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Derivation of the bacterial run-and-tumble kinetic equation from a
model with biochemical pathway

Benôıt Perthame∗†‡ Min Tang§ Nicolas Vauchelet∗†‡

March 13, 2015

Abstract

Kinetic-transport equations are, by now, standard models to describe the dynamics of popula-
tions of bacteria moving by run-and-tumble. Experimental observations show that bacteria increase
their run duration when encountering an increasing gradient of chemotactic molecules. This led to
a first class of models which heuristically include tumbling frequencies depending on the path-wise
gradient of chemotactic signal.

More recently, the biochemical pathways regulating the flagellar motors were uncovered. This
knowledge gave rise to a second class of kinetic-transport equations, that takes into account an
intra-cellular molecular content and which relates the tumbling frequency to this information. It
turns out that the tumbling frequency depends on the chemotactic signal, and not on its gradient.

For these two classes of models, macroscopic equations of Keller-Segel type, have been derived
using diffusion or hyperbolic rescaling. We complete this program by showing how the first class of
equations can be derived from the second class with molecular content after appropriate rescaling.
The main difficulty is to explain why the path-wise gradient of chemotactic signal can arise in this
asymptotic process.

Randomness of receptor methylation events can be included, and our approach can be used to
compute the tumbling frequency in presence of such a noise.

Key words: kinetic-transport equations; chemotaxis; asymptotic analysis; run and tumble; biochem-
ical pathway;

Mathematics Subject Classification (2010): 35B25; 82C40; 92C17

1 Introduction

Two classes of kinetic-transport equations have been proposed to describe, at the cell scale, the
movement of bacteria by ‘run and tumble’ in a given external effective signal M(x, t), usually related
to the extra-cellular chemo-attractant concentration S by a relation of the type M = m0 + ln(S).
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The simplest class is for the probability p̄(x,v, t) to find a bacteria at location x ∈ Rd and with
velocity v ∈ V (a smooth bounded subset of Rd, one can choose the unit ball to fix idea ). The
evolution of this probability is given by a Boltzmann type equation

∂tp̄+ v · ∇xp̄ = T [DtM ](p̄), x ∈ Rd, v ∈ V, t ≥ 0, (1)

with the path-wise gradient of M defined as

DtM = ∂tM + v · ∇xM (2)

and T a tumbling kernel which typically takes the form

T [DtM ](p̄) =

∫
V

[
T
(
DtM(x,v′, t),v,v′

)
p̄(x,v′, t)− T

(
DtM(x,v, t),v′,v

)
p̄(x,v, t)

]
dv′. (3)

Such equations, with T depending on M or DtM , were used intensively to model bacterial chemotaxis,
possibly with M connected to the cell density, as a result of chemoattractant release by bacteria. They
were first introduced in [14] and the Keller-Segel drift-diffusion system was subsequently derived [15]
in the diffusion limit; surprisingly, with a kernel T depending on M and not on its gradient, and in
opposition to the Keller-Segel system which solutions blow-up for large mass, it was proved that the
solutions exist globally [4, 10]. However, experiments show that bacteria as E.coli extend their runs
when feeling an increasing concentration of chemoattractant and this led to study tumbling kernels T
that depend on DtM , see [7, 5]. The nonlinear theory is then more difficult (see [3] and the references
therein) and blow-up can occur in finite time [2]. These models with T depending on DtM are able
to explain the experimental observation of traveling pulses of bacteria, which cannot be done when
T only depends on M itself, see [16, 17]. Also, departing from this kinetic-transport equation, it is
possible to rescale it and study the diffusion and hyperbolic limit as in [7, 5, 16, 17, 10, 9]. When T
undergoes stiff dependency on DtM , the hyperbolic limit is singular and the analysis is particularly
delicate [11].

More elaborated kinetic models have been proposed recently that incorporate intracellular chemo-
sensory system. In the simplest description of the biochemical pathways, they use a single additional
variable m ≥ 0, which represents the intracellular methylation level. Then, the kinetic-transport
equation is written for the probability density function p(x,v,m, t) of bacteria at time t, position
x ∈ Rd, moving at velocity v ∈ V and methylation level m > 0∂tp+ v · ∇xp+ ∂m[f(m,M)p] = Q[m,M ](p),

p(x,v,m = 0, t) = 0.
(4)

The intracellular adaptation dynamics is described by the reaction rate f(·) for which we assume
f(m = 0,M) > 0, which allows us to pose the boundary condition at m = 0. The tumbling term
Q[m,M ](p) is

Q[m,M ](p) =

∫
V

[
λ(m,M,v,v′)p(t,x,v′,m)− λ(m,M,v′,v)p(t,x,v,m)

]
dv′, (5)

where λ(m,M,v,v′) denotes the methylation dependent tumbling frequency from v′ to v, in other
words the response of the cell depending on its environment and internal state. We borrow this for-
malism from [12, 18] even though this type of models, involving more general signal transduction, can
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be traced back to [5, 7, 8, 21]. The authors in [5, 7, 8, 18, 21, 22] developed the asymptotic theory
which allows to recover, in the diffusion and in the hyperbolic limits, macroscopic equations where the
variables are only (x, t) as the Keller-Segel system, or (x,m, t) for structured Keller-Segel models.

In the program of establishing the relations between these pieces of the model hierarchy for bacterial
population motion, a derivation is missing: how are related these two classes of kinetic models (1)–(3)
and (4)–(5)?

Our goal is to show how, assuming fast adaptation and stiff response, the methylation level is at
equilibrium with the external signal represented by M , and the equation (1) can be derived from (4).
In particular we aim at computing the bulk tumbling kernel T (DtM,v,v′) from the methylation
dependent kernel λ(m,M,v,v′), a statement we give in the next section. Two difficulties arise here:
one is to infer the proper rescaling in the kinetic equations, the second is to carry-out the mathematical
analysis for singular limits. Our approach allows us to also include noise resulting from random
receptor-methylation and demethylation events. The proof of the formula for T is given in sections 3
and 4; we show that a direct use of the variable m is not enough to produce the formula and that
a new variable is needed, which zooms on the intra- and extra-cellular methylation equilibrium. We
conclude by relating our notations to a more physically based description of the same model where
the cell receptors activity is used in the model parameters, see section 5.

To keep simplicity, we assume that the external signal function M(x, t) is given and smooth. There-
fore questions of existence and blow-up are not considered here.

2 Fast adaptation, stiff response

Assumptions. For our mathematical derivation, we introduce a small parameter ε which acts both
as a fast time scale for external signal transduction and as a stiffness parameter for the response in
terms of tumbling rate. We assume moreover that the reaction rate f only depends on the difference
m −M , in accordance with the physical models that we recall in Section 5. Therefore, we rescale
equation (4)–(5) as ∂tpε + v · ∇xpε + 1

ε∂m

(
f
(
m−M

)
pε

)
= Qε[m,M ](pε),

pε(x,v,m = 0, t) = 0,
(6)

with the tumbling kernel

Qε[m,M ](pε) =

∫
V

[
Λ
(m−M

ε
,v,v′

)
pε(x,v

′,m, t)− Λ
(m−M

ε
,v′,v

)
pε(x,v,m, t)

]
dv′. (7)

We complete this equation with an initial data pini ≥ 0 which satisfies∫∫∫
Rd×V×R

(1 +m2)pini(x,v,m) dxdv dm <∞, (8)

p̄ini :=

∫
R
pini dm ∈ L∞(Rd × V ). (9)
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Also, we are going to use several assumptions for the functions M , f and Λ. We assume they are
as smooth as necessary and that for some constants m±, g±, λ±,

0 < m− ≤M(x, t) ≤ m+, M ∈ C1
b

(
Rd × [0,∞)

)
, (10)

f(y) = −yG(y), with G ∈ C1
b(R), 0 < g− ≤ G(y) ≤ g+, (11)

∂yΛ
(
y,v,v′

)
< 0, 0 < λ− ≤ Λ

(
y,v,v′

)
≤ λ+. (12)

Various scalings have been proposed for kinetic equation and the closest, but still different seems to
be the high field limit [1]. In [13], still other scalings or limits are studied.

The main result. With these assumptions, we are going to show that as ε vanishes, we recover the
simpler model (1)–(3) as a limit of (6).

Theorem 2.1 (Derivation of the kinetic equation) We make the assumptions (8)–(9) on the
initial data, and (10)–(12) on the coefficients. Let pε be the solution to (6). Then, for all T > 0, p̄ε
is bounded in L∞

(
[0, T ]× Rd × V

)
and

p̄ε :=

∫
R
pε dm ⇀

ε→0
p̄0 in L∞

(
[0, T ]× Rd × V

)
-weak-?

and p̄0 satisfies equation (1)–(3) with

T
(
u,v,v′

)
= Λ

(
− u

G(0)
,v,v′

)
.

Furthermore, we have p̄0 :=
∫
R p0 dm with p0 the weak limit (in measures, see (15)) of pε which is

given by
p0(x,v,m, t) = p̄0(x,v, t)δ

(
m = M(x, t)

)
.

Before we prove this theorem in the next sections, we present a variant of this result.

Internal noise. Due to random receptor-methylation and demethylation events, some internal noise
can be observed in E. coli chemotaxis and we can model it by adding a diffusion term in m [6]. The
model is as follows:

∂tpε + v · ∇xpε +
1

ε
∂m

(
f
(
m−M

)
pε

)
= ε∂2mmpε +Qε[m,M ](pε), (13)

with the no-flux boundary condition that now reads

f(−M)pε(x,v,m, t)− ε2∂mpε(x,v,m, t) = 0, at m = 0. (14)

Theorem 2.2 (Limit with noise) With the assumptions and notations of Theorem 2.1, the same
conclusions hold for the solution pε of (13), with the same expression for p0 and

T
(
u,v,v′

)
=

√
G(0)

2π

∫
R

Λ
(
y,v,v′

)
e
−G(0)

2

(
y+ u

G(0)

)2
dy.
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A priori bounds and principle of the proof. Before we explain the derivation of the formula
stated in these theorems, let us make some observations which explain the difficulty. Because we
assume that M(x, t) is given, we handle a linear equation for which existence and uniqueness of weak
solutions is well established. The nonlinear case, when the chemoattractant concentration giving rise
to M is coupled to pε, can also be treated, see [13]. In particular we will make use of the uniform
estimates (see Section 4)∫∫∫

Rd×V×R
pε(x,v,m, t) dxdv dm =

∫∫∫
Rd×V×R

pini(x,v,m) dx dv dm, ∀t ≥ 0, (15)

p̄ε(x,v, t) ≤ ‖p̄ini(x,v)‖∞eCt, ∀t ≥ 0, (16)

where C is a nonnegative constant. From these bounds, we conclude that we can extract subse-
quences (but to simplify the notations we ignore this subsequence) which converge as mentioned in
the theorems.

Passing to the limit in the equation on pε (with or without noise) gives us

∂m

(
f
(
m−M

)
p0

)
= 0.

This tells us that f
(
m−M

)
p0 = 0 (it is constant and p0 is integrable). Because, with assumption (11),

f
(
m −M

)
vanishes only for m −M = 0, we conclude that p0 is a Dirac mass at m = M , hence the

expression of p0 in Theorems 2.1 and 2.2.

However this information is not enough to pass to limit in the equation on p̄ε obtained integrating
in m equation (6) or (13), that is

∂tp̄ε + v · ∇xp̄ε =

∫
R+

Qε[m,M ](pε) dm.

Indeed, in the right hand side, the product Λ
(
m−M
ε ,v,v′

)
pε(x,v

′,m, t) is, in the limit, a discontinuity

multiplied by a Dirac mass. For this reason, we have to rescale in m in order to evaluate this limit,
which we do in the next section.

3 The change of variable

To get a more accurate view of the convergence of pε to a Dirac mass in m, and following [7], we
introduce a blow-up variable around m = M . We set

y =
m−M

ε
, qε(x,v, y, t) = εpε(x,v,m, t) (17)

so that

q̄ε(x,v, t) :=

∫
R
qε(x,v, y, t) dy =

∫
R
pε(x,v,m, t) dm = p̄ε(x,v, t). (18)

Because of these identities, our statements will equivalently be on q̄ε and will go through the analysis
of qε rather than pε itself.

Also notice that the bounds in (15), (16) also hold true for qε and q̄ε and allow us to take weak limits.
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(i) Without noise. The equation for qε(t,x,v, y) is written, using the definition in (2),

∂tqε + v · ∇xqε −
1

ε
DtM∂yqε +

1

ε2
∂y
(
f(εy)qε

)
=

∫
V

[
Λ
(
y,v,v′

)
qε(x,v

′, y, t)− Λ
(
y,v′,v

)
qε(x,v, y, t)

]
dv′.

From (11), we can write f(εy) = εyG(εy) and the above equation becomes

∂tqε + v · ∇xqε −
1

ε
DtM∂yqε −

1

ε
∂y
(
yG(εy)qε

)
=

∫
V

[
Λ
(
y,v,v′

)
qε(x,v

′, y, t)− Λ
(
y,v′,v

)
qε(x,v, y, t)

]
dv′.

(19)

Because qε is a bounded measure on Rd×V ×R+× (0, T ), for all T > 0, as ε→ 0, qε has a weak limit
q0 in the sense of measure (again after extraction) and the above equation gives, in the distributional
sense,

∂y
(
yG(0)q0 +DtM(S)q0

)
= 0. (20)

From this, we infer that

q0(t,x,v, y) = q̄0(t,x,v)δ
(
y = −DtM(S)

G(0)

)
. (21)

This information is useful provided we can establish that

q̄0(x,v, t) =

∫
R
q0(x,v, y, t) dy = weak- lim

ε→0
q̄ε(x,v, t). (22)

This step is postponed to Section 4 and involves a control of the tail for large values of m.
We may also integrate equation (19) with respect to y and find in the limit

∂tq̄0 + v · ∇xq̄0 =

∫
V

[
Λ
(
− D′tM

G(0)
,v,v′

)
q̄′0 dv′ − Λ

(
− DtM

G(0)
,v′,v

)
q̄0

]
, (23)

where D′tM(S) is the total derivative, as in (2), but in the direction v′ and where q̄′0 represents
q̄0(x,v

′, t). Finally, for any smooth test function φ, we have from the change of variable m 7→ y =
(m−M)/ε, ∫

R
pε(x,v,m, t)φ(m) dm =

∫
R
qε(x,v, y, t)φ(M + εy) dy → q̄0(x,v, t)φ(M),

where we use (21). This gives the limiting expression of p0 in Theorem 2.1.
These are the results stated in Theorem 2.1, if we can establish the relation q̄0 = p̄0 as stated in (22),

which we do later.

(ii) With internal noise. Similarly, after introducing the new variables as in (17), the equation (13)
for qε(t,x,v, y) writes

∂tqε + v · ∇xqε −
1

ε
DtM∂yqε +

1

ε2
∂y
(
f(εy)qε

)
= 1

ε∂
2
yyqε +

∫
V

[
Λ
(
y,v,v′

)
qε(x,v

′, y, t)− Λ
(
y,v′,v

)
qε(x,v, y, t)

]
dv′.
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From (11), this equation becomes

∂tqε + v · ∇xqε −
1

ε
DtM∂yqε −

1

ε
∂y
(
yG(εy)qε

)
= 1

ε∂
2
yyqε +

∫
V

[
Λ
(
y,v,v′

)
qε(x,v

′, y, t)− Λ
(
y,v′,v

)
qε(x,v, y, t)

]
dv′.

(24)

In the limit ε→ 0, the above equation converges to, in the sense of distributions,

∂y
(
yG(0)q0 +DtMq0

)
= −∂2yyq0,

which shows that

q0(x,v, y, t) = q̄0(x,v, t)

√
G(0)

2π
e
−G(0)

2

(
y+

DtM
G(0)

)2
, (25)

a useful information, still assuming we have proved the relation (22) for q̄0.
We conclude as before. After integration of (24) with respect to y, passing to the limit ε → 0, we

find 
∂tq̄0 + v · ∇xq̄0 =

∫
V

[
T
(
D′tM,v′,v

)
q̄′0 − T

(
DtM,v,v′

)
q̄0

]
udv′,

T
(
DtM,v,v′

)
=

√
G(0)
2π

∫
R

Λ(y,v,v′)e
−G(0)

2

(
y+

DtM
G(0)

)2
dy.

(26)

The Theorem 2.2 is also proved.

4 A priori bounds

We now establish the various estimates which justify that we can pass to the limit as indicated in
Section 3 and thus we prove the

Lemma 4.1 We make the assumptions of Theorem 2.1, then the condition (22) holds and for some
constant which depends on

∫∫
y2qini dy dx dv and ‖M‖W 1,∞(Rd×R+), we have∫∫

y2qε(t) dy dx dv ≤ C(qini,M).

Consequently, qε converges weakly in the sense of measure towards q0 and
(i) for qε a solution to (19), q0 is given by (21) with q̄0 weak solution of (23),
(ii) for qε a solution to (24), then, q0 is given by (25) with q̄0 weak solution of (26).

Proof. We only consider the case (i) without noise, the case (ii) is obtained by the same token. We
first prove some estimates which imply weak convergence. Then, we pass to the limit in the equation
satisfied by q̄ε.

L1 bound. For completness, we recall that equation (19) is positivity preserving and conservative. It
follows the uniform, in ε, bound for qε in L1, see (15).

L∞ bound on q̄ε. We use the notation (18) for q̄ε. Arguing in the spirit of [10, 3, 20]), we first prove
the uniform L∞ bound on q̄ε.
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Integrating (19) with respect to y, from the bound (12) and the nonnegativity of qε, we get

∂tq̄ε + v · ∇xq̄ε ≤ λ+
∫
q̄ε dv′.

Then, using the method of characteristics, we have ∂tq̄ε(t,x + vt) ≤ λ+
∫
q̄ε(x + vt,v′, t) dv′, which

implies after integration

q̄ε(t,x,v)− q̄ini(x− vt) ≤ λ+
∫ t

0

∫
q̄ε(x− vs,v′, t− s) dv′ ds.

Taking the supremum in x, v, we find

‖q̄ε(t)‖∞ ≤ ‖q̄ini‖∞ + λ+ |V |
∫ t

0
‖q̄ε(s)‖∞ds,

and using Gronwall’s inequality, we find the estimate in (16).

Control on the tail in m. In order to prove the condition (22), we need to ensure that there is no
mass loss at infinity in m. To do so, we multiply both sides of (19) by y2 and integrate by parts with
respect to x, v, and y. This yields

d

dt

∫∫
y2qε dy dx dv +

2

ε

∫∫
y2G(εy)qε dy dx dv +

2

ε

∫∫
yDtMqε dy dx dv = 0.

Using the Cauchy-Schwarz inequality, we deduce

d

dt

∫∫
y2qε dy dx dv +

2

ε

∫∫
y2G(εy)qε dy dx dv ≤1

ε

∫∫
y2G(εy)qε dy dx dv

+
1

ε

∫∫
(DtM)2

qε
G(εy)

dy dx dv.

By assumption (10), DtM is bounded in L∞([0, T ] × Rd × V ). From assumption (11) and the mass
conservation, the last integral of the right hand side is uniformly bounded by a constant denoted by
C > 0. Then from assumption (11), we have,

d

dt

∫∫
y2qε dy dx dv +

g−
ε

∫∫
y2qε dy dx dv ≤ C

ε
.

From the Gronwall Lemma, we deduce the bound for all t > 0,∫∫
y2qε(t) dy dx dv ≤ e−tg−/ε

∫∫
y2qini dy dx dv +

C

g−
,

which implies a uniform bound on
∫∫

y2qε(t) dy dx dv.

Passing to the limit. From the bound above, we deduce that, we can extract a subsequence which
converges weakly in measure qε ⇀ q0 and such that q̄ε ⇀ q̄0 in L∞-weak?. Then we can pass to the
limit in the sense of distribution in equation (19) and deduce that the limit q0 satisfies equation (20)
in the sense of distribution. In fact, we notice that from the Lipschitz character of G, we have∫∫

y(G(εy)−G(0))q̄ε dx dy ≤ Cε
∫∫

y2q̄ε dx dy → 0, as ε→ 0,

thanks to the estimate on the tail above. Finally, (20) implies that yG(0)q0 +DtMq0 is constant a.e.,
and this constant should be 0 since from the estimate on the tail above, we have that yq0 ∈ L1. We
conclude that q0 vanishes except when yG(0) +DtM(S) = 0. By conservation of the mass, we deduce
the expression (21) for p0.
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5 Comments on physical background

The form of the equation (6) corresponds, for E. coli chemotaxis, to the formalism in the physical
literature. We have simplified the notations for mathematical clarity and we explain now how to relate
our notations to known biophysical quantities. Here we have used the same biological parameters as
in [12, 19].

• The methylation level M(x, t) at equilibrium is related to the extra-cellular attractant profile S,
by a logarithmic dependency

M = M(S) = m0 +
f0(S)

α
, with f0(S) = ln

(
1 + S/KI

1 + S/KA

)
.

The constants m0, KI , KA represent the basic methylation level, and the dissociation constants
for inactive, respectively active, receptors. Numerical values are given by α = 1.7, m0 = 1,
KI = 18.2µM , KA = 3mM .

• The receptor activity a(m,S) depends on the intracellular methylation level m and the extra-
cellular chemoattractant concentration S such that

a =
(
1 + exp(NE)

)−1
, with E = −α(m−m0) + f0(S) = −α(m−M(S)). (27)

The coefficient N = 6 represents the number of tightly coupled receptors.

• The intracellular dynamics and tumbling frequency are given by

f
(
m−M(S)

)
= F (a) = kR(1− a/a0), λ

(
m−M(S)

)
= Z(a) = z0 + τ−1

( a
a0

)H
,

where a(m,S) is the receptor activity defined in (27). The parameter kR is the methylation rate,
a0 is the receptor preferred activity which is such that f(a0) = 0 and f ′(a0) < 0. For the tumbling
frequency, z0, H, τ represent the rotational diffusion, the Hill coefficient of flagellar motors
response curve and the average run time respectively. All these parameters can be measured
biologically, their values are given by kR = 0.01s−1 ∼ 0.0005s−1, a0 = 0.5, z0 = 0.14s−1,
τ = 0.8s, H = 10.

• Two kinds of noise can be observed in the signaling pathway for E. coli, one is from the external
fluctuation of the ligand concentration and the other is the internal noise from the random
receptor-methylation and demethylation event [6]. For small complexes, the effect on the activity
from the external noise is negligible compared to the internal noise.

We refer the readers to [19, 6, 12, 18] and the references therein for the detailed physical meanings of
these parameters.

In E. coli chemotaxis, the adaptation time is faster than the system time, i.e. the rescaled constant
kR is large. Let kR = 1

ε , where ε is the ratio between the system time and the adaptation time. For
example, when the system time is 1000s and the adaptation time is 100s, ε = 0.1.

Moreover, the Hill coefficient H is large which indicates that λ(m−M(S)) varies fast with respect
to m−M(S). Therefore, the scaling introduced in (6) is satisfied by E. coli chemotaxis. We can use

f(r) = 1− 1

a0

(
1 + exp(−Nαr)

)−1
.

9



Therefore, the function G(·) used in (11) is given by

G(r) = −f(r)

r
= −1

r

(
1− 1

a0

(
1 + exp(−Nαr)

)−1)
, with G(0) = −f ′(0) =

Nα

4a0
.

Besides, from Theorem 2.1 for the case without noise, using y = r
ε yields

T (DtM,v,v′) = Λ(y,v,v′) = z0 + τ−1
(
1 + exp(−Nαεy)

)−H
aH0

= z0 + τ−1

(
1 + exp

(
NαεDtM(S)/G(0)

))−H
aH0

.

And from Theorem 2.1, when the noise in the methylation level is considered,

T
(
DtM,v,v′

)
=

√
G(0)

2π

∫
R

Λ
(
y,v,v′

)
e
−G(0)

2

(
y+

DtM
G(0)

)2
dy.

Since the run duration last longer when bacteria encounter an increasing gradient of chemotactic
molecules, this lead to higher bacteria density at the place where the ligand concentration S is higher.
This phenomena is well explained by the classical Keller-Segel model which can be considered as the
parabolic limit of the kinetic-transport models. However, recent experimental observation shows that
higher ligand concentration leading to higher bacteria density is only valid in a spatial-temporal slow-
varying environment. When the ligand concentration varies fast, there exists a phase shift between
the mass center of ligand concentration and of the bacterias [23]. This is due to the memory effect in
the slow methylation adaptation rate. In the limiting kinetic model, DtM(S) takes into account the
memory effect along the trajectory of the moving cell [20]. Then, two interesting questions come: are
these two kinds of memory effect the same? Can we see the phase shift between the mass center of
ligand concentration and of the bacteria in the limiting kinetic model?

6 Numerical illustrations

We performed numerical simulations using the method SPECS [12]. It is a cell based model that takes
into account the evolution of each cell intracellular methylation level, which determines the tumbling
frequency of each bacteria. As explained in [18, 19], SPECS and the kinetic model that incorporates
intracellular chemo-sensory system (4) show a quantitative match. As in [18, 19], we choose the two
velocity kinetic model and a periodic 1D traveling wave concentration

S(x, t) = S0 + SA sin[
2π

`
(x− ut)],

which is spatial-temporal varying and where the wavelength ` is equal to the length of the domain.
We compare the numerical results of SPECS and the limiting kinetic model in Figure 1. Upwind
scheme is used for the transport terms and periodic boundary conditions are considered. The density
is scaled at the order of 10−3, it is the ratio between the actual cell number and the total number. In
the Figure 1, the x axis represents the remainder of x−ut mod `, i.e. we keep tracking the wave front
of the periodic traveling wave.

Two different wave velocities u = 0.4µm/s and u = 8µm/s are considered. We compare the density
profiles ρ =

∫
V pdv and the cell flux J =

∫
V vp dv. When the concentrated wave moves slowly, the
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Figure 1: Numerical comparison between the limiting kinetic model and SPECS. The steady state
profiles of density ρ (top) and current J (bottom) are presented. Left: u = 0.4µm/s; Right: u =
8µm/s. In the subfigures, histograms and solid lines are from SPECS, while the dash star and dash
dotted lines are calculated using the limiting kinetic equation. Parameters used here are [L]0 = 500µM ,
[L]A = 100µM , ` = 800µm. We have used 20, 000 cells for simulation with SPECS.

limiting kinetic model gives good consistency, however in the fast-varying environment, the density
and cell flux profiles are different for SPECS and the limiting kinetic model. We refer the readers to
[12, 19] for more detailed discussions and physical explanations.

This numerical experiment shows that the memory effect using the model based on DtM(S) is
different from the memory effect for the complete model (4) when fast external chemoattractant waves
are considered. This phenomena can be explained by the slow adaptation rate in the methylation
level and the memory along the trajectory compared to the phase shift. In this fast wave regime, our
mathematical results do not apply because the scaling assumptions are not satisfied.
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