of the diagram to the 

carbon pumps, we explicitly associate respiration with the biologically-driven ocean carbon 

pumps (i.e. carbonate pump, BCP and MCP). It could be argued that respiration is not part of 

the carbon pumps because respiration is a general characteristic of all living organisms, and 

the fraction of carbon that is respired and returned to the atmosphere is not transferred to 

depth or the long-lived DOC by the ocean carbon pumps. However, heterotrophic respiration 

is the catabolic component of many of the biological processes that contribute to the carbon 

transformations in the biologically-driven carbon pumps, and is thus associated with them. 

Our approximate allocation, in Fig. 3, of fractions of total heterotrophic respiration to the 

various biologically-driven carbon pumps does not mean that all processes involved in the 
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pumps necessarily are accompanied by heterotrophic respiration, but instead that all 

components of heterotrophic respiration accompany processes that are related directly or 

indirectly to the various biologically-driven ocean carbon pumps. In Fig. 3, the vertical 

distribution of CT is affected by the three vertical ocean carbon pumps, whereas that of AT is 

strongly affected by the carbonate pump, slightly affected by the BCP, and not affected by the 

solubility pump. 

3. Ocean carbon sequestration 

The vertical ocean carbon pumps have an important effect on the air-sea CO2 fluxes on 

century timescales (IPCC, 2013, Section 6.3.2.5.5). The carbon pumps contribute to carbon 

sequestration, which is defined as the addition of inorganic or organic carbon to a terrestrial or 

aquatic reservoir (i.e. to a component of the climate system other than the atmosphere), where 

a reservoir has the capacity to accumulate, store or release carbon (here, the definition of 

“carbon sequestration” and “reservoir” combines the definitions given for “sequestration”, 

“uptake”, and “reservoir” in the Glossary of IPCC, 2013, Annex III). The word “pool” is an 

equivalent term to “reservoir”, although the definition of pool often includes the atmosphere 

(IPCC, 2013, Annex III). The carbon reservoirs considered here are the deep ocean waters, 

marine sediments, and long-lived DOC. The operational definition of carbon sequestration is 

study-dependent. For example in the 2013 IPCC report (section 6.5.1), “permanent” 

sequestration refers to timescales longer than tens of thousands of years. However because 

carbon is transformed by several natural cycles that operate over a range of different 

timescales, carbon sequestration can be of various durations: up to hundreds of millions of 

years in the carbonate-silicate cycle, less than one million years in the carbonate cycle, 

thousands or tens of thousands of years for long-lived marine DOC, and up to one thousand 

years when transferred into deep ocean waters. 

A bibliographic search on carbon sequestration often finds papers on methods of carbon 

dioxide removal (CDR), which is not the same topic as natural carbon sequestration. The 

latter refers to the capture and removal of CO2 from the atmosphere through naturally 

occurring biochemical, biological, chemical and/or physical processes, this CO2 being 

sequestered in natural reservoirs. Alternatively, CDR methods are a set of techniques that aim 

to remove CO2 directly from the atmosphere by either increasing natural sinks for carbon or 

using chemical or geochemical engineering approaches to remove the CO2, with the intent of 

reducing the atmospheric CO2 concentration. These methods may involve the ocean (e.g. iron 

fertilisation), land (e.g. large-scale reforestation), and technical systems (e.g. direct capture of 
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CO2 from the atmosphere using engineered chemical means). Some CDR methods fall under 

the category of geoengineering, depending on the magnitude, scale, and impact of the 

particular CDR activities. This topic is reviewed in IPCC (2013, Sections 6.5.1-6.5.3). 

The time horizon that has been generally used as sequestration threshold for ocean-

related studies is •100 years100 years (e.g. Lampitt et al., 2008; Passow and Carlson, 2012; Jiao et al., 

2014), however, the basis for that 100-year threshold is unclear (except a general reference to 

“IPCC 2007” in Lampitt et al., 2008). The apparent origin of this 100 year citation goes back 

to the creation of “carbon credits” under the Kyoto Protocol (signed in 1997, and entered into 

force in 2005). The implementation of carbon credits led to the development of the Global 

Warming Potential indices (GWPs), which were based on the 100-year horizon (UNFCC, 

1998). These indices (which compare the amount of heat trapped in the atmosphere by a mass 

of a gas to the amount of heat trapped by a similar mass of CO2) assumed that storage for 100 

years or more was permanent, and therefore equivalent to a reduction in fossil fuel emissions. 

However, economists have criticised the GWPs because of their weak economic rationale 

(e.g. Herzog et al., 2003). Despite these uncertainties, the present review will consider as a 

pragmatic rule, that carbon is sequestered when it is stored or accumulated in a reservoir for at 

least 100 years.  

The deep, intermediate (i.e. permanent pycnocline) and surface waters represent 75, 16 

and 9% of the ocean volume, respectively, and the deep and intermediate waters interact with 

the atmosphere on timescales of approximately 1000 and 10-100 years, respectively 

(Sarmiento and Toggweiler 1984). Hence it is below the permanent pycnocline, in deep 

waters (typically >1000 m, Section 2), that the vertical ocean carbon pumps sequester carbon. 

The approximate depths of carbon export and sequestration are illustrated by two horizontal 

dotted lines in Fig. 2, where the timescales of carbon cycling in the water column are 

schematically represented by three upward-pointing arrows (identified by numbers in open 

circles: @ to @). 

The three vertical ocean carbon pumps differently influence atmospheric CO2. The 

solubility pump transfers carbon to the sequestration depth by downward mixing part of the 

atmospheric CO2 that dissolved in surface waters. The carbonate pump contributes to carbon 

sequestration, but because the precipitation of CaCO3 in the ocean releases CO2 to the 

atmosphere (see eq. 3), this pump does not lead to a decrease in the concentration of 

atmospheric CO2 on short time scales (i.e. <100 years; Zeebe, 2012). In the BCP, most of the 

organic carbon that is exported downwards is remineralised before it reaches the sequestration 
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depth. Hence the effect of the BCP on atmospheric CO2 depends on the e-folding depth (also 

called “remineralisation length scale”), i.e. the depth at which 63% of the organic matter 

exported from the euphotic layer has become remineralised. The value of 63% assumes 

exponential remineralisation based on the Napierian constant e = 2.71828…, i.e. [(1 – 1/e) × 

100] = 63%. As the e-folding depth increases, most of the particle remineralisation occurs at 

greater depths in the water column (or even on the bottom), and the amount of carbon 

sequestered may consequently increase.  

The attenuation of the downward flux of organic particles (i.e. remineralisation) is also 

described by exponent b in the equation proposed by Martin et al. (1987): 

Fs = Fe × (zs/ze)
-b

 (5) 

where zs and ze are the depths of sequestration and export, respectively, Fs and Fe are the 

corresponding downward POC fluxes (i.e. sequestration flux and export flux, respectively), 

and exponent b increases with increasing water-column remineralisation (in their original 

equation, Martin et al., 1987, considered F between ze = 100 m and any deeper depth z). 

Given that the e-folding depth (zd) is where Fs = (1 - 0.63) × Fe, i.e. Fs = 0.37 × Fe, then b and 

zd are related as follows through eq. 5 (Guidi et al. ms.): 

zd = ze / 0.37
(1/b)

  (6) 

b =-log(0.37) / log(zd/ze) (7) 

Equations 6 and 7 functionally link the concepts of organic particle remineralisation and 

e-folding depth, which are generally not explicitly connected in the literature. Kwon et al. 

(2009) calculated that an increase of the e-folding depth by ca. 20 m (i.e. 2% of the upper 

1000 m water column) could lead to a decrease in atmospheric partial pressure of CO2 (pCO2) 

of 10 to 30 ppm, i.e. ~3 to 9% of the present atmospheric pCO2. This reduction in atmospheric 

pCO2 results from the redistribution of remineralised carbon from intermediate to bottom 

waters. The e-folding depth may be controlled by such factors as the rate of microbial 

consumption and remineralisation of the sinking POC, and the availability of ballast minerals 

as a function of atmospheric dust (Kwon et al., 2009). 

The three vertical ocean carbon pumps sequester carbon in the deep waters or sediment 

reservoirs, in different forms: the deep ocean circulation (average timescale: ca. 1000 years), 

where carbon is sequestered as dissolved CO2 or DOC; sediments, where inorganic (CaCO3) 

and organic carbon are sequestered for thousands of years; and the lithosphere, where carbon 

is sequestered for millions of years in carbonate rocks and as fossil organic carbon 
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(e.g. kerogen and hydrocarbons). Sequestered organic carbon includes methane hydrate 

(i.e. clathrate), which is present in the upper few hundred metres of the sediments (deeper, 

temperature exceeds the melting point of methane hydrate). In the cold waters of the Arctic 

and the Antarctic, methane hydrate can occur at shallower depths (i.e. on the continental 

shelves and slopes <ca. 1000 m; e.g. Archer et al., 2009) than in warmer low-latitude waters. 

More generally, on continental shelves and slopes, carbon may be stored in shallow-water 

CaCO3 reefs, or delivered and stored into sediments <1000 m depth. The carbon thus stored 

can be (but is not necessarily) returned to the atmosphere within <100 years. In some cases, 

shallow-water sediments are transported to greater depths, e.g. by turbidity currents, where 

their carbon can be sequestered. From a paleoceanographic perspective (e.g. Sigman and 

Haug, 2003), the biological pump, sensu stricto, does not include the burial of organic matter 

in marine sediments. 

4. DOC fractions and the microbial carbon pump 

4.1. DOC fractions: lifetimes and production rates 

In the ocean, there is co-occurrence of different DOC fractions with different lifetimes. As 

reported in Jiao et al. (2014), the lifetime of a substance is defined as the time for its 

concentration to decrease to 1/e of its initial value, i.e. 1/e = 0.37, which assumes exponential 

decay. This corresponds to the concept of “e-folding lifetime”, which differs from the related 

concept of “half-life” where ½ is used instead of 1/e. 

Here, we refer to the five DOC fractions defined by Hansell (2013, his Table 1), which 

are based on the e-folding DOC lifetimes: (1) labile DOC (LDOC; average lifetime: hours to 

days), (2) semi-labile DOC (SLDOC; ca. 1.5 years), (3) semi-refractory DOC (SRDOC; 

ca. 20 years), (4) refractory DOC (RDOC; ca. 16 000 years), and (5) ultra-refractory DOC 

(URDOC; ca. 40 000 years). Hansell (2013) calls “recalcitrant” the DOC fraction that is 

resistant to rapid microbial degradation and thus accumulates and is observable in the ocean 

(i.e. SLDOC + SRDOC + RDOC + URDOC), whereas other authors (e.g. Jiao et al., 2010) 

use “recalcitrant” instead of “refractory” to qualify the RDOC fraction. Here, we will use the 

terms “refractory” for RDOC and “recalcitrant” for SLDOC + SRDOC + RDOC + URDOC 

as proposed by Hansell (2013). We will also refer to DOC with average lifetime shorter or 

longer than 100 years, which is our reference threshold duration for carbon sequestration (see 

Section 3), as DOC<100 or DOC>100, respectively.  
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The DOM in seawater has been considered as either discrete fractions with different 

lifetimes or as a single pool characterized as a continuum of reactivity (e.g. Amon and 

Benner, 1996; Kaiser and Benner, 2009; Hansell, 2013). On the one hand, discrete DOC 

fractions are operational for both field investigations where these fractions have distinctive 

roles in the cycling of carbon (e.g. Hansell et al., 2012), and for their incorporation in 

biogeochemical models (e.g. Kwon et al., 2009, De Vries et al., 2014). On the other hand, a 

very promising approach to investigate the various DOC components and their production 

rates is ultra-high resolution mass spectrometry (Fourier transform ion cyclotron resonance 

mass spectrometry, FT-ICR-MS), which provides unprecedented insight into the composition 

of DOM (e.g. Hertkorn et al., 2006; Osterholz et al., 2014; Romano et al., 2014). Aspects 

relevant to RDOC and the MCP are reviewed by Jiao et al. (2014). Such detailed chemical 

and physiological information cannot be readily included in biogeochemical models, similarly 

to the wealth of taxonomic information that must be “distilled” into plankton functional types 

to be used in biogeochemical models (e.g. Le Quéré et al., 2005). However, once assimilated 

into biogeochemical models, these new results on the various DOC components could 

improve the current views of the roles of discrete components of the DOC pool in the cycling 

of and transport of carbon in food webs and biogeochemical cycles. 

Hansell (2013, his Table 1) also reported the World Ocean inventory and annual carbon 

production rate (PDOC) for the five DOC fractions. The shortest-lived fractions have the 

highest production rates, and conversely, the longest-lived fractions have the lowest 

production rates (Table 3, Fig. 4). The PDOC value for URDOC deviated from the general 

relationship between PDOC and DOC lifetime (Table 3), perhaps reflecting the fact this DOC 

fraction differs from RDOC (which is mostly from marine food webs) as it includes 

thermogenic black carbon and also possibly DOC of hydrothermal origin (Dittmar and Paeng, 

2009; McCarthy et al., 2011; Hansell, 2013). We used the following ordinary least square 

regression equation (i.e. predictive form of Model II regression) from Jiao et al. (2014), which 

is based on the values of PDOC and average lifetime for LDOC, SLDOC, SRDOC and RDOC 

in Table 3: 

log10(PDOC) = 0.29 - 0.40 log10(average lifetime)  (8) 

with r
2
 = 0.96 (solid line in Fig. 4; r = -0.98, N = 4, P < 0.05). This shows that although the 

average lifetimes of LDOC, SLDOC, SRDOC and RDOC are discrete values, these are part of 

a continuum. We assumed that the corresponding PDOC also formed a continuum. 
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Because the carbon present in DOC with an average lifetime >100 years (DOC>100) is 

considered to be sequestered, we calculated, using the values in Table 3, the production rate of 

DOC>100 (PDOC>100). The sum of PDOC values in Hansell (2013, his Table 1) and in our Table 3 

is 28.8 Pg C year
-1

, and our goal was to partition this production rate of total DOC between 

the production rates of DOC with an average lifetime <100 years (PDOC<100) and PDOC>100. In 

order to do so, we did proceed in five steps. Firstly, we divided the range of average lifetimes 

(from 0.001 = 10
-3

 to 16000 = 10
4.2

 years, total range of 10
7.2

 years) by three (7.2 ÷ 3 = 2.4 

logarithmic units), to obtain four classes that would extend to below and above the minimum 

and maximum average lifetimes, respectively. Secondly, we divided the range of lifetimes 

between 10
-(3+1.2) 

and 10
(4.2+1.2)

 years, i.e. 10
-4.2 

and
 
10

5.4
 years, into four classes of 2.4 

logarithmic units each (third column in Table 3). Thirdly, we assumed the following: (i) the 

limits of the four lifetime classes defined the ranges of lifetimes for the corresponding DOC 

fractions, e.g. the range of lifetimes of SRDOC (average lifetime of 10
1.3

 years) was set to 

100.6 to 103 years (i.e. the limits of our third lifetime class, third column in Table 3); (ii) the 

PDOC values in Table 1 of Hansell (2013) corresponded to the successive ranges of lifetimes, 

e.g. for SRDOC, PDOC = 0.34 Pg C year
-1

 corresponded to the range of lifetimes 10
0.6

 to 10
3
 

years (third and fifth columns in Table 3); (iii) the PDOC values corresponding to the four 

ranges of lifetimes were additive because of the way these values were originally computed 

by Hansell et al. (2012, their eq. 1), i.e. the PDOC values for LDOC, SLDOC, SRDOC and 

RDOC in the fifth column of Table 3 could be added together to obtain total PDOC = 

28.8 Pg C year-1. Fourthly, because the PDOC values were assumed to be additive, we could 

fractionate the value within any range of lifetimes, e.g. in order to obtain PDOC>100, we 

fractionated (fifth column of Table 3) PDOC in the lifetime range 10
0.6

 to 10
3
 years (SRDOC) 

into PDOC<100 and PDOC>100, and added the resulting PDOC>100 fraction to PDOC in the lifetime 

range 103 to 105.4 years (RDOC, whose average lifetime is >100 years). Fifthly, based on the 

above assumptions (and as described in Table 3), we calculated, the values of PDOC<100 and 

PDOC>100 (horizontal double-arrowed dotted lines on both sides of the vertical dotted line in 

Fig. 4, and bottom two rows of Table 3). The estimate of PDOC>100 was 0.18 Pg C year
-1 

(i.e. 

last row of Table 3). 

Here we examine whether the estimated rate of total PDOC of 28.8 Pg C year
-1

 (Hansell 

2013, his Table 1, and our Table 3) is consistent with both the estimates of PP 

ca. 50 Pg C year
-1

 in the World Ocean (e.g. Carr et al., 2006) and the reports that most organic 

carbon from PP is respired by the marine food web (e.g. Lampitt et al., 2008). Assuming that 
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the percentage of extracellular release by phytoplankton (PER) is 20% of PP (Marañón et al., 

2004), the dissolved and particulate fractions of PP would be PPDOC = 10 and PPPOC = 

40 Pg C year-1, respectively. Hence, a total PDOC ≈ 30 Pg C year-1 would require that the food 

web release ca. 20 Pg C year
-
 (i.e. PDOC), corresponding to ca. 50% of PPPOC. Bacteria derive 

a large fraction of their DOC via heterotrophic food web transformations of PPPOC 

(e.g. Fasham et al., 1999; Nagata, 2000). The requirement that PDOC = 0.5 PPPOC is consistent 

with the values of heterotrophic PDOC calculated with the model of Legendre and Rivkin 

(2008, their Table 6) for the herbivorous, multivorous and microbial food webs, which ranged 

from 0.30 to 0.46 of PP, i.e. 0.4 to 0.6 of PPPOC given that PER = 0.2 in that model. The 

remaining 50% of PPPOC could be exported to depth or processed by the food-web in the 

upper water column, where most of it would be respired back to CO2. Similarly, the fraction 

of PDOC with a lifetime <1 year (>90% of total PDOC, Fig. 4) would be respired within the year. 

Although only an estimate, the total PDOC ≈ 30 Pg C year
-1

 is consistent with both PP ≈ 

50 Pg C year-1 and respiration by the food web of most of the organic carbon derived from PP 

(Fig. 5). 

4.2. The microbial carbon pump: microbiological concept and biogeochemical units 

Jiao and collaborators (Jiao et al., 2010; Jiao and Azam, 2011; Jiao et al., 2011) proposed that 

the production of the longer-lived DOC fractions (i.e. SRDOC, RDOC, and URDOC) largely 

resulted from the activity of marine pelagic microbes (i.e. unicellular autotrophic and 

heterotrophic planktonic organisms and viruses; e.g. Legendre and Rivkin, 2008), and thus 

called the suite of marine microbial processes that led to the production of these DOC 

fractions “microbial carbon pump”. These authors suggested that heterotrophic microbes and 

viruses, in addition to being major agents of organic carbon remineralization in the ocean, 

could also contribute to the production of long-lived DOC and thus increase the lifetime of 

some organic carbon.  

Although the MCP concept was not defined initially in the same terms, or expressed in 

the same units as the three vertical ocean carbon pumps (Section 2), the MCP has the same 

fundamental characteristic as the three other carbon pumps in that it maintains a gradient in 

concentration of carbon compounds. For the three vertical ocean carbon pumps, the gradient 

is between surface- and deep-water CT (Section 2), whereas for the MCP, the gradient is 

between DOC<100 and DOC>100, whose inventories are 14 and 636 Pg C in the World Ocean 

(Table 3). The DOC<100 and DOC>100 fractions correspond to a wide variety of organic 

compounds (see Section 4.1), but these compounds share the common characteristic of having 
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average lifetimes either <100 or >100 years. The huge DOC<100 to DOC>100 gradient is 

maintained against the continuous degradation of DOC>100 (mostly by photochemical 

transformation, Section 6.2). The gradient also exists in the surface layer (where most DOC is 

produced), e.g. RDOC accounts for ca. 65% of the ca. 66-67 µmol kg
-1

 of recalcitrant DOC 

(i.e. SLDOC+SRDOC+RDOC) that are found in surface waters of the Western Sargasso Sea 

and the Southern Ross Sea (Hansell, 2013, his Fig. 5). The MCP is represented in Fig. 2 to the 

right of the three vertical ocean carbon pumps, where rightward-pointing arrow @

@

@(the 

numbers in full or open circles in this section refer to arrows in Fig. 2), from “DOC + POC” 

to “SRDOC + RDOC ≥100 years”, illustrates the idea that DOC>100 is derived from DOC + 

POC, and the vertical spread of the “RDOC + SRDOC ≥100 years” box illustrates the idea 

that the vertical distribution of the carbon sequestered by the MCP is depth-independent. The 

carbon processes involved in the four pumps, both in surface waters and below, are listed on 

the right-hand side of Fig. 2.  

One of the mechanisms invoked for the production of RDOC, i.e. the successive – and 

perhaps repetitive – processing of DOC by the microbial food web that transforms some of 

the LDOC and SLDOC into RDOC (Jiao et al., 2010, 2011), is associated with 

remineralisation (i.e. heterotrophic respiration) of most of the organic carbon processed by 

microorganisms. Hence the resulting transformation of carbon into longer-lived DOC by this 

MCP mechanism causes the release of respiratory CO2 in the water, which not only increases 

CT but is also accompanied by a slight decrease in AT as explained for the BCP in Section 2. 

Some other mechanisms invoked for the production of RDOC are not necessarily associated 

with heterotrophic respiration, e.g. direct exudation of RDOC by phytoplankton or RDOC 

resulting from viral lysis (Jiao and Azam, 2011; their Fig. 2). The combined effects of the 

MCP on CT and AT are illustrated in Fig. 3. 

To allow direct comparisons with the three vertical ocean carbon pumps, here we 

normalise the physical dimensions of the MCP to the same dimensions [ML
-2

T
-1

]
 
(Section 2). 

Because the MCP integrates a suite of marine microbial processes leading to the production of 

the longer-lived DOC fractions, here we define the magnitude of the MCP as the rate of 

production of longer-lived DOC, i.e. PDOC>100. The dimensions are [ML-2T-1] and the units 

g C m-2 year-1 or mol C m-2 year-1, or for the whole ocean, Pg C year-1 or Pmol C year-1, 

identical to the dimensions and units of the three vertical ocean carbon pumps. 

The lifetimes of the different DOC fractions are related to the depths where these occur. 

This is illustrated in Fig. 6 of Hansell (2013) where bulk concentrations of DOC on a 
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meridional section in the North Atlantic (from 0 to 60°N) to the depth of 2000 m are 

interpreted in terms of presence/absence of SLDOC, SRDOC and RDOC, i.e. SLDOC is 

restricted to surface waters, SRDOC occurs between the surface and ~400-500 m in 

equatorial and tropical waters (and 2000 m at latitudes higher than 45°N), and RDOC occurs 

over the whole water column at all latitudes. As a consequence, the concentration of total 

DOC is higher in surface waters, where all DOC fractions are present, than below, where only 

the longer-lived DOC is thought to occur (Fig. 1). Below ~100 m, there is production of DOC 

by food-web activities, but the concentrations of LDOC and SLDOC (and SRDOC at low 

latitudes) are generally low because this DOC is recycled (i.e. consumed, and partly 

repackaged into POC or metabolised to CO2 and longer-lived DOC) more rapidly than the 

ca. 1000-year mixing timescale of the ocean, and consequently does not accumulate. In 

contrast, micromolar concentrations of longer-lived DOC fractions occur in significant 

amounts at all depths in the ocean, with latitudinal variations (Carlson et al., 2010; Jiao et al., 

2010; Jiao and Azam, 2011; Jiao et al., 2011; Hansell, 2013), and this indicates that the 

longer-lived DOC fractions (i.e. DOC>100) are redistributed vertically by various physical and 

biological mechanisms (see Section 6.3). Below 1000 m, the concentrations of DOC in the 

ocean are about two orders of magnitude smaller than the concentrations of CT (Fig. 1). 

Similar to the three vertical ocean carbon pumps, the MCP contributes to the 

sequestration of atmospheric carbon in the ocean, albeit by a very different mechanism 

Whereas the three vertical ocean carbon pumps transfer carbon from the ocean surface to the 

ocean interior, the MCP contributes to carbon sequestration through the biochemical transfer 

of carbon from organic compounds with a lifetime <100 years to DOC fractions with a 

lifetime >100 years, i.e. URDOC, RDOC, and part of SRDOC. Although it has been 

suggested that refractory DOC could have timescales of several months to a year (e.g. Benner 

and Herndl, 2011), here sequestration under the form of refractory DOC is restricted to DOC 

with lifetimes of ≥100 years (see Section 3). Thus application of the MCP concept is limited 

to the suite of processes that transfer carbon to DOC>100.  

The proposal that long-lived DOC could sequester carbon in the ocean, predates the 

MCP concept by at least two decades. For example, Legendre and Le Fèvre (1991, 1995) 

proposed that “long-lived DOC could chemically retain (i.e. sequester) carbon in the surface 

layer, for periods of interest to global change (i.e. 100s years)” and “carbon bound into 

refractory dissolved organic matter is chemically sequestered in the upper ocean”, in the two 

papers respectively. Similarly, Legendre and Rassoulzadegan (1996) stated that: “sequestered 
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biogenic carbon may take various forms, among which [...] refractory dissolved organic 

matter”. Likewise, Ogawa and Tanoue (2003) wrote “[refractory DOC] plays a potential role 

for the sequestration of fixed carbon in the ocean, suggesting its importance in understanding 

of the mechanism of global warming”. However, the MCP concept developed a broader 

framework where different microbes had key roles in producing DOC>100. The microbial food 

web has sometimes incorrectly been called MCP in the recent literature, i.e. the MCP 

certainly involves the microbial food web, but the latter has other important environmental 

and food-web effects than producing RDOC. 

In Sections 2 and 4.2, the expression “carbon pump” was explicitly defined to address 

the transfer of carbon specifically toward deep waters or long-lived DOC against a gradient 

(concentration or chemical lifetime). This is done to keep the concept of carbon pumps 

operational. Otherwise, any carbon transfer (e.g. transfer of carbon to a depth or to a DOC 

fraction where the carbon is not sequestered) could be considered to be a pump. This could 

compromise our current understanding of the ocean carbon pump concept because the 

expressions “carbon transfer” and “carbon pump” would then be synonymous. 

5. Comparison of the microbial and vertical ocean carbon pumps 

5.1. The microbial and solubility carbon pumps 

The solubility pump sequesters carbon by transferring CT downwards, the first step being the 

dissolution of atmospheric CO2 in the upper ocean, followed by deep mixing of the CO2-rich 

water (Section 3). As the concentration of atmospheric CO2 increases, more CO2 dissolves in 

surface-ocean waters, leading to increasing concentration of H+ in seawater (eq. 2), thus 

decreasing the pH. This is called ocean acidification. This change in the ocean carbonate 

chemistry may have large effects on marine organisms and biogeochemical cycles (e.g. Doney 

et al., 2009). In contrast, in the MCP, marine microbes and their food web channel organic 

carbon into the DOC>100 reservoir, where carbon is sequestered (Jiao et al., 2010; Hansell, 

2013). 

According to Jiao et al. (2010), the storage of carbon into RDOC (i.e. the MCP) does 

not appreciably alter the buffering capacity of seawater and has no known negative effects on 

marine organisms, which would be a major difference from the solubility pump. However, the 

successive processing of DOC by the microbial food web that transforms some of the LDOC 

and SLDOC into RDOC (Jiao et al., 2010, 2011) is accompanied by heterotrophic respiration, 

and this heterotrophic respiration is accompanied by a small decrease in AT (Section 4.2, and 
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Fig. 3). This slightly decreases the buffering capacity of seawater. Hence the MCP (as well as 

the BCP, Section 2) may have small effects on AT. 

5.2. The microbial and biological carbon pumps 

Here we compare the sequestrations mechanisms of the BPC and the MCP, their spatio-

temporal variability, and their magnitudes in the World Ocean. The sequestrations 

mechanisms of the BPC and the MCP are distinct (Sections 3 and 4.2).  

The BCP sequesters carbon by transferring organic matter into deep waters, i.e. the 

vertical distribution of the carbon sequestered through the BCP is depth dependent. The BCP 

leads to the sequestration into different reservoirs below ca. 1000 m of carbon supplied by 

sinking or vertically transported POC and vertically mixed DOC that is not associated with 

the MCP (i.e. that has not been transformed into long-lived DOC by the MCP). Some studies 

consider that SLDOC and SRDOC constitute the dissolved phase of the BCP (e.g. Hansell, 

2013). However, most of the SLDOC and SRDOC that is exported from the surface ocean is 

remineralised to CO2 above the depth of sequestration and thus does not contribute to the 

BCP. Exceptions are SRDOC export at sites of deep-water formation, e.g. in the North 

Atlantic Ocean (see Fig. 6 in Hansell, 2013). The carbon sequestered by the BCP is ultimately 

stored in different forms, e.g. CO2, SRDOC, RDOC, URDOC, carbonate rocks and fossil 

organic carbon (Section 3).  

In contrast, the MCP sequesters carbon by biochemically transforming organic 

compounds to non-bioavailable carbon forms, i.e. by transferring carbon to the DOC>100 

reservoir. This reservoir exists at all depths in the ocean (Section 4.2), and thus the vertical 

distribution of the carbon sequestered by the MCP is depth-independent, i.e. DOC>100 is 

redistributed over the whole water column by various mechanisms examined in Section 6.3. 

Moreover, even if the depth redistribution mechanisms of DOC>100 overlap with the vertical 

transfer of carbon by the BCP, the two ocean carbon pumps are distinct. Carbon sequestration 

by the MCP is a consequence of the production of DOC>100 and is independent of its vertical 

redistribution. In cases when carbon is sequestered at depth by the BCP, its further deep-water 

microbial transformation into DOC>100 would not change the initial assignment of this carbon 

to the BCP. Similarly, when carbon is sequestered by the MCP above 1000 m, its further 

vertical transport below 1000 m would not change the initial assignment of this carbon to the 

MCP. This operational “first-time-sequestration” criterion prevents organic carbon fluxes 

from being assigned to both the BCP and the MCP, which is an important requirement for 

comparing or using the two ocean carbon pumps in models. 
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Very little is known about the spatio-temporal variability of the MCP. Although 

quantitative estimates are lacking, Jiao et al. (2010) proposed that the relative importance of 

the MCP and the BCP would vary both spatially and seasonally. These authors predicted that, 

in eutrophic waters, where primary production is high, the magnitude of carbon sequestration 

mediated by POC export via the BCP would probably exceed that mediated by the MCP, 

whereas in oligotrophic waters, the MCP would be more important than the BCP. They 

concluded that the relative importance of the MCP versus the export of POM by the BCP was 

expected to change if a system shifted from high to low productivity. 

Here, we compare the magnitudes of the BCP and the MCP in the World Ocean. Based 

on data from deep sediment traps, Honjo et al. (2008) estimated that the ocean-wide 

downward flux of POC at 2000 m was 0.43 Pg C year-1. Other estimates for the POC flux at 

2000 m were 0.31 Pg C year-1 (Lutz et al., 2007; estimate at 2500 m), 0.66 Pg C year-1 

(Henson et al., 2012), and 0.33 Pg C year
-1

 (Guidi et al., ms.) The corresponding estimates at 

1000 m, using the average value b = 0.86 for the North Pacific Ocean (Martin et al., 1987), 

would be (1000/2000)
-0.86 

= 1.815 or (1000/2500)
-0.86 

= 2.199 times higher than at 2000 or 

2500 m, respectively (eq. 5). Hence the reported fluxes at 2000 or 2500 m of 0.43, 0.31, 0.66 

and 0.33 Pg C year-1 would be 0.78, 0.68, 1.20 and 0.60 Pg C year-1 when scaled to 1000 m. 

Based on these fluxes, the magnitude of the BCP could be between 0.3 and 0.7 Pg C year-1 at 

2000 m and 0.6 and 1.2 Pg C year
-1 

at 1000 m. This does not include a small BCP-mediated 

flux of DOC below 1000 m. Assuming that PP = 50 Pg C year
-1

, BCP at 2000 and 1000 m 

would represent 0.6-1.3 and 1.2-2.4% of PP, respectively. 

In contrast, there are very few estimates of the magnitude of the MCP (i.e. PDOC>100). 

Brophy and Carlson (1989) estimated the ocean-wide production of refractory DOC to 0.5-

0.6 Pg C year
-1

. However, this estimate is incorrect because these authors had interpreted the 

production of high-molecular weight DOC as bacterial conversion of labile into refractory 

material. Indeed, other studies have shown that the high molecular weight DOC was more 

labile and bioreactive than low molecular weight DOC (e.g. Amon and Benner, 1996). Benner 

and Herndl (2011) proposed that bacteria produced 0.008-0.023 Pg C year
-1

 of DOC that was 

refractory on time scales of several months to a year, indicating that their estimate was likely 

to be conservative. Jiao et al. (2014) combined the production rates of SRDOC, RDOC and 

URDOC (Table 3) to obtain an estimate of PDOC>100 of 0.38 Pg C year-1. However, this is a 

maximum estimate because part of SRDOC has an average lifetime <100 years. In Section 

4.1, our approach was to divide the production of SRDOC into two fractions, i.e. PDOC<100 and 
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PDOC>100, and to use the SRDOC PDOC>100 fraction to estimate combined PDOC>100 in SRDOC 

and RDOC, whose value was 0.18 Pg C year-1 (fifth row of Table 3). This is, to our 

knowledge, the first quantitative estimate for the magnitude of the MCP as defined above, 

which must be taken with caution considering the uncertainties in our assumptions and 

approach. Assuming that PP = 50 Pg C year
-1

, our estimate of the magnitude of the MCP 

would represent 0.4% of PP. 

In an ongoing study, DeVries et al. (2014) predicted the magnitude of the BCP and the 

MCP in the contemporary ocean from the assimilation of nutrient and DOC observations into 

a global physical/biogeochemical ocean model. The model includes SLDOC and RDOC, 

whose production rates and lifetimes are adjusted to match the DOC observations in the 

ocean; the RDOC pool ends up having a lifetime of about 9000 years. Preliminary results for 

the BCP were a POC flux of 1.16±0.03 Pg C year-1 at 1000 m and 0.40±0.02 Pg C year-1 at 

2000 m, and for the MCP, a production rate of RDOC of 0.069±0.004 Pg C year
-1

. Given the 

very different approaches used in this model and above to estimate the magnitude of the MCP, 

the values in our and DeVries’s studies (i.e. 0.18 and 0.07 Pg C year
-1

, respectively) are quite 

consistent. 

6. Review of reports of refractory dissolved organic carbon processes in the ocean 

The MCP proposal has prompted the publication of a number of syntheses and 

complementary papers on RDOC and the MCP (e.g. the 10 papers in Chapter 2 of Jiao et al., 

2011; Jiao et al., 2014). Here, we briefly review and assess the MCP-relevant DOC 

information. The terms “refractory” or “recalcitrant” DOC or DOM (RDOC or RDOM) 

reported in some publications do not always correspond to the definition of RDOC given in 

Section 2 and used here, and may also often include URDOC and part of SRDOC.  

6.1. Production of refractory dissolved organic carbon in the ocean 

The origin of RDOC in the ocean, and the processes and mechanisms of its production, 

utilization and degradation are largely unknown (Jiao et al., 2010; Azam and Jiao, 2011; 

Eichinger at al., 2011; Hansell, 2013), and studies elucidating these processes are required. 

Despite the paucity of information, several processes and mechanisms of RDOC production 

have been proposed in the literature. We summarise them considering successively the abiotic 

and the biotic processes. 

The abiotic processes that influence PDOC and the MCP include (Carlson et al, 2013): 

the adsorption of LDOC and SLDOC onto colloidal material and the modification of chemical 
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bond structure of LDOC and SLDOC by exposure to ultraviolet light (UV) (Keil and 

Kirchman, 1994; Naganuma et al., 1995); and the formation of compounds such as 

melanoidins via condensation reactions. These processes also include the alteration of 

biomolecules by heat (Dittmar and Paeng, 2009). Ultra-refractory DOC (URDOC) is likely to 

be primarily thermogenic, and includes thermogenic black carbon (Hansell, 2013). 

Published studies on marine DOC and the MCP generally refer to the role of 

heterotrophic bacteria in the uptake and transformation of DOC, without considering the 

possible role of Archaea, which may be as important but is poorly known (e.g. Jiao and 

Azam, 2011). Here the term “bacteria” will refer to both heterotrophic Bacteria and Archaea. 

Among the abiotic processes, the role of solar radiation, and especially UV, is still 

controversial and incompletely understood. Indeed, UV irradiation has been invoked as a 

factor that can promote both the production of RDOC (Kieber et al., 1997; Benner and 

Biddanda, 1998; Hansell, 2013) and its removal by photodegradation in the surface ocean 

(Section 6.2). UV radiation can convert more labile DOC (i.e. simple compounds and by-

products of photosynthesis) to recalcitrant forms of DOC (Tranvik and Bertilsson, 2001; 

Hansell 2013).  

Autotrophic and heterotrophic microbes are possible sources of RDOC. The biotic 

processes that may lead to RDOC include: the direct exudation of DOC from phytoplankton; 

the production of liposome-like colloids via microzooplankton grazing; the release of 

metabolites by microbes; the preferential removal of specific sugars and amino acids by 

bacteria (Carlson et al., 2011); the viral lysis of picocyanobacteria, autotrophic eukaryotic 

plankton, and bacteria in the euphotic zone (Jiao et al., 2010; Weinbauer et al., 2011); 

programmed cell death (i.e. apoptosis) of a high-salinity micro-alga, and use of the resulting 

DOC by an archaeon (Orellana et al., 2013); the generation of microenvironmental conditions 

(e.g. chemical gradients and oxygen depletion) around microbial cells (Jiao et al., 2010); and 

the possible de novo production of RDOC by metabolic activities of phytoplankton or 

bacteria. The latter process is mechanistically distinct from bacteria successively transforming 

labile into refractory organic carbon (Jiao and Azam, 2011). 

Phytoplankton may directly exude RDOC (Carlson et al., 2011; Jiao and Azam, 2011). 

However, the most frequently cited mechanism related to phytoplankton exudation is bacterial 

transformation into RDOC of some more labile DOC exuded by phytoplankton and other 

organisms (Benner and Herndl, 2011; Jiao and Azam, 2011; Kattner et al., 2011). 
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Bacteria consume most of the DOC exuded by phytoplankton and other organisms, and 

part of the DOC that is not respired is transformed into RDOC (Benner and Herndl, 2011). 

Eichinger et al. (2011) proposed that bacterial RDOC production may occur as a stress 

response when LDOC availability is low, based on a model that reproduced the results of a 

10-day laboratory experiment (Eichinger et al., 2009). In addition, bacteria produce directly 

exopolymers and capsular material, either as part of their normal life strategy or under stress 

conditions, e.g. nutrient limitation when they take up much more carbon than needed 

(Stoderegger and Herndl, 1998, 1999). Also, bacteria hydrolyze POC in the euphotic zone or 

during its downward transit, using their ectoenzymes, and consume most of the resulting 

DOC; some by-products of this hydrolytic activity could be resistant to further utilization by 

microbes, i.e. RDOC (Jiao et al., 2010).  

Grazing and egestion by protists have been cited as possibly contributing to the 

production of RDOC (Jiao et al. 2010). However studies involving ciliates has suggested that 

their presence did not increase the production of RDOC by bacteria (Gruber et al., 2006; 

Benner and Herndl, 2011). A review by Nagata (2008) concluded that it is uncertain if the 

composition of the bacterial community and the structure of the microbial food web control 

the composition and turnover of oceanic DOC (hence carbon sequestration by the MCP) 

through the release of specific cellular components by protist grazing and viral lysis. Hence, 

production of RDOC following grazing and excretion by protists is highly uncertain, and is 

likely of secondary importance relative to the other microbial food web processes.  

Overall, it is thought that the successive processing of DOC by the microbial food web 

transforms some of the LDOC and SLDOC into RDOC (Jiao et al., 2010, 2011). The possible 

pathways of RDOC generation have been summarised by Jiao and Azam (2011, their Fig. 2). 

(i) Active exudation from living microbial cells, and release from such cells by viral lysis 

(i.e. a portion of the DOC produced by viral lysis could be RDOC) or grazing. (ii) POC 

degradation, where ectoenzymes released by microorganisms convert POC to DOC at rates 

that often exceed microbial uptake of the DOC, and some by-products of this hydrolytic 

activity could be resistant to further utilization by microbes (either free-living or attached to 

POC), thus being transformed into RDOC. (iii) Formation from residual DOC, i.e. the part of 

bulk DOC that could remain/become RDOC after microbial processing. However, most of 

these mechanisms are still largely hypothetical, and the evidence for biotic long-lived DOC 

production is most compelling for the direct excretion by heterotrophic bacteria of compounds 

that are recalcitrant on timescales of several months to a year (Benner and Herndl, 2011). 
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6.2. Removal of refractory dissolved organic carbon in the ocean 

Little is known about the mechanisms that remove RDOC from the ocean. For example, it is 

unclear whether the removal of longer-lived DOC is mainly by photodegradation in surface 

waters, processes that occur in deep waters, or interactions with the Earth’s crust (Hansell, 

2013). In deep waters, deep-sea microorganisms may have the ability to degrade and utilize 

some of the DOC that was refractory in the upper water column (Carlson et al., 2011; 

Kujawinski, 2011). In addition, DOC may be removed from deep waters through adsorption 

onto sinking particles and aggregation by formation into organic gels that lead to particle 

formation followed by deposition in sediments (Druffel et al., 1992), and by entrainment in 

the hydrothermal circulation within Earth’s crust (Hansell et al., 2009). Transformation or 

removal of RDOC below 1000 m depth does not change the amount of carbon that is 

sequestered (Section 6.3). 

Organic and inorganic carbon contained in deep waters is returned to the upper ocean 

over the timescales of ocean ventilation, i.e. centuries to ca. 1000’s of years. Some of the 

RDOC in deep waters that are upwelled or otherwise transported to the upper water column 

may be removed in surface waters. The only mechanism suggested in the literature for surface 

removal of deep-water RDOC is UV irradiation of RDOC (Mopper et al., 1991). The 

terms,protodegradation, photolysis and photooxidation are often used interchangeably in the 

marine DOC literature. The definitions of these terms as recommended by the International 

Union of Pure and Applied Chemistry can be found in Verhoeven (1996). Here we will use 

the general term photodegradation, which is defined as the photochemical transformation of a 

molecule into lower molecular weight fragments, usually in an oxidation process. Concerning 

the photodegradation of DOC in the ocean, once RDOC is exposed to surface UV radiation, it 

may be altered and may become available for uptake and remineralisation by bacteria 

(Mopper et al., 1991, Moran and Zepp, 1997; Benner and Biddanda, 1998). 

Experimental irradiation of deep water incubated under natural sunlight has led to the 

photoproduction of bioavailable substrates from deep-water DOC (Benner and Biddanda, 

1998), which was presumably RDOC. Similarly, there was relatively rapid photodegradation 

of dissolved black carbon (DBC) from deep waters put under a solar simulator, indicating a 

photochemical half-life for oceanic DBC <800 years (Stubbins et al., 2012). This experiment 

suggests that photodegradation is the primary sink for oceanic DBC, and the apparent survival 

of DBC in the oceans for millennia is facilitated not by its inherent inertness but by the rate at 

which it is cycled through surface waters by the 1000-year timescale ocean circulation. 
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6.3. Vertical redistribution of the longer-lived DOC fractions 

The occurrence of the longer-lived DOC fractions at all depths indicates that these are 

vertically redistributed (Section 4.2). The abiotic processes that transfer to depth the RDOC 

that is produced in surface waters include: ocean circulation (Hansell, 2013), convective 

mixing including deep-water formation (Hansell et al., 2009), possible scavenging by sinking 

particles (i.e. adsorption onto particles; Jiao et al., 2010), and possible formation of aggregates 

combining non-sinking RDOC with transparent exopolymer particles and marine snow (Jiao 

et al., 2010). 

Organic compounds resistant to microbial degradation at one depth horizon may serve 

as substrates for populations of heterotrophic microbes deeper (e.g. after export of euphotic-

zone DOC to depths >500 m; Carlson et al., 2011). Although RDOC may be transported from 

surface to more than ca. 1000 m depth and consumed or remineralised to CO2 there, this 

carbon is still sequestered because sequestration below ca. 1000 m depth is independent of 

form or oxidation state. 

7. Potential effects of climate change on the microbial carbon pump 

The potential effects of climate change on the BCP were reviewed by Passow and Carlson 

(2012) and Turner (2014), and will therefore not be addressed here. The authors considered 

that the sequestration flux depends upon the input rates of allochthonous nutrients to the ocean 

(i.e. aeolian or fluvial inputs, or N2 fixation), the export flux at the base of the euphotic zone, 

the deviation from Redfield stoichiometry of both carbon fixation and remineralisation, and 

the flux attenuation in the upper 1000 m (i.e. the remineralization length scale). Because the 

biological responses to increasing temperature, ocean stratification, nutrient availability and 

ocean acidification are frequently taxa- and ecosystem-specific, Passow and Carlson (2012) 

concluded that the results of synergistic effects of these variables are challenging to predict, 

and our ability to predict the sequestration flux was additionally limited by an incomplete 

understanding of mesopelagic food web functioning and flux attenuation. 

Warming and acidification are among the most well constrained effects of climate 

change on the ocean environment. Three general responses of the MCP to ocean warming and 

acidification have been proposed. Firstly, changes to seawater chemistry may enhance 

microbial activity and channel a greater fraction of the photosynthetically fixed carbon into 

DOC, thus potentially increasing the magnitude of the MCP relative to the other ocean carbon 

pumps in carbon sequestration (Jiao et al., 2010; Eichinger et al., 2011). Secondly, ocean 
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warming would increase ocean stratification (e.g. Capotondi et al., 2012) and hence decrease 

nutrient supply to the euphotic zone, making the surface layer more oligotrophic; this could 

increase the channelling of PP towards DOC relative to POC, thus enhancing the role of the 

MCP in carbon sequestration (Jiao et al., 2010). Thirdly, global changes could shift the 

microbial dominance and degradative capabilities in the open ocean, which may influence the 

long-lived DOC reservoir in the ocean as a whole (Jiao et al., 2010). 

Here we proceed more systematically than in the studies reported in the previous 

paragraph, and try to answer the following general question posed by Hansell (2013): “What 

are the key processes responsible for changing the present-day controls on the RDOC 

inventory, such that its size can be greatly increased or decreased over a few thousand years, 

thus impacting the climate?” In order to do so, we examine sequentially the potential effects 

on the MCP of five climate-driven environmental changes, i.e. increased surface-ocean 

temperature and water column stratification, changes in the concentration of particulate 

organic matter and in the rate of thermohaline circulation (and cloud cover), and ocean 

acidification. We try to address the above question at timescales of 100 to ca. 1000 years, 

which are relevant to the present episode of anthropogenic climate change. The responses of 

microbial variables to the above five climate-driven environmental changes and their net 

effects on carbon sequestration by the MCP will be summarised in Table 4. 

7.1. Increased surface-ocean temperature  

A mesocosm study with a natural plankton assemblage incubated at in situ and elevated 

water temperatures (2 to 6°C higher than in situ) showed three major effects of temperature 

(Wohlers et al., 2009). Firstly, the respiratory consumption of organic carbon was accelerated 

relative to autotrophic production, i.e. net community production was reduced. Secondly, the 

partitioning between POC and DOC was shifted toward enhanced accumulation of DOC; 

however, it is not known if there was a corresponding increase in the production of SRDOC 

or RDOC. Thirdly, POC downward export through sinking was significantly reduced. It 

follows from these results that increasing surface-ocean temperature could enhance the MCP, 

assuming that the increased accumulation of DOC is accompanied by an increased production 

of SRDOC and RDOC (these two DOC fractions were not specifically measured during the 

30-day mesocosm experiment). 

Wohlers et al. (2009) considered their study to be a first step in the acquisition of data 

needed to provide an integrated representation of upper-ocean, biotically-driven processes. 
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Such data are required to gain a quantitative understanding of the processes underlying the 

responses of marine ecosystems to climate-related environmental changes (here, surface-

ocean warming).  

7.2. Increased water-column stratification 

In the present ocean, the highest DOC concentrations (70 to 80 µmol C kg
-1

) are 

observed in tropical and subtropical surface waters (40°N to 40°S) where, according to 

Hansell et al. (2009), vertical stratification of the upper water column favours the 

accumulation of organic matter resistant to biological degradation, whereas the lower 

concentrations (ca. 40 to 50 µmol C kg-1) at the surface at higher latitudes are explained by 

mixing with low-DOC, deep ocean waters. Most models that couple ocean circulation with 

biogeochemical fluxes predict that the increased surface-ocean temperature will strengthen 

density stratification (e.g. Capotondi et al., 2012). This would both lengthen the retention 

times of POC and DOC in the surface layer, and reduce the replenishment of surface waters in 

nutrients that had been regenerated below (Doney, 2006). We examine in turn the effects of 

these two environmental changes on the production of DOC, which is the initial process in the 

MCP. 

The longer retention of organic matter near the ocean surface would increase its 

exposure to UV radiation. In addition, climate change could cause a decrease in the amount of 

low-altitude clouds (Lauer et al., 2010), which would increase the total and UV radiation in 

surface waters. The combined two factors would enhance exposure to UV. Although UV 

radiation is commonly thought to cause photodegradation of SRDOC or RDOC and thus be a 

sink for these refractory compounds, it can also convert labile DOC to more recalcitrant forms 

(Sections 6.1). Hence, the combination of increased water-column stratification and decreased 

cloud cover could lead to higher conversion of labile forms of DOC into SRDOC and RDOC. 

The net effect of enhanced UV exposure on SRDOC or RDOC destruction and production 

could either decrease or increase the magnitude of the MCP. Resolving the predicted effects 

of climate-related changes in UV exposure on SRDOC and RDOC requires further 

experimental studies. 

The reduction of nutrient replenishment of surface waters would expand oligotrophic 

conditions in the ocean. This could potentially affect the MCP by two different mechanisms. 

Firstly according to Jiao et al. (2010), in oligotrophic systems, a larger proportion of 

primary production may be channelled to DOC (PER), and part of that DOC could be 
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subsequently transformed to SRDOC or RDOC. However, the review of Carlson (2002) on 

the production and removal processes of DOC concluded that there was little systematic 

variability of PER across productivity regimes, and that PER did not vary as a function of the 

nutrient status of the system. Hence changes in water-column stratification are unlikely to 

influence the MCP through nutrient-mediated changes in PER, i.e. no conclusive effect. 

Secondly in oligotrophic systems, phytoplankton are composed predominantly of small 

cells (i.e. picophytoplankton), and the production of both small and large autotrophs is lower 

than under nutrient-rich conditions (Barber and Hiscock, 2006). Because decreased 

phytoplankton mean size would increase the ratio of community respiration to community 

production (i.e. biomass specific respiration increases with decreasing body mass), there 

would be slower rate of transformation of low concentrations of reactive carbon (e.g. LDOC 

and SLDOC) to high concentrations of SRDOC and RDOC by marine microbes and their 

food web interactions. In addition, increased respiration would decrease the pool of DOC. 

Hence, decreased phytoplankton mean size could cause decreased production of SRDOC and 

RDOC, i.e. decreased magnitude of the MCP. This may seem to contradict the increase in the 

importance of the MCP relative to the BCP in oligotrophic systems proposed by Jiao et al. 

(2010) and described in Section 5.2, but it is not. The reason is that the proposed increase in 

the MCP:BCP ratio in oligotrophic waters reflected a larger decrease in the BCP (i.e. low 

POC export) than would have occurred for the MCP. 

7.3. Change in the concentration of particulate organic matter 

Potential changes in production of POC (PPOC) may be significant for PDOC because the 

solubilisation of organic particles by bacteria is an important source of DOC in the ocean. 

Although the contribution of the latter process to PDOC is not well quantified, changes in PPOC 

may thus affect the MCP. The continuing warming of continents and oceans could both 

lengthen the retention times of POC and DOC in the surface layer, and reduce the 

replenishment of surface waters in nutrients from deeper waters. We discussed the possible 

effects of these two environmental changes on PDOC in Section 7.2, and we examine here the 

effects of these same changes on PPOC based on the review of Passow and Carlson (2012), and 

the potential influence of changes in PPOC on PDOC. 

The longer retention of organic matter near the ocean surface could have two opposing 

effects on phytoplankton production. The higher average mixed layer irradiance resulting 

from longer retention of phytoplankton in surface waters may either increase previously light 

limited photosynthesis, or photoinhibit previously light saturated photosynthesis. Hence the 
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effect of increased stratification as mediated by solar irradiance could be different according 

to regions.  

The reduction of nutrient replenishment of surface waters would cause both a decrease 

in global marine photosynthesis, and a shift of phytoplankton assemblages toward small cells. 

There are, however, other possible nutrient-mediated aspects, which were not reviewed by 

Passow and Carlson (2012). In some specific locations or at some time periods, climate 

change may lead to increased wind-driven upwelling and storms, which could enhance the 

supply of nutrients to surface waters and subsequently increase the competitive advantage of 

large phytoplankton, such as diatoms, relative to small cells (Falkowski and Oliver, 2007; 

Finkel et al., 2010). Globally, however, climate change is anticipated to increase ocean 

stratification and thereby result in reduced nutrient availability in the surface ocean. These 

changes could favour smaller-sized phytoplankton as they generally have lower nutrient 

requirements and are thus able to thrive under oligotrophic stratified conditions (Falkowski 

and Oliver, 2007; Cermeño et al., 2008). For example, predictions from a coupled ocean-

biogeochemical model suggest a global decrease in the relative contribution of diatoms to the 

total algal biomass with a more severe effect at high latitudes, especially in the North Atlantic 

and the North Pacific Oceans (Bopp et al., 2005).  

The above climate-change increases in surface-ocean temperature and water column-

stratification could lead to a decrease in PPOC in the upper water column, and thus a decrease 

in the concentration of organic particles. This could affect the MCP because one mechanism 

of PDOC is the solubilisation of POC by bacteria, and some of this DOC may be transformed to 

SRDOC or RDOC (Jiao and Azam, 2011). Hence, a decrease in PPOC may be accompanied by 

lower PDOC by bacterial POC solubilisation and thus a decrease in the SRDOC or RDOC 

produced from POC and thus in the MCP. However this will depend on the local importance 

of PPOC to PDOC>100 relative to other sources (e.g. food web) of PDOC >100.  

7.4. Changes in thermohaline circulation and cloud cover 

A decline in the intensity of thermohaline circulation in the Atlantic Ocean (i.e. Atlantic 

Meridional Overturning Circulation; IPCC, 2013, 3.6.3) and also perhaps in the Pacific Ocean 

(McPhaden and Zhan, 2002) during the 21
st
 century is predicted. Although the magnitude of 

the slowdown is uncertain, there would be a reduction in the rate at which deep waters are 

returned to the ocean’s surface. Once at surface, part of the SRDOC and RDOC contained in 

the water coming from depth could be photodegraded by the solar UV radiation (Section 6.2), 

and part of the CO2 dissolved in that water could be degassed to the atmosphere, these two 
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losses varying with regions and seasons. It is uncertain if the slowing of the thermohaline 

circulation would affect differentially the losses of RDOC by photodegradation and of CO2 by 

degassing, and thus the relative importance of the MCP and the BCP. There are at least two 

different scenarios. 

If the environmental factors that control the photodegradation of SRDOC and RDOC 

and the degassing of CO2 remained the same as present, the two carbon losses would decrease 

by the same proportion as the reduction in thermohaline circulation, and the relative losses of 

SRDOC and RDOC versus CO2 would not change in the future. Alternatively, the climate-

change reduction in the amount of low-level clouds proposed by Lauer et al. (2010; see 

Section 7.2) would increase the UV radiation in surface waters, which would cause an 

increased loss rate of the SRDOC and RDOC that were transported from depth to surface. The 

mechanism would be an alteration of SRDOC and RDOC by protodegradation, followed by 

microbial remineralisation of the resulting more labile DOC (Section 6.2). At the same time, 

the increased partial pressure of atmospheric CO2 would decrease the efflux of CO2 from 

ocean to atmosphere. The increasing loss of SRDOC and RDOC and decreasing loss of CO2 

would diminish the amount of carbon sequestered in the ocean under the form of SRDOC and 

RDOC and increase the amount sequestered under the form of CT. The net result would be a 

decrease in the importance of the MCP relative to the vertical ocean carbon pumps. 

7.5. Ocean acidification 

A mesocosm experiment conducted with seawater that was aerated with CO2 concentrations 

identical to the present atmospheric value (controls) and at higher concentrations (and thus 

lower pH, eq. 2) showed that the plankton community released more DOC under high CO2 

concentrations (Riebesell et al., 2007). If this study can be extrapolated to in situ conditions, 

an increasingly greater fraction of the carbon fixed by photosynthesis could be channelled into 

DOC as the ocean will progressively acidify. Part of this DOC could, in the natural 

environment, be transformed into refractory compounds by the activity of microbes, and thus, 

according to Eichinger et al. (2011), potentially increase the importance of the MCP. 

7.6. Overall potential effects of climate change on the microbial carbon pump 

Several of the above responses of the MCP to climate-induced changes in environmental 

characteristics of the ocean are based on the assumption that increased microbial activity will 

enhance the MCP (Jiao et al. 2010). However, changes in environmental characteristics could 

increase not only the production of DOC by microbes, but also their remineralisation of DOC 
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to CO2, and the net effect of the two processes on carbon budgets is not known (Azam and 

Jiao, 2011). 

Table 4 reports that three of the seven predicted climate-related changes in the ocean 

environment we reviewed could potentially enhance carbon sequestration by the MCP, and 

three could diminish it (one could be either way). However because our present knowledge of 

most MCP processes is at best tentative, we are unable to assess the magnitudes of the 

potential climate-related increases or decreases in the magnitude of the MCP and their effects 

on carbon sequestration, or compare these to the magnitudes of predicted changes in the three 

vertical ocean carbon pumps (for the BCP, see Passow and Carlson, 2012). Despite these 

uncertainties, Table 4 shows that predicted MCP changes in response to climate-related 

changes in environmental factors may be counter-intuitive, and their study will require more 

comprehensive knowledge of details of the MCP processes. Considering the effect of each 

environmental change separately, as done here, led to some contradictory conclusions 

concerning carbon sequestration by the MCP (Table 4, last column). A way to resolve these 

initial contradictions and reduce uncertainties will be through comprehensive modelling 

studies that will consider the effects of all environmental changes together. The present 

analysis is a first step toward this integrated approach, which could lead to results that would 

be different from those obtained here. 

8. Conclusions 

The above predictions about the responses of the MCP to changes in the marine environment 

caused by climate change were based on combining a limited number of empirical studies, for 

which data were often scarce, and assumptions, which were not always clearly stated. 

Assumptions are especially critical when data are not available or are contradictory. The 

mechanisms and processes examined in Sections 6.1 to 6.3 were based on several such 

assumptions, which were not always stated explicitly in the literature cited, and their 

formulation here reflects our understanding of the studies we analysed. 

We found that the main gaps in our understanding of the MCP concern the mechanisms 

of RDOC production and removal. During our review of the relevant literature, we indentified 

two categories of assumptions concerning the biotic processes of RDOC production, and third 

category about environmental effects.  

The first category considers general food-web effects (Section 6.1). For example, it is 

generally assumed that some DOC produced in the marine environment is transformed into 
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RDOC by the microbial food web, i.e. increased production of DOC leads to increased 

production of RDOC. Although this assumption may be reasonable, it has not been supported 

by observational or experimental studies, especially given the difficulty of estimating the rate 

of RDOC production both at sea or in the laboratory. It is also assumed that successive 

processing of SLDOC and SRDOC by the microbial food web progressively transforms some 

of that organic carbon into less and less labile DOC and ultimately RDOC. However, this 

assumption is largely untested. 

The second category of assumptions considers specific mechanisms of RDOC 

production (Section 6.1). For example, it is assumed that RDOC is exuded directly by 

phytoplankton, or can be produced directly from cells of heterotrophic microbes by either 

exudation from active cells (i.e. bacteria transform into RDOC part of the DOC they consume 

and not use to satisfy their metabolic requirements), or released form cells that are lysed by 

viruses or grazed by zooplankton. It is also assumed that part of the bulk DOC can be 

transformed into RDOC by bacterial activity. Finally, it is assumed that the conversion of 

POC to DOC by ectoenzymes expressed by microorganisms can generate by-products that are 

resistant to further utilisation by microbes, i.e. RDOC.  

A third category of assumptions addresses environmental effects. These include effects 

of the environment on the MCP, i.e. UV irradiation in surface waters (which occurs on the 

ocean ventilation timescales), which is assumed to be the main mechanism for degradation of 

the longer-lived DOC (Sections 6.1 and 6.2), and the nutrient status of the upper ocean 

(oligotrophic or eutrophic), which is assumed to influence the balance between the BCP and 

the MCP (Section 5.2). They also include effects of the MCP on the environment, i.e. it is 

assumed that the longer-lived DOC can be transported downwards by sinking particles 

(Sections 6.2 and 6.3), and that the MCP does not change the chemistry of seawater 

(Section 5.1). 

Addressing the above assumptions could be part of integrated microbiological and 

biogeochemical studies of the MCP in coming years. More generally, understanding the full 

suite of interrelated responses of marine ecosystems to climate-related environmental changes 

and predicting their impacts on ecosystem dynamics, biogeochemical cycling, and feedbacks 

to the climate system will require a multidisciplinary effort involving seagoing and 

experimental marine researchers together with modellers, which would cover the range of 

models from ecosystems to Atmosphere Ocean General Circulation (Wohlers et al., 2009). As 
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suggested in Jiao et al. (2014), this will require original combinations of observational, 

experimental and modelling studies. 
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Figure 1. Vertical profiles of DOC, CT, and AT in the North Atlantic Ocean. (A) The DOC 

profile was extracted from Fig. 5 of Hansell (2013). (B) The CT and AT profiles were digitized 

from Fig. 3 of Zeebe and Wolf-Gladrow (2008). Panel A: Hansell (2013) considers that values 

<67 µmol kg-1 (i.e. surface maximum), from surface to ca. 100 m, correspond to 

RDOC+SRDOC+SLDOC; <56 µmol kg-1, from ca. 100 to 1000 m, to RDOC+SRDOC; and 

<44 µmol kg
-1

, at >1000 m, to RDOC only. 

 

Figure 2. Four ocean carbon pumps defined in Sections 2 and 4. The small numbers in full or 

open circles identify arrows in the Figure. The observed vertical gradient of CT in the World 

Ocean (Fig. 1) is maintained by the action of three vertical carbon pumps: the carbonate 

pump, i.e. bio-precipitation of CaCO3 in the upper water column (which is accompanied by 

the release of CO2 @), followed by sinking of bio-mineral particles to depth where their carbon 

is sequestered @; the solubility pump, i.e. dissolution of atmospheric CO2 in surface waters @, 

followed by deep mixing of the CO2-rich water and sequestration @; and the BCP, 

i.e. photosynthetic uptake of carbon by phytoplankton and its transformation by the food web 

in the euphotic zone, including respiration 

@

@

@da@

@

@, followed by transfer of organic 

carbon into deep waters where it is sequestered @. By maintaining the vertical gradient in CT, 

the carbon pumps regulate the exchange of CO2 between the atmosphere and the ocean. 

Inorganic and organic carbon that is transferred below the euphotic zone or the seasonal 

surface mixed layer (represented here by the 100 m depth horizon) is considered to be 

exported, and the fraction of exported carbon that does not return to surface waters and the 

atmosphere within 100 years is considered to be sequestered, which is the case for carbon that 

reaches the average depth of ca. 1000 m in the ocean. During the downward transit from 100 

to 1000 m, CO2 is released in the water column by dissolution of part of the sinking CaCO3 

@

@

@and remineralisation of part of the organic carbon that is transferred to depth @. The CO2 

that “leaks” (i.e. escapes) from the three carbon pumps above the depth of sequestration may 

return to the surface by upward mixing, where it can be exchanged with the atmosphere (@ to 

@). Below the average ca. 1000 m depth, carbon is either entrained in the deep-ocean 

circulation, which has a characteristic turnover time of ca. 1000 years, or buried in sediments 

where it enters cycles that last millions of years. The production of RDOC and SRDOC with a 



  

 46 

lifetime ≥100 years (i.e. DOC>100, from POC and less refractory DOC, i.e. SLDOC and 

SRDOC), presumably by microbial activity, will sequester ocean carbon because their 

lifetimes are ≥100 years @. The production of DOC>100 results from MCP processes, which 

maintain the large gradient that exists between short-lived and long-lived DOC. Production of 

DOC>100 is thought to take place mainly in surface waters, but it may occur at all depths; the 

resulting RDOC is distributed over all oceans depths. Additional details concerning the 

functioning of the BCP are given in Fig. 1 of Passow and Carlson (2012). The numbers in 

black or open circles are used to identify arrows in the text. 

 

Figure 3. Combined effects of the four ocean carbon pumps on CT and A, represented on a 

figure that originally illustrated the carbonate chemistry of a water parcel in the surface ocean. 

The changes in CT and AT that may accompany the four pumps are described in Sections 2 

and 4.2. The effect of total (heterotrophic) respiration on decreasing AT is approximately 

partitioned between the MCP (shaded triangle) and the BCP (area between the shaded triangle 

and the dotted line), considering that heterotrophic respiration associated with the carbonate 

pump is very small. Surface waters are the site of net photosynthesis (i.e. photosynthesis > 

autotrophic respiration), exchanges of CO2 with the atmosphere, and calcification. Deep 

waters are characterised by the invasion of sea-surface CO2, remineralisation of organic 

carbon (heterotrophic respiration), and dissolution of CaCO3. The positions of the lines 

correspond to T = 15°C, S = 35, and P = 1 atm. Adapted from Zeebe and Wolf-Gladrow 

(2008, their Fig. 2). 

 

Figure 4. World-ocean integrated, euphotic zone production rates of LDOC, SLDOC, SRDOC 

and RDOC plotted as a function of their average lifetimes (values from Hansell, 2013, his 

Table 1). The production rates of SLDOC, SRDOC are from modelling of Hansell et al. 

(2012), who used these values to obtain satisfactory agreement between DOC concentrations 

in their global biogeochemical model and observations. The equation of the linear regression 

line on the four points is given in the text (eq. 8). The vertical dotted line corresponds to a 

DOC lifetime of 100 years. The two horizontal double-arrowed dotted lines represent the 

values of PDOC<100 and PDOC>100, respectively. 
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Figure 5. Schematic representation of autotrophic production and food-web transformation of 

DOC and POC in the ocean. (1) Assuming that PER = 20%, total PP = 50 Gt C year-1 is 

partitioned between PPDOC and PPPOC = 10 and 40 Gt C year-1. (2) Assuming that 50% of 

PPPOC are transformed into DOC by the heterotrophic food web, then PDOC = 30 Gt C year
-1

, 

and the remaining 20 Gt C year
-1

 are food-web transformed into heterotrophic or detrital POC 

(PPOC) or respired back to CO2 (R). (3) Further food-web activity respires most PDOC and PPOC 

back to CO2, the remainder being the MCP and BCP sequestration. The sizes of the PDOC and 

PPOC compartments in the bottom horizontal box are proportionally much bigger than the ~1% 

of PP that is actually sequestered annually.  
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Table 1. Acronyms and symbols of quantities in the present text, definitions, areal 

dimensions, and corresponding units often used in oceanography. N/A: not applicable. 

Acronym 

or symbol 

Definition Dimensions  Units* 

AT Total alkalinity NM
-1

 µmol kg
-1

 

b Remineralisation exponent  
Dimension-

less 
N/A 

BCP Biological carbon pump ML
-2

T
-1

 g C m
-2

 year
-1

,
 

CDR Carbon dioxide removal (methods) N/A N/A 

CT Total dissolved inorganic carbon ML-2 g C m-2 

DIC Dissolved inorganic carbon; see CT ML
-2

 
 

DOC Dissolved organic carbon ML
-2

 g C m
-2 

DOC<100 DOC with an average lifetime <100 years ML
-2

 g C m
-2

 

DOC>100 DOC with an average lifetime >100 years ML
-2

 g C m
-2

 

DOM Dissolved organic matter ML-2 g m-2 

Fe 
Downward POC flux at depth ze; export 

flux 
ML

-2
T

-1
 g C m

-2
 year

-1 

Fs 
Downward POC flux at depth zs; 

sequestration flux 
ML

-2
T

-1
 g C m

-2
 year

-1 

GWP Global Warming Potential (indices) 
Dimension-

less 
N/A 

LDOC Labile DOC ML
-2

 g C m
-2 

MCP Microbial carbon pump ML
-2

T
-1

 g C m
-2

 year
-1 

pCO2 Partial pressure of CO2 ML
-1

T
-2

 atm, bar, kP 

PER 
Percentage of extracellular release = 

PPDOC / (PPDOC + PPPOC) 

Dimension-

less 
% 

PDOC Rate of DOC production ML-2T-1 g C m-2 year-1 
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PDOC<100 Rate of production of DOC<100 ML
-2

T
-1

 g C m
-2

 year
-1

, 

PDOC>100 Rate of production of DOC>100 ML
-2

T
-1

 g C m
-2

 year
-1

 

PPOC Rate of production of POC ML
-2

T
-1

 g C m
-2

 year
-1

 

POC Particulate organic carbon ML
-2

 g C m
-2 

POM Particulate organic matter ML-2 g m-2 

PP Primary production ML-2T-1 g C m-2 year-1 

PPDOC Dissolved fraction of PP ML
-2

T
-1

 g C m
-2

 year
-1

 

PPPOC Particulate fraction of PP ML
-2

T
-1

 g C m
-2

 year
-1

 

RDOC Refractory DOC ML
-2

 g C m
-2 

SLDOC Semi-labile DOC ML-2 g C m-2 

SRDOC Semi-refractory DOC ML
-2

 g C m
-2 

TA see AT NM
-1

  

TCO2 Total CO2; see CT ML
-2

  

URDOC Ultra-refractory DOC  ML-2 g C m-2 

UV Ultraviolet radiation MT
-3

, L
-2

T
-1

 
W m-2, 

mol photons m-2 s-1 

ze Depth of carbon export L m 

zd e-folding depth, where Fs = 0.37 Fe L m 

zs Depth of carbon sequestration L m 

∑CO2 Total CO2; see CT  
 

* Alternative units to g C m-2 [ML-2] and g C m-2 year-1 [ML-2T-1] are mol C m-2 [NL-2] and 

mol C m
-2

 year
-1 1 

[NL
-2

T
-1

], respectively. 
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Table 2. Grouping under various topics and sub-topics of definitions of terms, expressions and 

concepts given in the text, and sections of the text where these are discussed. 

Topics and sub-topics: definitions 
Section of 

this text 

1. The three vertical ocean carbon pumps  

1.1. Concept of ocean carbon pumps. The ocean carbon pumps maintain the 

vertical gradient of CT
1 that exists in the World Ocean. The global mean CT in 

deep waters below 1200 m is higher than in the surface mixed layer, i.e. 2284 

and 2012 µmol kg
-1

, respectively. This requires that physical, chemical and 

biological processes counteract the continuous erosion by diffusive ocean 

mixing 
2
 of the vertical differences in the concentration of CT. The ocean 

carbon pumps have an important effect on the air-sea CO2 fluxes on century 

time scales (IPCC 2013, Section 6.3.2.5.5).  

1 

1.2. Three vertical ocean carbon pumps. Three vertical pumps contribute to 

maintaining the vertical CT gradient
3
: (1) the solubility pump, (2) the carbonate 

pump
4
, and (3) the soft-tissue pump (also called organic carbon pump, but 

more generally biological carbon pump
5
, BCP). 

1 

1.3. Mechanisms of the three vertical ocean carbon pumps. (1) In the solubility 

pump, the dissolution of atmospheric CO2 in surface waters is followed by deep 

mixing of the CO2-rich water. (2) In the carbonate pump, the bio-precipitation 

2 

                                                        

1 CT = CO2 (dissolved) + H2CO3 + HCO3
- + CO3

2- .The concept of ocean carbon pumps was 

proposed by Volk and Hoffert (1985). 
2 The mixing timescale of the ocean is ~1000 years. 
3
 The three vertical carbon pumps were defined by Volk and Hoffert (1985). 

4 Also called carbonate counter-pump, where the prefix “counter” refers to the fact that the 

precipitation of CaCO3 in the ocean is accompanied by the release of CO2 to surrounding 

waters, and thus the atmosphere. This release contributes to maintain the vertical CT gradient 
by decreasing sea-surface CT.  
5
 The expression biological carbon pump may refer to either the organic component of the 

ocean carbon pump only, or both the organic and CaCO3 components. Volk & Hoffert (1985) 

and Passow & Carlson (2012) used biological carbon pump for the sum of the two 
components. In this review, biological carbon pump refers only to the organic component, 

consistent with the Glossary in IPCC (2013, Annex III). 
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of CaCO3 in the upper water column is accompanied by the release of CO2 to 

the surrounding waters, and from there to the atmosphere, and followed by the 

sinking of bio-mineral particles to depth. (3) In the biological pump, the 

photosynthetic uptake of inorganic carbon and synthesis of organic carbon by 

phytoplankton, and the transformation of this carbon by the pelagic food web 

in the euphotic zone (e.g. lysis, grazing, respiration, incorporation into larger 

particles) are followed by downward transfer of organic carbon (POC plus 

DOC) into deep waters. 

1.4. General mechanism of the vertical ocean carbon pumps. The mechanism 

of the three vertical pumps includes both the downward export of carbon from 

the surface ocean (i.e. the deepest of either the base of the euphotic zone or the 

seasonal surface mixed layer), and the downward transfer of the exported 

carbon into deep waters ( i.e. below the maximum depth of the permanent 

pycnovline of ca. 1000 m
6
). In this review, the downward transfer of carbon 

from the surface ocean that does not reach deep waters (i.e. bottom of the 

permanent pycnocline) is called carbon export. The vertical carbon pumps 

(sensu stricto, Volk and Hoffert, 1985) maintain the vertical CT gradient by 

transferring (and thus effectively sequestering) carbon below the permanent 

pycnocline. 

2 

1.5. Magnitudes and dimensions of the three ocean carbon pumps. The 

physical dimensions of the three vertical ocean carbon pumps are [ML
-2

T
-1

], 

and the units in most oceanographic studies are g C m
-2

 year
-1

 or 

mol C m
-2

 year
-1

, or for the whole ocean, Pg C year
-1

 or Gt C year
-1 

or 

Pmol C year-1. The solubility, carbonate and biological pumps transfer 

downwards DIC, CaCO3 and organic carbon, respectively, and the carbonate 

pump also transfers upwards CO2 to the atmosphere. The magnitude of the 

solubility pump is the rate of DIC transfer to depth. The magnitude of the 

carbonate pump is the rate of transfer of CaCO3 (and the HCO3
-
 resulting from 

2 

                                                        
6
 This depth of 1000 m is operationally equivalent to the 1200 m depth horizon that separates 

the upper water column with an average CT concentration of 2012 µmol kg-1 from the deep 

waters with 2284 µmol kg
-1

 (Volk and Hoffert, 1985).  
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its dissociation) into deep waters plus the rate of transfer of CO2 into the 

atmosphere. The magnitude of the biological pump is the rate of transfer of 

organic carbon (and the CO2 resulting from its remineralisation) to depth. 

2. The ocean microbial carbon pump  

2.1. Dissolved organic carbon. Five fractions of dissolved organic carbon 

(DOC) have been identified in the ocean based on their lifetimes7: (1) labile 

DOC (LDOC; average lifetime: hours to days), (2) semi-labile DOC (SLDOC; 

ca. 1.5 years), (3) semi-refractory DOC (SRDOC; ca. 20 years), (4) refractory 

DOC (RDOC; ca. 16 000 years), and (5) ultra-refractory DOC (URDOC; 

ca. 40 000 years). The lifetimes of the DOC fractions (from a few hours to tens 

of thousands of years) are part of a continuum. 

4.1 

2.2. Microbial carbon pump. The suite of marine microbial processes that lead 

to the production of longer-lived DOC fractions is called microbial carbon 

pump (MCP)
8
. Although, the MCP concept was not defined initially in the 

same terms, or expressed in the same units as the three vertical carbon pumps 

(Definition 1.5), the MCP has the same fundamental characteristic as the three 

other carbon pumps in that it maintains a gradient in concentration of carbon 

compounds. In the MCP case, the gradient is between DOC with average 

lifetime shorter and longer than 100 years (DOC<100 and DOC>100, 

respectively), and is maintained against the continuous degradation of 

DOC>100, mostly by photochemical transformation. However, the MCP differs 

from the three vertical carbon pumps in that it maintains a gradient in 

concentration of dissolved organic carbon, whereas the other pumps maintain 

the vertical gradient in concentration of dissolved inorganic carbon. 

4.2 

2.3. Magnitude and dimensions of the MCP. Because the MCP integrates a 4.2 

                                                        
7
 The five DOC fractions and their characteristics were defined by Hansell (2013). 

8 The concept of microbial carbon pump was proposed by Jiao et al. (2010, 2011). By calling 

this carbon pump microbial, the authors assumed that the production of the longer-lived DOC 
fractions (i.e. SRDOC, RDOC, and URDOC) largely resulted from the activity of marine 

pelagic microbes, i.e. unicellular planktonic organisms and viruses. 
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suite of marine microbial processes leading to the production of the longer-

lived DOC fractions (i.e. Definition 2.2), the magnitude of the MCP is defined 

as the rate of production of longer-lived DOC, i.e. PDOC>100. The dimensions 

are [ML-2T-1] and the units g C m-2 year-1 or mol C m-2 year-1, or for the whole 

ocean, Pg C year-1 or Pmol C year-1, identical to the dimensions and units of the 

three vertical ocean carbon pumps (Definition 1.5). 

2.4. Spatial redistribution of SRDOC, RDOC and URDOC. The concentration 

of total DOC is higher in surface waters, where all DOC fractions are present, 

than below, where only the long-lived DOC is thought to occur. Below 

~100 m, there is production of DOC by food-web activities, but the 

concentrations of LDOC and SLDOC (and SRDOC at low latitudes) are 

generally low because this DOC is recycled (i.e. consumed, and partly 

repackaged into POC or metabolised to CO2 and longer-lived DOC) more 

rapidly than the ~1000-year mixing timescale of the ocean and consequently 

does not accumulate. In contrast, micromolar concentrations of longer-lived 

DOC fractions occur in significant amounts at all depths, with latitudinal 

variations, and this indicates that the longer-lived DOC fractions (i.e. DOC>100) 

are redistributed vertically by various physical and biological mechanisms. 

4.2 

3. Carbon sequestration  

3.1. Carbon sequestration. Carbon sequestration is the addition of inorganic or 

organic carbon to a terrestrial or aquatic reservoir (i.e. to a component of the 

climate system other than the atmosphere), where a reservoir has the capacity 

to accumulate, store or release carbon. The carbon reservoirs considered here 

are the deep ocean waters, marine sediments, and long-lived DOC.
9
.  

3 

3.2. Duration of sequestration. Because carbon is transformed by several 

natural cycles that operate over a range of different timescales, carbon 

sequestration can be of different durations: up to hundreds of millions of year 

3 

                                                        
9
 Combination of definitions given for sequestration, uptake, and reservoir in the Glossary of 

IPCC (2013, Annex III). According to that glossary, the word pool is an equivalent term to 

reservoir, although the definition of pool often includes the atmosphere. 
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in the carbonate-silicate cycle, less than one million years in the carbonate 

cycle, thousands or tens of thousands of years for long-lived marine DOC, and 

up to one thousand years when transferred into deep ocean waters. As a 

pragmatic rule, the present review considers that carbon is sequestered when it 

is stored or accumulated in a reservoir for at least 100 years. 

3.3. Natural carbon sequestration. Carbon dioxide can be captured and 

removed from the atmosphere through naturally occurring biochemical, 

biological, chemical and/or physical processes, this CO2 being sequestered in 

natural reservoirs. 

3 

3.4. Carbon dioxide removal methods. Carbon Dioxide Removal (CDR) 

methods are a set of techniques that aim to remove CO2 directly from the 

atmosphere by either increasing natural sinks for carbon or using chemical or 

geochemical engineering approaches to remove the CO2, with the intent of 

reducing the atmospheric CO2 concentration. The CDR methods may involve 

the ocean (e.g. iron fertilisation), land (e.g. large-scale reforestation), and 

technical systems (e.g. direct capture of CO2 from the atmosphere using 

engineered chemical means). Some CDR methods fall under the category of 

geoengineering, depending on the magnitude, scale, and impact of the 

particular CDR activities. (IPCC 2013, Annex III, Glossary). 

3 

4. The ocean carbon pumps and marine carbon sequestration  

4.1. Carbon sequestration in deep waters. Because the carbon that reaches 

deep waters does not return as CT to surface waters where CO2 can be 

exchanged with the atmosphere within 100 years, this carbon is considered to 

be sequestered (Definition 3.2 above). 

3 

4.2. Downward transfer of carbon by the vertical ocean carbon pumps. The 

three vertical ocean carbon pumps transfer export carbon into deep waters 

i.e. below the maximum depth of the permanent pycnocline (Definition 1.4 

above). 

2 
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4.3. The vertical ocean carbon pumps and marine carbon sequestration. As a 

consequence of Definitions 4.1 and 4.2, the three vertical ocean carbon pumps 

sequester carbon in the deep waters or sediment reservoirs, in different forms: 

the deep ocean circulation (average timescale: ca. 1000 years), where carbon is 

sequestered as dissolved CO2 or DOC; sediments, where inorganic (CaCO3) 

and organic carbon are sequestered for thousands of years; and the lithosphere, 

where carbon is sequestered for millions of years in carbonate rocks and as 

fossil organic carbon (e.g. kerogen and hydrocarbons). Sequestered organic 

carbon includes methane hydrate (i.e. clathrate). On continental shelves and 

slopes, carbon may be stored in shallow-water CaCO3 reefs, or delivered and 

stored into sediments <1000 m depth. 

3 

4.4. The MCP and marine carbon sequestration. the MCP contributes to carbon 

sequestration through the biochemical transfer of carbon from organic 

compounds with a lifetime <100 years to DOC fractions with a lifetime 

>100 years, i.e. URDOC, RDOC, and part of SRDOC. Micromolar 

concentrations of longer-lived DOC fractions occur in significant amounts at 

all depths in the ocean. In this review, application of the MCP concept is 

limited to the suite of processes that transfer carbon to DOC>100. 

4.2 

5. Difference between the biological and the microbial carbon pumps  

5.1. Sequestration mechanism of the BCP. The BCP, as do the two other 

vertical ocean carbon pumps, sequesters carbon by transferring organic matter 

into deep waters (Definition 4.3). The BCP leads to the sequestration into 

different reservoirs below ca. 1000 m of carbon supplied by sinking or 

vertically transported POC and vertically mixed DOC that is not associated 

with the MCP (i.e. that has not been transformed into long-lived DOC by the 

MCP). In other words, the vertical distribution of the carbon sequestered 

through the BCP is depth dependent. 

5.2 

5.2. Sequestration mechanism of the MCP. The MCP sequesters carbon by 

transferring it to DOC>100. Because the long-lived DOC reservoir exists at all 

5.2 
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depths in the ocean (Definition 4.4), the vertical distribution of the carbon 

sequestered by the MCP is depth independent. 

5.3. BCP and the MCP are distinct. Even if the depth redistribution 

mechanisms of DOC>100 overlap with the vertical transfer of carbon by the 

BCP, the two ocean carbon pumps are distinct. Carbon sequestration by the 

MCP is a consequence of the production of DOC>100 and is independent of its 

vertical redistribution. In contrast, carbon sequestration by the BCP is governed 

by the downward transfer of organic carbon compounds. 

5.2 

5.4. Assignment of carbon to the BCP or the MCP. Further to Definitions 5.1 to 

5.3, the MCP sequesters carbon by biochemical transfer to the DOC>100 

reservoir, whereas the BCP sequesters carbon by downward transfer into deep 

carbon reservoirs. In cases when carbon is sequestered at depth by the BCP, its 

further deep-water microbial transformation into DOC>100 would not change 

the initial assignment of this carbon to the BCP. Similarly, when carbon is 

sequestered by the MCP above 1000 m, its further vertical transport below 

1000 m would not change the initial assignment of this carbon to the MCP. 

This operational first-time-sequestration criterion prevents organic carbon 

fluxes from being assigned to both the BCP and the MCP 

5.2 
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Table 3. Calculation of PDOC<100 and PDOC>100. The value of PDOC>100 provides an estimate of 

the magnitude of the MCP. Columns: DOC fractions, average lifetimes, and inventory and 

annual production (DOC Prod) in the World Ocean from (Hansell, 2013; his Table 1); the 

limits of lifetime classes were set in such a way as to subdivide equally (on a logarithmic 

scale) the overall range of average lifetimes (i.e. from 10
-3

 to 10
4.2

 years, excluding URDOC; 

see Fig. 2). The inventory and PDOC values for DOC<100 and DOC>100 were obtained by 

linearly dividing SRDOC into two fractions with lifetimes of 10
0.6

 to 10
2
 and 10

2
 to 10

3
 years, 

respectively, and summing up the values corresponding to <102 and ≥102 years from all 

fractions (excluding URDOC), respectively. 

DOC 

fraction 

Average lifetime 

(years) 

Limits of lifetime 

classes (years)  

Inventory 

(Pg C) 

PDOC 

(Pg C year-1) 

LDOC 0.001 = 10-3 10-4.2 to 10-1.8 <0.2 25 

SLDOC 1.5 = 10
0.18

 10
-1.8

 to 10
0.6

 6 3.40 

SRDOC 205 = 101.3 100.6 to 103 14 = 8 + 6 
0.34 = 

0.20  + 0.14 

RDOC 16 000  = 10
4.2

 10
3
 to 10

5.4
 630 0.043 

URDOC 40 000 = 10
4.6

   >12 1.2 × 10
-5

  

DOC<100 <100 10
-4.2

 to 10
2
 

<0.2 + 6 + 8 

= 14 

25 + 3.40 + 0.20 

= 28.6 

DOC>100 ≥100 10
2 

to 10
5.4

 
6 + 630 = 

636 

0.14 + 0.04 = 

0.18 

 



  

 63 

Table 4. Potential effects of climate-driven changes in the ocean environment on microbial 

variables and carbon sequestration by the MCP, described in Section 7 (numbers at the 

beginning of rows: sub-Sections of the text where the responses of microbial variables and 

MCP carbon sequestration are explained). The three entries under “Water-column 

stratification” detail three changes (bullets) that may occur as a result of increasing 

stratification. Estimates of carbon sequestration by the MCP correspond to possible net effects 

of environmental changes on production of RDOC and SRDOC with a lifetime ≥100 years 

(PDOC>100). Increase: ↑↑↑↑; decrease: ↓↓↓↓. 

Environmental 

factor 

Responses of microbial variables to the 

changing environment 

Carbon sequestration 

by the MCP 

7.1. Surface-ocean 

temperature ↑ 
Shift from POC to DOC production ↑ 

7.2. Water-column stratification ↑ 

• near-surface 

retention ↑ (+ cloud 

cover ↓) 

Higher conversion of labile forms of DOC 

into SRDOC and RDOC by 

photodegradation 

↑ 

• oligotrophy ↑ 
PER does not vary as a function of the 

nutrient status of the system 
No conclusive effect 

• phytoplankton 

mean size ↓ 
Decreased production of SRDOC and RDOC ↓ 

7.3. POC production 

↓ 

Lower production of SRDOC or RDOC by 

prokaryotic POC solubilisation 
↓ 

7.4. Thermohaline 

circulation and cloud 

cover ↓ 

Higher photodegradation of SRDOC and 

RDOC 
↓ 

7.5. pH ↓ (i.e. ocean Increased production of DOC (possibly ↑ 
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acidification) including SRDOC and RDOC) 

   

  

 

 


