R. Abraham and J. Delmas, Williams' decomposition of the Lévy continuum random tree and simultaneous extinction probability for populations with neutral mutations, Stochastic Process, Appl, vol.119, issue.4, pp.1124-1143, 2009.

D. Aldous, The continuum random tree. I The continuum random tree. II. An overview, Ann. Probab, vol.193, issue.1, pp.1-28, 1990.

L. Math and . Soc, The continuum random tree, Lecture Note Ser, vol.167, issue.21 1, pp.23-70, 1991.

D. Aldous and J. Pitman, Tree-valued Markov chains derived from Galton-Watson processes, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.34, issue.5, pp.637-686, 1998.
DOI : 10.1016/S0246-0203(98)80003-4

R. M. Blumenthal, Excursions of Markov processes, Probability and its Applications, p.1138461, 1992.

N. Andrei, P. Borodin, and . Salminen, Handbook of Brownian motion?facts and formulae, Probability and its Applications, p.1477407, 1996.

N. Broutin and P. Flajolet, The distribution of height and diameter in random non-plane binary trees, Random Structures & Algorithms, vol.4, issue.2, pp.215-252, 2012.
DOI : 10.1002/rsa.20393

URL : https://hal.archives-ouvertes.fr/hal-00773369

A. Dress, V. Moulton, and W. Terhalle, T-theory: An Overview, European Journal of Combinatorics, vol.17, issue.2-3
DOI : 10.1006/eujc.1996.0015

T. Duquesne and J. Gall, Probabilistic and fractal aspects of L???vy trees, Probability Theory and Related Fields, vol.101, issue.4, pp.553-603, 2005.
DOI : 10.1007/s00440-004-0385-4

T. Duquesne and M. Wang, Decomposition of Lévy trees along their diameter, to appear in Ann, 2015.

M. Dwass, Branching processes in simple random walk, Proceedings of the American Mathematical Society, vol.51, issue.2, pp.270-274, 1975.
DOI : 10.1090/S0002-9939-1975-0370775-4

N. Steven and . Evans, Probability and real trees, Lectures from the 35th Summer School on Probability Theory held in Saint-Flour, 2005.

N. Steven, J. Evans, A. Pitman, and . Winter, Rayleigh processes, real trees, and root growth with re-grafting, Probab. Theory Related Fields, pp.81-126, 2006.

B. Haas, J. Pitman, and M. Winkel, Spinal partitions and invariance under re-rooting of continuum random trees, The Annals of Probability, vol.37, issue.4, pp.1381-1411, 2009.
DOI : 10.1214/08-AOP434

URL : https://hal.archives-ouvertes.fr/hal-00149050

J. Gall, The uniform random tree in a Brownian excursion, Probab. Theory Related Fields 96, Random trees and applications, pp.369-383, 1993.

J. Pitman, Combinatorial stochastic processes, Lectures from the 32nd Summer School on Probability Theory held in Saint-Flour, p.2245368, 2002.

D. Revuz and M. Yor, Continuous martingales and Brownian motion, p.1725357, 1999.

G. Szekeres, Distribution of labelled trees by diameter, Lecture Notes in Math, vol.4, pp.392-397, 1983.
DOI : 10.1147/rd.45.0473

A. Weil, Elliptic functions according to Eisenstein and Kronecker, Ergebnisse der Mathematik und ihrer Grenzgebiete, p.562289, 1976.
DOI : 10.1007/978-3-642-66209-6

@. Submit, E. @bullet-choose, and E. , ECP over for-profit journals 1 OJS: Open Journal Systems http: Lots of Copies Keep Stuff Safe http, sfu.ca/ojs/ 2 IMS: Institute of Mathematical Statistics