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Abstract The consequences of global warming on the Peru-Chile Current System (PCCS) ocean circula-
tion are examined with a high-resolution, eddy-resolving regional oceanic model. We performed a dynami-
cal downscaling of climate scenarios from the IPSL-CM4 Coupled General Circulation Model (CGCM),
corresponding to various levels of CO2 concentrations in the atmosphere. High-resolution atmospheric forc-
ing for the regional ocean model are obtained from the IPSL atmospheric model run on a stretched grid
with increased horizontal resolution in the PCCS region. When comparing future scenarios to preindustrial
(PI) conditions, the circulation along the Peru and Chile coasts is strongly modified by changes in surface
winds and increased stratification caused by the regional warming. While the coastal poleward undercur-
rent is intensified, the surface equatorial coastal jet shoals and the nearshore mesoscale activity are rein-
forced. Reduction in alongshore wind stress and nearshore wind stress curl drive a year-round reduction in
upwelling intensity off Peru. Modifications in geostrophic circulation mitigate this upwelling decrease in
late austral summer. The depth of the upwelling source waters becomes shallower in warmer conditions,
which may have a major impact on the system’s biological productivity.

1. Introduction

The South-East Pacific (SEP) hosts the most productive Eastern Boundary Upwelling System (EBUS) in term of
fisheries [Chavez et al., 2008]: The Humboldt Current System or Peru-Chile Current System (PCCS). The intense
biological activity found along the South American west coasts is due to a year-round wind-forced upwelling,
which cools and enriches the surface waters. Two causes are responsible for the intense and steady coastal
upwelling: first, alongshore equatorward wind stress generates the divergence of Ekman currents at the coast,
which is compensated by a vertical upward flow. Second, an alongshore wind decrease (also called ‘‘drop-
off’’) occurs over a few hundred kilometers in the cross-shore direction, due to coastal orography, land/sea
transition in the surface drag and air-sea interaction over cool water [e.g., Capet et al., 2004; Bo�e et al., 2011]. It
results in negative wind stress curl driving Ekman pumping [e.g., Bakun and Nelson, 1991; Albert et al., 2010].

Climate change in EBUS has been first questioned by Bakun [1990] using shipboard measurements of near-
shore surface winds. He showed that upwelling-favorable winds had increased over the period 1955–1988 in
several EBUS including the PCCS, and considered that this trend was due to global warming and would thus
go on in the future. The proposed mechanism is the following: as ground temperature would increase more
than sea surface temperature under climate change, this would lead to a lower pressure over land and an
enhancement of the cross-shore pressure gradient, leading to a geostrophic alongshore wind intensification.
Climate change-induced modifications of the SEP atmospheric circulation have been studied using various
CGCMs. Most 4th Assessment Report (AR4) Intergovernmental Panel on Climate Change (IPCC) CGCMs predict
a SEP anticyclone intensification and a southward displacement of its center [Falvey and Garreaud, 2009; Gou-
banova et al., 2011, hereafter GO2011; Echevin et al. 2012, hereafter EC2012; Belmadani et al., 2014, hereafter
BEL2014]. This southward shift is part of a broader poleward expansion of the subtropics [Kang and Lu, 2012].
As a consequence, coastal winds have become stronger during the upwelling-favorable season along the
Chile coast [Garreaud and Falvey, 2008, BEL2014], which is consistent with Bakun’s [1990] hypothesis. How-
ever, CGCMs also predict a decrease in easterlies and Walker cell intensity [Vecchi and Soden, 2007], so that
the situation at the Peruvian coast is unclear: although the SEP anticyclone is reinforced, its southward dis-
placement could result in a coastal wind decrease off Peru. In any case, CGCMs spatial resolution is generally

Key Points:
� Climate change impact on the

nearshore circulation
� Modification in the upwelling

intensity and its geostrophic
compensation
� Modification in the upwelled water

sources

Correspondence to:
V. Oerder,
vera.oerder@locean-ipsl.upmc.fr

Citation:
Oerder, V., F. Colas, V. Echevin,
F. Codron, J. Tam, and A. Belmadani
(2015), Peru-Chile upwelling dynamics
under climate change, J. Geophys. Res.
Oceans, 120, doi:10.1002/
2014JC010299.

Received 9 JUL 2014

Accepted 18 JAN 2015

Accepted article online 27 JAN 2015

OERDER ET AL. VC 2015. American Geophysical Union. All Rights Reserved. 1

Journal of Geophysical Research: Oceans

PUBLICATIONS

http://dx.doi.org/10.1002/2014JC010299
http://dx.doi.org/10.1002/2014JC010299
http://dx.doi.org/10.1002/2014JC010299
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9291/
http://publications.agu.org/


too low (typically more than 100–200 km) to provide a realistic simulation of the regional climate in the PCCS.
The influence of the steep topography of the Andes and of the oceanic slope cannot be accurately simulated.
In order to reach a higher spatial resolution, regional downscaling must be considered. Garreaud and Falvey
[2008] studied wind changes off Chile using a regional atmospheric model (PRECIS) [Jones et al., 2004] for cen-
tral Chile [18�S–57�S], forced by the Hadley Centre Atmospheric Model version3 (HadCM3) climate model
under two scenarios (A2 and B2 from Special Report on Emissions Scenarios (SRES)] [see Nakicenovic et al.,
2000], and confirmed the wind intensification off Chile. GO2011 performed a statistical downscaling of the
IPSL-CM4 surface winds along the Peru and Chile coasts under idealized preindustrial (PI), doubling and quad-
rupling CO2 scenarios. Their results confirmed the wind strengthening off Chile, whereas they show a
decrease in the annual mean off Peru, consequence of an austral summer decrease and a moderate winter
increase. Evolution under global warming of the ocean circulation in the PCCS has also been assessed. Aiken
et al. [2011] studied the influence of wind changes on the coastal ocean dynamics off Chile and its impact on
fish larvae dispersal. They performed high-resolution regional oceanic simulations using the dynamically
downscaled winds from the A2 SRES climate scenario of the HadCM3 [Garreaud and Falvey, 2008], and pres-
ent conditions for heat and salt surface fluxes and ocean boundary conditions. Their results showed that the
alongshore wind increase off Chile led to a year-round upwelling intensification and nearshore sea surface
temperature (SST) decrease. In a comparable study, EC2012 studied the ocean circulation changes in the
PCCS using a regional model driven by the GO2011 statistically downscaled atmospheric forcing and oceanic
boundary conditions from the IPSL-CM4 CGCM [Marti et al., 2010], under three climate scenarios of increasing
warming. Off Peru, they found an increase in surface stratification caused by the intense large-scale heating
(from both atmospheric and boundary conditions). The poleward coastal undercurrent (also named Peru Chile
Undercurrent, hereafter PCUC) was enhanced and the equatorward surface coastal Peru-Chile current (here-
after PCC) became thinner, resulting in an increased vertical shear and mesoscale turbulence. Upwelling
decreased during austral summer and slightly intensified during winter. Off Chile, upwelling increased
strongly during austral spring and summer.

In the present study, the sensitivity of the ocean circulation to the atmospheric forcing is investigated with
regional oceanic simulations forced by an atmospheric dynamical downscaling of the IPSL-CM4 CGCM. The
same regional oceanic model and boundary conditions as in EC2012 are used. However, in our study, the
air/sea interface is forced by an atmospheric model resolving physical processes at �50 km horizontal reso-
lution in the PCCS region while GO2011 forcing fields used by EC2012 were computed from a statistical
downscaling of the IPSL-CM4. Note that GO2011 results were based on a statistical relation between the
large-scale NCEP reanalysis fields and surface observations (QuikSCAT scatterometer winds), computed dur-
ing a short, recent period (2000–2008) and then applied to the IPSL large-scale model fields for climate-
change scenarios. The atmospheric simulations used in our present study have been described in BEL2014.
We compare the results of these new simulations with those of EC2012, focusing on changes in the central
Peru (CP, 7�S-13�S) coastal circulation. We provide detailed diagnostics (not included in EC2012) on the
coastal upwelling dynamics, its modulation by cross-shore geostrophic flow, and the depth and location of
upwelled water sources under different climate conditions.

The paper is organized as follows: in section 2, the modeling methodology is described. In section 3, the
realism of the control (i.e., current climate) simulations is assessed and results from the climate change sim-
ulations are presented in section 4. Finally, the main findings are discussed in section 5.

2. Methodology

2.1. IPSL-CM4 CGCM and Climate Scenarios
IPSL-CM4 couples an atmospheric model named LMDz [Hourdin et al., 2006] with the NEMO oceanic compo-
nent [Madec et al., 1998] in its ORCA2 configuration [Marti et al., 2010]. Figure 1 (left) represents this CGCM.
The atmospheric horizontal resolution is 4.9� 3 2.4� while the oceanic is 2� and gets refined to 1� near the
equator. ORCA2 has 31 vertical levels.

Using the same CGCM as in EC2012 allows us to compare the impact of two different atmospheric down-
scaling methods on the ocean circulation. In addition, IPSL-CM4 presents various advantages, mentioned by
GO2011, EC2012, and BEL2014. First, the large-scale patterns in the region, in particular the SEP anticyclone,
are relatively realistic under the climate of the last 50 years. ENSO processes are relatively well represented
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in IPSL-CM4 [Guilyardi, 2006]. Also, the SEP biological mean productivity simulated by IPSL-CM4 coupled
with a biogeochemical model is quite realistic, in comparison with other global earth system models [Stei-
nacher et al., 2010]. Last, when considering the modifications induced by global warming, the trends of SST,
the SEP anticyclone poleward shift, and the alongshore wind changes in the upwelling region are close to
those of the IPCC multimodel mean (GO2011, BEL2014).

Following GO2011 and EC2012, we use three idealized climate scenarios performed with the IPSL-CM4, cor-
responding to different CO2 atmospheric concentrations: preindustrial (PI) level in the PI scenario, and twice
and four times the PI level in the 2CO2 and 4CO2 scenarios, respectively. We select the 1970–1999, 2050–
2059, and 2120–2149 time periods for PI, 2CO2, and 4CO2, respectively. We also use the 20th century cli-
mate simulation 20C3M from IPSL-CM4 (1990–2000) in a control experiment (see section 2.4).

2.2. Observational Data Sets
In this study, observations and reanalysis are used as forcing and also to evaluate the realism of our simulations.
The Atmospheric Model Intercomparison Project (AMIP) SST data set [Hurrell et al., 2008] is a merged product
based on the monthly-mean Hadley Centre SST data set version 1 and the National Oceanic and Atmospheric
Administration weekly optimum interpolation SST analysis version 2. It covers the period from 1870 to 2012
with monthly data at 1� resolution. The Quikscat scatterometer-derived SCOW climatology [Risien and Chelton,
2008] is a wind stress monthly climatology over the period 2000–2008 at 50 km resolution. COADS [DaSilva
et al., 1994] is a monthly climatology of atmospheric heat fluxes over the period 1945–1989 at 1� resolution. Sea
surface height (SSH) satellite data from AVISO are provided from 1992 to 2006 at 1/3� resolution [Pascual et al.,
2006]. The 9 km resolution Pathfinder satellite SST [Kilpatrick et al., 2001] cover the years 1982–2008. CARS is a
merged monthly-mean climatology at 1/2� resolution of oceanic observations over the last 50 years (www.cmar.
csiro.au/cars). We also used Acoustic Doppler Current Profiler data, collected between 2008 and 2012 and ana-
lyzed by Chaigneau et al. [2013], to obtain a mean cross-shore vertical section of coastal alongshore currents
between 7�S and 13�S from 30 m to 500 m depth and from 0 to 200 km offshore.

2.3. The Dynamically Downscaled Atmospheric Forcing
To obtain an atmospheric forcing at a relatively high spatial resolution, a dynamical downscaling method
was designed by locally increasing the spatial resolution of the LMDz model. A refined grid is centered on
the PCCS region (from 99�W to 61�W and from 36�S to 6�N), where the horizontal resolution becomes pro-
gressively higher (from 4.9� 3 2.4� to 0.5� 3 0.5� in the Eastern South Pacific area). Details on this model
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Figure 1. Schematic of the modeling methodology for PI, 2CO2 and 4CO2 scenarios. LMDz and ORCA2 are the atmospheric and oceanic
component of the IPSL-CM4 CGCM. SST output from the large-scale IPSL-CM4 simulation is corrected in the following way: SST difference
between the chosen scenario and 20C3M IPSL-CM4 simulations is added to AMIP observed SST. The climatology of this corrected SST field
is used to force the high-resolution model LMDz-ESP05. Then, the same kind of correction is applied to the wind and heat flux from the
atmospheric downscaling: differences between the chosen scenario and the LMDz-AMIP simulation are added to SCOW (for wind) or
COADS (for heat fluxes). Finally, the climatology of these corrected fluxes is computed and used to force the ROMS ocean model. Initial
and boundary conditions for the oceanic simulations come from the IPSL-CM4 model.
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set up, named LMDz-ESP05 hereafter,
can be found in BEL2014. A slightly dif-
ferent version of the LMDz (e.g., with a
higher vertical resolution in the marine
boundary layer) has been used in the
Peru-Chile region in a recent regional
model intercomparison [Wyant et al.,
2010], and comparison with observa-
tions showed that LMDz was quite real-
istic in terms of cloud cover, short-
wave flux, and vertical profiles of
humidity and temperature.

Several atmospheric simulations are
performed with LMDz-ESP05. First, a control simulation forced with the AMIP climatological SST is per-
formed to evaluate the LMDz-ESP05 model bias. We refer to this simulation as LMDz-AMIP. Then atmos-
pheric simulations of IPSL-CM4 climate scenarios are performed. The IPSL-CM4 SST is interpolated on the
LMDz-ESP05 horizontal grid to force this atmospheric model in the following way: to reduce the CGCM bias,
AMIP SST, and the SST difference between the IPSL-CM4 chosen scenario and the IPSL-CM4 20C3M are
added and a climatology is computed to construct a SST forcing field for the LMDz-ESP05 (see Figure 1,
middle). Three simulations were performed: LMDz-PI, LMDz-2CO2, and LMDz-4CO2 corresponding to the PI,
2CO2, and 4CO2 scenarios, respectively. Each LMDz-ESP05 simulation is run for 10 years. LMDz-ESP05 simu-
lations and their forcings are summarized in Table 1. As we focus on the seasonal cycle and annual mean
changes, monthly climatologies from the LMDz-ESP05 surface outputs are computed and used to construct
the ocean simulations forcing (see section 2.4).

2.4. Regional Ocean Model
The Regional Oceanic Modeling System (in its ROMS ‘‘AGRIF’’ version) [Shchepetkin and McWilliams, 2005,
2009] is used to simulate ocean dynamics. ROMS solves the primitive equations using the Boussinesq
approximation and hydrostatic vertical momentum balance. It has a time-splitting, explicit free surface. Our
domain extends from 40�S to 15�N and from 100�W to 70�W, in a configuration at 1/6� horizontal resolution
and 32 vertical levels similar to that used in EC2012 and Cambon et al. [2013]. Bottom topography from
ETOPO2 [Smith and Sandwell, 1997] is modified to accommodate to the IPSL-CM4 topography at the open
boundaries. Air/sea fluxes are calculated online using atmospheric surface parameters (air temperature,
wind speed, relative humidity, precipitation, radiative fluxes from LMDz-ESP05 and other data sets
described below) and ROMS model SST as inputs for the bulk formulae [Liu et al., 1979].

To evaluate our atmospheric forcing methodology, we first performed three ROMS ‘‘control’’ simulations
forced by the same initial/open boundary conditions from a climatology of the 20C3M simulation (all ROMS
simulations are summarized in Table 2). The first one (named CR-SCOW) is forced by the SCOW wind stress
climatology, and COADS heat fluxes [DaSilva et al., 1994]. It will be used as a reference. The second simula-
tion (named CR-LMDz) was performed using climatological surface wind stress from LMDz-AMIP. In the third
one (named CR-IPSL), climatological wind stress forcing from the coarse IPSL-CM4 model is used.

Although the surface winds from LMDz-AMIP are much more realistic than those of IPSL-CM4 (section 3.1),
comparison between CR-SCOW and CR-LMDz (see section 3.2) shows that the use of downscaled winds to
force ROMS still reproduces a substantial bias in the ocean circulation. Thus, in order to improve the realism
of the oceanic solutions, we correct part of the atmospheric forcing bias prior to forcing the ocean circula-
tion. Assuming that the bias in LMDz-ESP05 wind remains unchanged with global warming, we construct a
new set of forcing by adding wind/flux differences between the LMDz-ESP05 scenarios (e.g., LMDz-PI,
LMDz-2CO2, LMDz-4CO2) and LMDz-AMIP, and the SCOW/COADS observational monthly climatology in the
following way: for a forcing field U and a given scenario S 5 (PI, 4CO2, 2CO2, 20C3M), the corrected field is
U
0 ðSÞ5ULMDZðSÞ2ULMDZð20C3MÞ1Uobs. Note that for the present climate scenario (20C3M), the corrected

field is U’5UOBS, so that the reference oceanic simulation for present conditions used in our climate scenar-
ios comparison is CR-SCOW. The assumption is that using LMDz-ESP05 differences between a climate sce-
nario and the 20C3M scenario eliminates the constant bias generated by the atmospheric model, following

Table 1. SST Forcing and Initial Conditions of the LMDz-ESP05 Simulationsa

Simulation
Name SST Forcing (Climatologies) Initial Conditions

LMDz-AMIP AMIP IPSL-CM4 20C3M
LMDz-PI AMIP 1 IPSL-CM4 PI – IPSL-CM4 20C3M IPSL-CM4 PI
LMDz-2CO2 AMIP 1 IPSL-CM4 2CO2 – IPSL-CM4 20C3M IPSL-CM4 2CO2
LMDz-4CO2 AMIP 1 IPSL-CM4 4CO2 – IPSL-CM4 20C3M IPSL-CM4 4CO2

aLMDz-ESP05 is the atmospheric compound (LMDz) of the IPSL-CM4 CGCM,
with a configuration using a refined horizontal grid (1/2�) near Peru and Chile.
Initial conditions come from the IPSL-CM4 CGCM. The LMDz-ESP05 is forced by
the climatological AMIP SST or a climatology of the IPSL-CM4 SST corrected
with AMIP. 20C3M, PI, 2CO2, and 4CO2 correspond to IPSL-CM4 climate scenar-
ios with atmospheric CO2 concentrations following, respectively, observed
levels, fixed preindustrial levels, doubling, and quadrupling trends.
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the same methodology as
Bruyere et al. [2014]. Even
though there is little alterna-
tive to our approach, it must
be noticed that a bias in the
mean state could result in a
bias in the variance. The same
method was used by EC2012
for heat fluxes.

Oceanic initial and boundary
conditions for ROMS come
from the ORCA2 model, the
ocean component of the IPSL-
CM4 CGCM. Note that ORCA2
has a 2� spatial resolution in
the PCCS and an increased
meridional resolution (1�)
along the equator to better
represent equatorial Kelvin
waves [Marti et al., 2010]. For

each experiment, different initial and boundary conditions from IPSL-CM4 corresponding to the PI, 2CO2,
and 4CO2 scenarios are used. The surface and open boundary conditions are monthly and climatological,
and that these climatologies are computed over the time slots mentioned in section 2.1. An additional sim-
ulation, named 4CO2a, was performed using the PI atmospheric forcing and the 4CO2 oceanic boundaries,
to investigate the impact of the atmospheric forcing change only. The characteristics of the atmospheric
and oceanic forcing are summarized in Table 2. Each ROMS ocean simulation is run for 13 years and outputs
are 5 day averages. As a statistical quasiequilibrium is reached after 3 years, we analyze monthly-means and
annual-means of the 5 day averaged output over the last 10 years of the simulation.

2.5. Lagrangian Analysis
In order to study the origin of upwelled water masses, we use a ROMS-offline tracking module [e.g., Montes
et al., 2010; Mason et al., 2012]. It is able to calculate neutrally buoyant floats trajectories from the stored 5
day averaged ROMS velocity field. Floats are tracked backward in time so that their trajectories previous to
the release date are computed. Blanke and Raynaud [1997] showed that this kind of approach was valid to
calculate the origin of water masses.

For each year of the last 10 years of simulation, 30,000 floats are released at the first day of each month
with random locations between 0 and 50 m depth on the shelf (defined as the near shore region limited by
the 200 m isobaths) between 7�S and 13�S. 50 m corresponds to the maximum Ekman layer depth (see sec-
tion 4.2.1) and also approximately defines the lower limit of the euphotic layer on the shelf [Guillen and Cal-
ienes, 1981]. Shallower depths were also tested and the results were unchanged. The trajectory of each float
is integrated backward in time during 6 months. We examine the depth and latitude of the floats when
they enter the shelf (i.e., when they cross the 200 m isobath). We also compute the time spent by the floats
to travel from the shelf edge (i.e., 200 m isobath) to the upwelling area (called ‘‘shelf crossing time’’ in the
following).

3. Evaluation of the Simulation Realism

3.1. Atmospheric Simulations
Annual means of the surface winds from the IPSL-CM4 20C3M scenario, the LMDz-AMIP, and SCOW are
compared in Figure 2. Alongshore coastal wind is much more realistic in LMDz-AMIP than in IPSL-CM4. The
Chilean coastal jet near 30�S, virtually absent in IPSL-CM4, appears in LMDz-AMIP albeit slightly too broad
(it extends from 32�S to 27�S, instead of 30�S to 28�S). Offshore CP, the wind is slightly weaker: 6.5 m s21 in
the LMDz-AMIP instead of 7.5 m s21 in the observations. The SEP anticyclone in LMDz-AMIP is also meridio-
nally narrower by 1–2� compared to the observations.

Table 2. Atmospheric (Wind Stress and Heat Fluxes) and Initial/Open Boundary Forcing
of the ROMS Simulationsa

Simulation Name
Wind Stress

Forcing
Other Atmospheric

Forcing
Initial and Boundary

Conditions

CR-SCOW SCOW COADS IPSL-CM4 20C3M
CR-LMDz LMDz-AMIP COADS IPSL-CM4 20C3M
CR-IPSL IPSL-CM4 20C3M COADS IPSL-CM4 20C3M
PI SCOW COADS IPSL-CM4 PI

1 LMDz-PI 1 LMDz-PI
– LMDz-AMIP – LMDz-AMIP

2CO2 SCOW COADS IPSL-CM4 2CO2
1 LMDz-2CO2 1 LMDz-2CO2
– LMDz-AMIP – LMDz-AMIP

4CO2 SCOW COADS IPSL-CM4 4CO2
1 LMDz 4CO2 1 LMDz-4CO2
– LMDz-AMIP – LMDz-AMIP

4CO2a SCOW COADS IPSL-CM4 PI
1 LMDz 4CO2 1 LMDz-4CO2
– LMDz-AMIP – LMDz-AMIP

aSCOW are climatological wind observations. COADS is a climatology of short-wave and
net heat fluxes. LMDz wind stress and heat fluxes are from the LMDz-ESP05 atmospheric
model. For four simulations, wind stress and heat fluxes are decomposed into the sum of a
climatological field (SCOW, COADS) and anomalies from the LMDz-ESP05.
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3.2. Oceanic Simulations
We first validate our methodology by evaluating the realism of the CR-SCOW ROMS simulation, which corre-
sponds to the ocean circulation under present wind conditions. Results from the CR-LMDz solution are also
presented to evaluate the bias introduced by the downscaled LMDz-AMIP forcing. Figure 3 compares the
mean SST from CR-SCOW and Pathfinder observations. The coastal upwelling cold tongue is well

Figure 2. Annual-mean surface wind (in m s21) from (a) the coarse global coupled model IPSL-CM4, (b) the LMDz atmospheric model with
a refined grid in the SEP, and (c) the SCOW climatology.

Figure 3. Annual mean SST (in �C) for (a) Pathfinder observations and (b) the CR-SCOW simulation. Arrows in (a) represent the main cur-
rents in the PCCS (surface currents (South Equatorial Current, Peru Coastal Current) in black, and undercurrents in blue). Arrows in Figure
3b mark model mean surface velocities. The Central Peru (CP) region is indicated in magenta in Figure 3a.
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reproduced by the model. SST differences with respect to Pathfinder are weak (less than 1�C) in most of the
model domain, except close to the Chilean coast (�1.5�C cold bias). Model surface velocities display the
coastal Peru-Chile current (PCC) flowing equatorward along the coast, and the south-equatorial current
(SEC) flowing westward at the equator, among other currents. Surface fields from CR-LMDz (not shown) are
close to CR-SCOW. The main subsurface currents in the region are also sketched on Figure 3a: the poleward
PCUC and the equatorial undercurrent (EUC) flowing westward.

Figure 4 presents a mean cross-shore section of temperature and alongshore velocities for CR-SCOW, CR-
LMDz, and observations averaged between 7�S and 13�S [see Penven et al., 2005; Colas et al., 2012 for similar
figures]. As the CP coast is almost straight, alongshore quantities between 7�S and 13�S were computed using
a constant angle and are positive when flowing northward. Coastal upwelling is evidenced by isotherms tilting
and reaching the surface near the coast. In the annual mean, differences in temperature with respect to the
CARS climatology are less than 0.8�C for CR-SCOW. The PCC is 100 km wide and reaches a maximal depth of
�30 m. The core of the poleward PCUC located at 100 m depth reaches 6.5 cm s21. Chaigneau et al. [2013]
observations show that the PCUC is located in the first 200 km offshore with its core between 50 and 200 m
depth (Figure 4c). CR-SCOW exhibits a similar PCUC structure; however, the simulated current is weaker.

In both CR-SCOW and CR-LMDz, the largest temperature bias with the CARS climatology is located in the
upper 100 m of the water column (Figures 4a and 4b). The seasonal evolution of this temperature bias,
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Figure 4. Annual mean alongshore velocities (shading, in m s21) and temperature (dashed magenta line, in �C) averaged between 7�S
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climatology, averaged between 0 m and 100 m depth, 7�S and 13�S and from the coast to 360 km offshore.
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computed in the near-surface layer and averaged between 7�S and 13�S, is shown in Figure 4d. The CR-
LMDz warm bias is more than twice as large as the CR-SCOW bias, due to a very reduced upwelling in CR-
LMDz. In addition, the coastal PCC in CR-LMDz extends further offshore (Figure 4b), reaching �150 km
(�100 km in CR-SCOW, Figure 4a). The structure of the PCUC is also strongly affected: its core is even less
intense (�5 cm s21 in CR-LMDz versus �6.5 cm s21 in CR-SCOW), extends further offshore and is shallower
in CR-LMDz than in CR-SCOW. Appendix A presents a similar figure for CR-IPSL, forced by coarse IPSL winds,
showing more unrealistic features.

Baroclinic instability due to the vertical shear between the PCC and PCUC alongshore velocities is an essen-
tial source of mesoscale eddy activity in this region (e.g., EC2012). Eddy kinetic energy (EKE) maps derived
from CR-LMDz, CR-SCOW, and AVISO are represented in Figure 5. The observed maximum EKE alongshore
strip north of 20�S is present in CR-SCOW, although weaker (�60 cm2 s22; Figure 5a) than in the observa-
tions (�80–120 cm2 s22; Figure 5c). As the boundary conditions and wind forcing are climatological, part of
the intraseasonal variability is not present in the model, which could partly explain the weaker modeled
mesoscale eddy activity [e.g., Belmadani et al., 2012]. In the southern part of the domain, the high EKE patch
off Chile is also present in CR-SCOW, and its amplitude agrees reasonably with the observed. In CR-LMDz,
the EKE pattern is much closer to the observed (Figures 5b and 5c) than in CR-IPSL (see Appendix A). How-
ever, some relatively strong biases remain such as an overly high EKE off Chile (Figure 5b) due to the LMDz-
AMIP wind forcing. In conclusion, the atmospheric downscaling improves the oceanic simulation but not
enough to obtain realistic results. Therefore, we chose to modify the atmospheric forcing in the climate sce-
narios, in order to reduce this bias in the climate projections (see section 2.4).

4. Results From the Climate Scenarios

4.1. Modifications of the Alongshore Circulation
Figure 6 presents the annual wind stress forcing of PI, 2CO2, and 4CO2 from the corrected LMDz-ESP05
fields. Wind decrease in 2CO2 and 4CO2 compared to PI is clearly visible north of 30–35�S, as described by
BEL2014. The CP alongshore circulation forced by these scenarios is presented in Figure 7. The PCC gets
shallower, with maximal depths of 35 m (PI), 30 m (2CO2), and 25 m (4CO2), whereas surface velocities
increase from �12 cm s21 (PI) to �24 cm s21 (2CO2) and �21 cm s21 (4CO2). The PCUC core intensifies
from 6.5 cm s21 (PI) to 7 cm s21 (2CO2) and 7.5 cm s21 (4CO2). Similar trends were also found by EC2012,
but with a deeper PCC (�70 m for PI and �40 m for 4CO2). EC2012 shows that whereas the PCUC seasonal

Figure 5. Annual mean eddy kinetic energy (EKE, in cm2 s22) from (a) CR-SCOW, (b) CR-LMDz, and (c) AVISO observations. Contour interval is 50 cm2 s22.
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cycle is correlated to the EUC imposed by the IPSL-CM4 oceanic boundary, the EUC mean transport exhibits
no modifications between PI and 4CO2. The intensified 4CO2 PCUC is thus due to the wind forcing and the
stratification changes. Note that Aiken et al. [2011] also found an increase in the PCUC and PCC intensities
under a warming scenario (A2 SRES).

Eddy activity is also modified by the regional climate change. In the CP region, EKE is enhanced in 2CO2
and 4CO2 (Figure 8), which can be explained by the increased alongshore flow vertical shear. Off Chile, a
high EKE pattern extends poleward in 2CO2 and 4CO2, which is consistent with the southward displace-
ment of the SEP anticyclone and the poleward extension of the tropics. The EKE patterns resemble those
presented by EC2012: both display a high EKE strip off Peru and another EKE maximum between 22�S and
36�S off Chile. However, substantial differences appear between EC2012 and our results. Following EC2012,
we average the mean EKE in the three regional boxes represented in Figure 8, and the results are summar-
ized in Table 3. EKE values are about half as intense as in EC2012. In both studies, the two climate-change
scenarios (2CO2 and 4CO2) present higher EKE values than in the PI scenario, but without a clear trend: in
our simulations, and unlike EC2012, the 2CO2 EKE is greater than the 4CO2 EKE in the three regions, which

Figure 6. Annual mean wind stress for (a) PI, (b) 2CO2, and (c) 4CO2 simulations. Wind stress has been corrected by adding SCOW climatology and LMDz anomalies (see section 2.4).

Figure 7. Same as Figure 4 but for the (a) PI, (b) 2CO2, and (c) 4CO2 simulations.
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may be due to an enhanced PCC, and current vertical shear, in 2CO2 with respect to 4CO2. Besides, EC2012
found no clear EKE change off southern Peru (�12�S–18�S) whereas in our case, EKE intensifies along the
entire Peru coast. Off Chile, the southward extension of the high EKE pattern in our 2CO2 and 4CO2 simula-
tions (Figures 8b and 8c) is not reported in EC2012 which only presents an increase in the maximum value
without any changes in the spatial pattern. To examine whether the EKE modifications are due to changes
in the surface wind or in the ocean stratification, we analyze the 4CO2a simulation. 4CO2a (Figure 8d) and
PI only differ by their oceanic open boundaries (4CO2 IPSL-CM4 and PI IPSL-CM4, respectively). It is clearly

Figure 8. Same as Figure 5 but for the (a) PI, (b) 2CO2, (c) 4CO2, and (d) 4CO2a simulations. Boxes define the areas where mean EKE were
calculated for Table 3.
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seen that the 4CO2 IPSL-CM4 ocean boundary conditions account for the very large EKE increase. The 4CO2
wind decrease with respect to PI compensates this increase only partially. Note that Aiken et al. [2011] also
noticed an enhanced EKE off Chile under global warming conditions.

4.2. Upwelling Variations
We now focus on coastal upwelling dynamics, which are particularly important for the productivity of the
PCCS ecosystem. We first examine SST maps, as cross-shore SST gradients are illustrative of coastal upwell-
ing intensity. Figure 9 presents the mean SST anomalies with respect to PI for the 2CO2 and 4CO2 scenarios.
SST increases offshore by �2–3�C (�4–6�C) in the 2CO2 (4CO2), but the nearshore warming is even more
intense, reaching �2.5�C (�4�C) off Chile and �3.5�C (�7�C) off Peru in the 2CO2 (4CO2). Different dynami-
cal processes may cause an upwelling decrease: variations in Ekman current divergence at the coast due to
alongshore equatorward wind stress, changes in the cross-shore geostrophic flow, and Ekman pumping
modifications. In the following subsections, we analyze the role of these processes in detail.

4.2.1. Cross-Shore Mass Balance
We first study the seasonal evolution of cross-shore transport in a coastal band, which can be considered as a
proxy of coastal upwelling, following Colas et al. [2008]. For each month, we calculate the mean horizontal

Table 3. EKE Average Values (in cm2 s22) for 3 Nearshore Areas Off Northern Peru (85�W–76�W; 6�S–12�S); Southern Peru
(80�W–72�W; 12�S–18�S); Central Chile (80�W–70�W; 25�S–35�S)a

PI PI EC2012 2CO2 2CO2 EC2012 4CO2 4CO2 EC2012

EKE northern Peru 51 114 63 133.3 57 149
(123%) (117%) (112%) (130%)

EKE southern Peru 40 97 60 102 55 100
(150%) (15%) (138%) (13%)

EKE Central Chile 57 98 72 132 60 136
(126%) (135%) (15%) (138%)

aEKE values are obtained under three climate change simulations (PI, 2CO2, 4CO2) forced with dynamically (using LMDz model) and
with statistically downscaled atmospheric forcing (see EC2012). Percentages are calculated with respect to the PI values.

Figure 9. Annual mean sea surface temperature (SST, in �C) anomalies with respect to PI for (a) 2CO2 and (b) 4CO2. The contour interval is
0.5�C.
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transport in a coastal strip extending from 7�S to
13�S and from 40 km (two model grid points
from the coast) to 160 km (eight model grid
points from the coast) offshore. The Ekman trans-
port UEk is calculated with the mean alongshore
stress sa in the strip, following equation (1):

UEk5
sa

q0f
(1)

where q0 is the water density and f is the Corio-
lis parameter. UEk is compared with the cross-
shore transport Utot, defined by the cross-shore
velocity uc integrated vertically in the Ekman
layer:

Utot5

ð0

ze

ucdz (2)

To determine the Ekman layer depth Ze, we
assume that the flow in the Ekman layer is com-
posed by the sum of the geostrophic and

Ekman currents. Following this assumption, the flow becomes entirely geostrophic below the Ekman layer.
Thus, we compute the depth Ze below which the cross-shore total current uc equals the cross-shore geo-
strophic current uG

c , within 10% of the surface value following (3):

jucðz5ZeÞ2uG
c ðz5ZeÞj

jucðz50Þ2uG
c ðz50Þj < 0:1 (3)

The geostrophic current at a given depth is computed by the integration of the thermal wind relation from
the surface to this depth, and the surface geostrophic velocity is derived from the model sea level slope. The
comparison between the Ekman (UEk), total (Utot), and geostrophic transport (UG) is shown in Figure 10 for
CR-SCOW. The mass balance is verified, as Utot�UEk 1UG. Ekman transport overestimates total cross-shore
transport by up to 40% in the annual means, due to a compensation by the shoreward geostrophic cross-
shore transport UG in the Ekman layer, as described by Colas et al. [2008] during El Ni~no events and by Mar-
chesiello and Estrade [2010] in a more general context.

The same diagnostic is performed for the three climate scenarios and again the control run (Figure 11). The
mass balance (Utot�UEk 1UG) shown in Figure 10 is also valid in these cases (figures not shown). Ekman trans-
port decreases under global warming conditions (213% for 2CO2 and 222% for 4CO2 with respect to PI, Fig-
ure 11a). Total cross-shore transport Utot also decreases in the annual mean (29% for 2CO2, and 225% for
4xCO2 with respect to PI, Figure 11b) and over the whole year except in late austral summer (February–April)
when no significant change occurs. As in CR-SCOW, UG is shoreward all year long, but its compensation effect
weakens from March to May in 2CO2 and 4CO2 (Figure 11c). Overall, the contributions of Ekman and shore-
ward geostrophic transports lead to a decrease in coastal upwelling except in March–April (Figure 11b).

To further investigate the change in geostrophic transport UG between PI, 2CO2, and 4CO2, we approxi-
mated it by uG

surf 5uG
c ðz50Þ � Ze, thus neglecting geostrophic velocity vertical shear in the Ekman layer. The

alongshore wind stress decrease (see Figure 11a and BEL2014) and enhanced thermal stratification in 4CO2
(see section 4.2.3) result in a �30% decrease in Ze all year round (Figure 12). On the other hand, the annual
mean surface geostrophic velocity (derived from the sea surface height (SSH) difference at 13�S and 7�S,
averaged from 40 to 160 km offshore) varies little between PI and 4CO2 (�1.8 cm s21 in both scenarios, fig-
ure not shown). Thus, the annual mean decrease in geostrophic transport (Figure 11c) is mainly due to the
Ekman layer shoaling caused by the stratification increase (Figure 12) rather than a change in mean surface
geostrophic velocity. However, the amplitude of the seasonal variations of uG

c ðz50Þ increases in 4CO2 with
respect to PI (figure not shown), leading to a similar increase in the seasonal cycle of UG. Such variations are
related to the poleward propagation of coastally trapped waves forced by equatorial Kelvin waves (EKW)
reaching the coast of Ecuador [e.g., Pizarro et al., 2001; Echevin et al., 2011; Belmadani et al., 2012]. EKW are
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represented in the IPSL-CM4 solutions, and the seasonal cycle of SSH resulting from their propagation is
fairly realistic in the 20C3M simulation (figures not shown). Thus, the western boundary conditions imposed
at the equator force the eastward propagation of seasonal waves along the equator and along the Peruvian
coast in the ROMS model. We represent SSH anomalies at the northern (7�S) and southern (13�S) extrem-
ities of the CP shelf (averaged from 40 to 160 km offshore) in Figure 13. The coastal signal is correlated with
the equatorial signal in the two scenarios (correlations of 0.83 and 0.85 for PI and 4CO2, respectively) with a
time lag of �1 month as a result of eastward and poleward propagation. Bottom friction has a dissipative
effect on the coastal-trapped waves [Brink, 1982], which may explain the poleward decrease (� 20%
between 7�S and 13�S in both scenarios) in coastal SSH variability. As sea level seasonal variations are
enhanced in the 4CO2 scenario, this leads to an increase in the variations of the sea level slope between
7�S and 13�S, and, thus, of uG

c ðz50Þ.

4.2.2. Ekman Pumping
We now investigate upwelling in the offshore transition zone where negative wind stress curl generates
upward Ekman pumping, which could have an important impact on the ecosystem [e.g., Rykaczewski and
Checkley, 2008].

Vertical velocity decomposition in geostrophic and Ekman terms leads to Equation (4) (see section 1.3 in
Pedloski [1996]):

Wtot5wðz5ZeÞ5curl
s

q0f

� �
2

ð0

ze

b
f

vGdz5WEk1WG (4)

With Wtot the vertical velocity at the base
of the Ekman layer, w the vertical velocity,
s the surface wind stress, b the meridional
gradient of the Coriolis parameter, and vG

the meridional geostrophic velocity. Gen-
erally, the geostrophic vertical velocity WG

is neglected so that vertical velocity is
assumed to be solely driven by the Ekman
pumping Wek. We evaluate the different
terms (Wtot, WEk, and WG) of equation (4)
in a strip off Peru, extending from 7�S to
13�S and from 40 to 160 km offshore,
which corresponds to the coastal transi-
tion zone. At each grid point of the strip,
we compute the different terms at the
Ekman layer depth Ze (defined in subsec-
tion 4.2.1), and average them over the
whole strip.
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Ekman pumping decreases in the annual mean (23% for 2CO2 and 216% for 4CO2) with respect to PI, and
is lower in 2CO2 and 4CO2 than in PI for all seasons (Figure 14a). In contrast, Wtot is slightly larger in 2CO2
and 4CO2 than in PI from March to June (Figure 14b). It is thus important to note that WEk alone does not
fully explain all the variations in Wtot, but rather underestimates Wtot by up to 30% in our case. Taking WG

into account (Figure 14c) reduces the error by �50%. Note that the small differences (�7–13%) between
Wtot (Figure 14b) and (WEk 1 WG) (Figure 14c) could be attributed to ageostrophic motion taking place at
the base of the surface layer.

4.2.3. Source of Upwelled Water
An important upwelling characteristic is the depth of the source water, i.e., the offshore depth of the water
parcels before they are upwelled near the coast. A change in source water depth may affect their nutrient
content and the nearshore productivity [e.g., Rykaczewski and Dunne, 2010; Albert et al., 2010]. Here we
study the modifications in the source water origin (depth and latitude range) with the methodology
described in section 2.5. Results are presented for the PI and 4CO2 simulations only (2CO2 provides results
similar to 4CO2). For a given month, source water depths and latitude from distinct simulation years pres-
ent approximately the same mean and standard deviation (figures not shown), since our simulations forced
by climatological boundary and atmospheric forcings present a weak interannual variability. Therefore, we
present climatological results, i.e., averaged for each month over 10 years.

Figure 15a presents the shelf crossing time as a function of particle release date. There are no striking differ-
ences between the two climate scenarios : source water parcels need, on average, �2 months to cross the
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shelf and reach the surface layer. Standard deviation is large: in some cases (e.g., the floats reaching the
upwelling zone in April), some floats take less than a month to cross the shelf whereas others take up to 4
months. This can be partly explained by the different initial depths of the particles. When entering the shelf,
deep particles are advected by a slow cross-shore current (less than 1 cm s21 below 80 m depth, figure not
shown) while particles in the upper part of the onshore flow are advected by a faster current (�1–2 cm s21

between 50 and 80 m, figure not shown). Furthermore, deep particles also need more time than shallow
ones to reach the surface layer due to slower vertical velocities (<1 m d21, figure not shown).

Figure 15b presents the changes in source water latitude. While the source water enters the shelf further
north, with the exception of late austral summer (February–April). Rivas and Samelson [2010] performed a
similar modeling experiment of the Oregon upwelling zone to track the source waters reaching a cross-
shore coastal section. They showed, rather expectedly, that the latitude of the source water is located north
of the section when the floats are released in the southward surface current, and south of the section when
their launching depth was located in the northward countercurrent (see their Figures 9a and 9c). In our
study, particles are either advected equatorward in the PCC or poleward in the PCUC prior to being upw-
elled. As the PCC is shallower in the 4CO2 simulation (see section 3.2 and Figure 7c), fewer (more) floats are
initially released in the equatorward (poleward) flow, which results in a mean latitude of source water par-
cels located further north in 4CO2 than in PI. In addition, the PCUC being more intense in 4CO2 than in PI, a
water parcel advected for a same duration (�2 months, Figure 15a) in the PCUC will cover a larger distance
in 4CO2 than in PI. This also leads to an entrance on the shelf located further north in the 4CO2 case.

The seasonal variations of source water depth are represented in Figure 15c. Particle depths are much shal-
lower in the 4CO2 scenario (differences between both simulation reaches �50 m in austral spring) except
in April–May. Lentz and Chapman [2004] showed that the cross-shore isopycnal slope in a coastal upwelling
system is proportional to f

N, with N the Brunt-V€ais€al€a frequency. Thus, in the case of an unchanged wind
forcing and a stratification increase, isopycnal slope reduces, and the deeper layers do not reach the surface
near the coast [Roemmich and McGowan, 1995]. Hence, an enhanced stratification leads to a shallower
source of upwelled water. Figure 16a presents a mean cross-shore section of the stratification difference
between PI and 4CO2 and the respective positions of the mean pycnocline (note that pycnocline and ther-
mocline depths are almost identical). As expected, 4CO2 is more stratified than PI and its pycnocline is
slightly shallower. The shelf-averaged

Ð
N2.dz (averaged over the area comprised between 7�S, 13�S, the

coast, and the 200 m isobath and depth-integrated from the surface to 150 m depth) shows a larger stratifi-
cation all year round in 4CO2 with respect to PI (Figure 16b). Changes of the coastal wind stress structure
can also modify the upwelling sources [e.g., Song et al., 2011]. Nearshore stratification in 4CO2a is very close
to 4CO2 because it is forced by the same large-scale conditions (Figure 16b). 4CO2a water near the CP coast
is only �10% less stratified than in 4CO2, due to the stronger upwelling-favorable wind stress in 4CO2a.
Consequently, the source water depths present a shoaling in both simulations compared to PI, and are
�10% shallower in 4CO2 (Figure 15c) than in 4CO2a. Thus, the increase in stratification accounts for the
upwelling of shallower source waters in 4CO2 than in PI (Figure 15c). This increase is mainly due to the
enhanced stratification imposed by the large-scale circulation and heat fluxes, and is locally strengthened
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by the decreased upwelling. Late austral summer to fall is the period with the smallest differences between
PI and 4CO2 (Figure 15c). At this time of year, the dynamical forcing of the upwelling (i.e., coastal horizontal
divergence and Ekman pumping, see sections 3.3.1 and 3.3.2) are unchanged with global warming, result-
ing in a similar source water depth.

5. Discussion and Conclusions

The evolution of the PCCS under 3 climate change scenarios corresponding to PI and increased atmospheric
CO2 concentration is studied using a dynamical downscaling of the IPSL-CM4 CGCM. Alongshore ocean circu-
lation presents an intensification of the poleward subsurface PCUC as well as a shoaling of the surface equa-
torward PCC when regional warming increases. Such changes, also found in the modeling study of EC2012,
lead to an enhanced mesoscale eddy activity. A cross-shore horizontal mass balance in the Ekman layer close
to the coast is used to diagnose coastal upwelling. It shows that the mean offshore transport associated with
coastal upwelling decreases in the 2CO2 and 4CO2 scenarios with respect to the PI scenario, except during a
few months in late austral summer. Thus, according to EC2012 and the present findings, Bakun’s [1990]
hypothesis that wind-driven upwelling should increase in EBUS under climate change is not verified in the
Peru region for the climate scenarios we investigated. Our results are supported by trends in other large-scale
coupled models than IPSL-CM4. In particular, BEL2014 showed that the IPSL-CM4 alongshore wind negative
trend in the CP region is shared by the majority of 12 AR4 CGCM and by the multimodel mean.

One remarkable result of our study is the strong surface warming of Peruvian waters and, to a lesser extent, of
Chilean waters, which contrast with the cooling trend observed over the last decades. Indeed, using observa-
tions and atmospheric model reanalyses in the central Chile region, Falvey and Garreaud [2009] found a cooling
trend extending north to the Peru coast. Guti�errez et al. [2011] analyzed SST time series derived from sediments
proxies and from observational SST at piers and confirmed the cooling trend off Peru in the last 50 years.

The observed nearshore SST cooling off Peru could be explained by an enhanced upwelling, driven by an
alongshore wind intensification as shown by Bakun [1990] using ICOADS data. Nevertheless, these wind
measurements were partly biased due to the increase in anemometer height on ships over the years [Toki-
naga and Xie, 2011], and corrected data no longer show a clear increasing trend in the Peru region [see Toki-
naga and Xie, 2011, Figure 1]. Differences between the observed cooling trend and our results can be
explained by various reasons: first, the observed trend could be due to multidecadal variability, which is fil-
tered in our modeling framework based on the analysis of the seasonal climatological cycle under radically
different climates. Second, discrepancies between our results and observed trends might also be due to the
resolution (50 km) of our downscaled atmospheric product, which could still be too coarse to correctly force
the nearshore upwelling dynamics. For example, a model with a higher spatial resolution may allow to bet-
ter represent the wind drop-off near the coast [e.g., Renault et al., 2012], modifying the respective roles of
Ekman pumping and Ekman transport, and potentially the SST trends. Finally, the feedback of SST on
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surface wind was not taken into account in our so-called forced ocean model set up. Introducing this effect
might modify land-sea and alongshore pressure gradients [Bakun, 1990], impacting the coastal wind, and
hence upwelling and mesoscale activity [Perlin et al., 2006; Jin et al., 2009]. Using a coupled model simulat-
ing these processes is, however, beyond the scope of the present study and reserved for future work.

Note that, in a modeling study, Aiken et al. [2011] also found a SST cooling of �2�C in austral summer off the
Chilean coasts, using the downscaled wind forcing from the A2 SRES scenario, whereas we found a 4–5 C SST
increase in 4CO2 (Figure 9b) in spite of an upwelling strengthening (figure not shown). These opposed trends
could be explained by the fact that they used oceanic initial and boundary conditions corresponding to pres-
ent climate (World Ocean Atlas climatology). Thus, their climate-change simulations did not take into account
the impact of global warming on the large-scale oceanic stratification in the PCCS, whereas ours do.

Our results can be compared with those of EC2012. They are not independent as the same CGCM (IPSL-
CM4) was downscaled, using different methods. The statistical downscaling of surface winds performed by
GO2011, which is computationally less costly than the dynamical downscaling method, is based on the
strong hypothesis that the statistical relation between large-scale atmospheric patterns (from NCEP reanaly-
sis) and Peru-Chile surface winds (from QuikSCAT) is not modified by global warming. EC2012’s and our
study show that the mesoscale dynamics forced by dynamically and statistically downscaled atmospheric
fields have common trends, which is encouraging for the use of statistical downscaling methods. This is in
line with results of Cambon et al. [2013], who showed a good agreement between the modeled ocean circu-
lation forced by statistically downscaled winds and by observed winds over the 1992–2000 time period.
However, modifications of the wind stress seasonal cycle of GO2011 and BEL2014 differ: GO2011 presents a
moderate austral winter strengthening and an austral summer weakening, contrasting with our year-round
decrease (Figure 11a). As expected, the seasonal cycle of coastal upwelling is impacted by the wind
changes: while EC2012 evidenced a moderate austral winter increase (5–10%) and a 10–20% decrease dur-
ing austral summer from PI to 4CO2 (see Figure 8b in EC2012), our simulations show a clear decrease from
May to February (from �15% in May to �70% in December) and almost no austral summer increase (Figure
11b). In EC2012, the modifications in the upwelling seasonal cycle are directly related to those of the wind
stress, while our simulations show that changes in cross-shore geostrophic transport play an important role,
as it compensates entirely the (austral) summer Ekman transport decrease. This comparison underlines dif-
ferences between statistical (EC2012) and dynamical (this study) downscaling, pointing to the need for fur-
ther studies to reduce the uncertainty in nearshore wind stress changes.

Our results show that compensation of coastal upwelling by cross-shore geostrophic currents is an impor-
tant process, which needs to be taken into account [Colas et al., 2008; Marchesiello and Estrade, 2010]. In all
of our simulations, the onshore geostrophic velocity plays an important role all year round and compen-
sates up to one third of the Ekman transport (Figure 11). During late austral summer in the 4CO2 scenario
off Peru, the Ekman transport is weaker than in PI. However, the onshore geostrophic flow decreases
between January and April in 4CO2, compensating the wind weakening, and resulting in a total upwelling
similar to PI. The important message here is that the upwelling late summer evolution could not have been
deduced solely from Ekman transport changes.

In addition, Ekman pumping (derived from wind stress) is often used to infer vertical fluxes of nutrients in
the coastal transition zone [e.g., Chavez and Messi�e, 2009] and has been linked to zooplankton decadal vari-
ability in upwelling systems [e.g., Rykaczewski and Checkley, 2008 in the California EBUS]. Our results show
that the often-neglected geostrophic vertical velocity may contribute to up to 30% of the total vertical flux
at the Ekman layer depth. In our projections, the vertical flux increases moderately in the austral late-
summer and early-spring seasons (Figures 14a–14c), whereas Ekman pumping decreases. In conclusion,
upwelling indices from Ekman pumping and divergence of Ekman transport at the coast derived from
atmospheric model fields are not sufficiently accurate, and oceanic regional simulations are essential to
take into account the regulating role of geostrophic currents.

Changes in mesoscale eddy activity may have a strong influence on biological activity at long time scales,
particularly on nearshore larval retention patterns and connectivity [e.g., Aiken et al., 2011; Brochier et al.,
2013]. The increase in EKE found in this study does not vary linearly with respect to the intensity of the
greenhouse effect: the 2CO2 simulation presents a slightly more intense mesoscale activity than the 4CO2
simulation (see Table 3). The impact of climate change may thus be very strong even under less extreme
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scenarios than the 4CO2. Off Chile, the increase
is also larger in 2CO2 than in 4CO2. EC2012
found an increase in EKE, but it was higher in
4CO2 than in 2CO2 off Peru and Central Chile
(see Table 3). However, these values are twice
as high as those from our study and the pat-
terns appear in slightly different locations,
which makes the comparison difficult. Note
also that EC2012 used daily wind forcing while
we used monthly forcing, which reduces EKE in
our case.

The changes in upwelling intensity and source
water depth evidenced in our projections could
also have a tremendous impact on the ecosys-
tem productivity. Indeed, our simulations show
that the annual mean upwelling intensity
decreases and that the upwelling source waters
are shallower under intensified surface warming.

Both effects may lead to a decrease in surface layer nutrient concentration, which could decrease primary
productivity. McGowan et al. [2003] investigated the processes driving a decrease in source waters nutrient
load during the Californian warm shift in 1976/1977. During the shift, alongshore coastal wind and wind stress
curl increased but nutrient concentration decreased in the upper layer. They showed that the enhanced strat-
ification and the deepening of the thermocline were responsible for the evolution of biogeochemical condi-
tions. Using a regional ocean model, Chhak and Di Lorenzo [2007] reproduced the shoaling of the source
waters during the warm phase of the shift, resulting mainly from the large-scale wind changes. These studies
suggest that a stratification increase due to either surface heating and/or large-scale wind changes may have
a negative influence on the nutrient enrichment of surface water. In our case, both the wind forcing decrease
and stratification increase may contribute to a decrease in the nutrient supply off Peru. Besides, note that the

annual cycle of productivity off Peru is 180� out of
phase with the upwelling intensity, suggesting that
light availability and wind mixing limit phytoplank-
ton blooms in austral winter time [Echevin et al.,
2008; Guti�errez et al., 2011]. Therefore, during the
main upwelling season, a shoaling of the mixed
layer due to the wind decrease could mitigate the
impact of the reduced upwelling of subsurface
nutrients on biological productivity. Coupling a bio-
geochemical model to our oceanic model in future
studies would allow investigating in greater detail
the climate-change induced biogeochemical trends
[e.g., Franks et al., 2013].

Our modeling approach presents some limitations.
First, the atmospheric forcing was built by adding
model fields from climate projections and observa-
tional climatologies (SCOW for winds and COADS
for heat fluxes) as in Bruyere et al. [2014], assuming
that the bias will remain identical under climate
change conditions. Thus, the seasonal anomalies
are not consistent with the mean state of the forc-
ing. Besides, a corollary result of our study is that
the direct forcing of the ocean circulation by LMDz
downscaled atmospheric fields, which seems quite
realistic (Figure 2), introduces nonetheless a
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substantial bias in the modeled ocean circulation (Figures 4b and 5b). Part of this bias (e.g., the position of
the SEP anticyclone) is likely inherent to the large-scale atmospheric circulation simulated by LMDz. In this
work, we assumed that our projections would be more robust by using an ad hoc corrected surface forcing
(see section 2.3) to reduce the bias. We can conclude that significant improvements of the state-of-the-art
regional and global atmospheric (and coupled) GCMs are necessary before we can use surface wind fields
from these modeling systems without ad hoc corrections to force regional oceanic simulations.

Other EBUS may show different trends due to climate change than the ones in the PCCS. In the California
system, Snyder et al. [2003] and Diffenbaugh et al. [2004] evidenced an increase in upwelling-favorable
winds under global warming scenarios, consistently with the coastal wind strengthening and SST decrease
observed during the last 30 years [Garc�ıa-Reyes and Largier, 2010]. Using the NCEP and ERA40 reanalysis in
addition to the ICOADS database, Narayan et al. [2010] confirmed Bakun’s [1990] trends showing a steady
increase in intensity over the period 1960–2001 in the four major EBUS. Note, however, that the realism of
wind and proxy-derived temperature trends is subject to debate in the North-West African system [Barton
et al., 2013]. Regional climate modeling studies are undoubtedly of great help to better understand the
physical processes driving the trends of the last decades.

Appendix A: Regional Ocean Response to Coarse-resolution Climate Model Forcing

We comment here results from a ROMS simulation forced by the coarse resolution IPSL wind forcing (CR-
IPSL). The alongshore flow displays unrealistic features such as a very weak undercurrent, and a very strong
offshore countercurrent (Figure A1), in comparison with features described in the literature [e.g., Chaigneau
et al., 2013] (Figure 4c). The spatial pattern of EKE (Figure A2) is displaced away from the coast and the
intensity is far too high in comparison with EKE derived from AVISO (Figure 5c). Similar unrealistic results
were described by Colas et al. [2012] and Cambon et al. [2013] using the coarse resolution NCEP winds as
wind forcing. This clearly justifies our downscaling approach based on the use of surface winds from the
LMDz-ESP05 model described in detail in BEL2014.
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