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In this paper, an alternative method to range-separated linear-response time-dependent density-
functional theory and perturbation theory is proposed to improve the estimation of the energies of
a physical system from the energies of a partially interacting system. Starting from the analysis of
the Taylor expansion of the energies of the partially interacting system around the physical system,
we use an extrapolation scheme to improve the estimation of the energies of the physical system
at an intermediate point of the range-separated or linear adiabatic connection where either the
electron–electron interaction is scaled or only the long-range part of the Coulomb interaction is
included. The extrapolation scheme is first applied to the range-separated energies of the helium
and beryllium atoms and of the hydrogen molecule at its equilibrium and stretched geometries. It
improves significantly the convergence rate of the energies toward their exact limit with respect to the
range-separation parameter. The range-separated extrapolation scheme is compared with a similar
approach for the linear adiabatic connection, highlighting the relative strengths and weaknesses of
each approach.

I. INTRODUCTION

The calculation of excitation energies in density-
functional theory (DFT) is nowadays mostly done
by means of linear response theory in the time-
dependent framework. Linear-response time-
dependent DFT (TDDFT) [1] exhibits an excellent
price–performance ratio and is, within the usual
adiabatic semi-local approximations, very success-
ful at describing excitations to low-lying valence
states. However, these approximations introduce
several limitations, especially for the treatment of
static correlation [2], Rydberg and charge-transfer
excitations [3, 4], and double or multiple excita-
tions [5].

Time-dependent theory is, however, not manda-
tory for calculating excitation energies, as stated
by the Hohenberg–Kohn theorem [6]. Indeed, sev-
eral time-independent DFT approaches for cal-
culating excitation energies exist and are cur-
rently being developed. These include ensem-
ble DFT [7–12], ∆SCF [13–17] and related meth-
ods [18–21], or perturbation theory [22–25] along
the standard adiabatic connection using the non-
interacting Kohn–Sham (KS) Hamiltonian as the
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zero-order Hamiltonian.
Range-separated DFT constitutes an alterna-

tive to standard KS DFT [6, 26] where the phys-
ical electronic Hamiltonian is replaced not by
an effective non-interacting Hamiltonian but by
a partially interacting Hamiltonian that incorpo-
rates the long-range part only of the electron–
electron interaction [27–31]. This partially inter-
acting Hamiltonian corresponds to an intermedi-
ate point along a range-separated adiabatic con-
nection, which links the KS Hamiltonian to the
physical Hamiltonian by progressively switching
on the long-range part of the two-electron inter-
action, whilst simultaneously modifying the one-
electron potential so as to maintain a constant
ground-state density.
In range-separated time-dependent DFT, the

excitation energies of the long-range interacting
Hamiltonian act as starting approximations to the
excitation energies of the physical system and are
corrected using a short-range density-functional
kernel, in the same manner as the KS excitation
energies act as starting approximations in linear-
response TDDFT. Several such range-separated
linear-response schemes have been developed, in
which the short-range part is described by an ap-
proximate adiabatic semi-local density-functional
kernel and the long-range linear-response part
is treated at the Hartree–Fock [32–35], multi-
configuration self-consistent field (MCSCF) [34,
35], second-order polarization-propagator approx-
imation (SOPPA) [35], or density-matrix func-
tional theory (DMFT) [36] level.



Within the time-independent framework, a
standard method for improving upon the excita-
tion energies of the partially interacting Hamil-
tonian would be to use perturbation theory.
However, given that perturbation theory in its
standard Rayleigh–Schrödinger based formulation
does not keep the ground-state density constant at
each order in the perturbation, it has not led to a
systematic improvement [37].

In this work, we propose a time-independent al-
ternative method for correcting the excitation en-
ergies of the partially-interacting system, based
on extrapolation along the range-separated adia-
batic connection. Given that the long-range part
of the interaction is included in the partially in-
teracting system, its excitation energies constitute
better approximations to the energies of the phys-
ical system than do the excitation energies of the
KS system. The analysis of the Taylor expansion
of the energies in the range-separation parame-
ter µ about the physical system (µ → +∞) pre-
sented in Ref. 38 shows that the energies of the
partially interacting system converge towards their
physical limits as µ−2. Using this information, it
is possible to develop a scheme for extrapolating
the energies of the physical system from the ener-
gies of the partially interacting system by follow-
ing the ideas of Refs. 39, 40. This extrapolation
scheme involves low-order derivatives of the ener-
gies with respect to µ and constitutes an alterna-
tive to perturbation theory and to range-separated
TDDFT [32, 41, 42].

The extrapolation scheme is also applied to the
linear adiabatic connection, where the interaction
is scaled by a parameter λ going from 0 to 1,
and where the analysis of the excitation energies
around λ = 1 provides the required information
to improve the estimation of the energies of the
physical system from an intermediate point of the
connection.

The expression for the energies of the partially
interacting system and for their extrapolations are
given in Section II for the range-separated and lin-
ear adiabatic connections. The extrapolation is
subsequently applied to the range-separated ener-
gies of the helium and beryllium atoms and of the
hydrogen molecule at its equilibrium and stretched
geometries; for helium, we also use the linear adi-
abatic connection. The computational details are
given in Section III and the results are discussed
in Section IV.

II. ENERGY EXTRAPOLATION ALONG

THE RANGE-SEPARATED AND LINEAR

ADIABATIC CONNECTIONS

A. Range-separated adiabatic connection

Range-separated DFT uses a partially inter-
acting system, where the long-range part of the
Coulomb interaction is included instead of the
more traditional non-interacting KS system—see,
for example, Ref. 31. In terms of the long-range
(lr) electron–electron interaction operator

Ŵ lr,µ
ee =

1

2

∫∫

wlr,µ
ee (r12)n̂2(r1, r2)dr1dr2, (1)

where n̂2(r1, r2) is the pair-density operator and
wlr,µ

ee (r12) is the error-function interaction

wlr,µ
ee (r12) =

erf(µr12)

r12
, (2)

the Hamiltonian of the partially interacting system
is given by

Ĥ lr,µ = T̂ + V̂ne + Ŵ lr,µ
ee + ˆ̄V sr,µ

Hxc . (3)

The parameter µ controls the range of the sep-
aration, with 1/µ acting as a smooth cut-off ra-
dius. This Hamiltonian also contains the short-
range Hartree–exchange–correlation potential op-

erator ˆ̄V sr,µ
Hxc , whose role is to ensure that the

ground-state density of the partially-interacting
system

n0(r) = 〈Ψµ
0 |n̂(r)|Ψ

µ
0 〉, (4)

is equal to the ground-state density of the physical
system for all µ. Here Ψµ

0 is the ground-state wave
function of the partially interacting Hamiltonian
and n̂(r) is the density operator. The remaining
terms in the Hamiltonian of Eq. (3) are the usual

kinetic-energy operator T̂ and nuclear–electron in-
teraction operator V̂ne =

∫

vne(r)n̂(r)dr.

The eigenvectors and eigenvalues of Ĥ lr,µ are
the ground- and excited-state wave functions |Ψµ

k〉
and energies Eµ

k of the partially interacting system

Ĥ lr,µ|Ψµ
k〉 = Eµ

k |Ψ
µ
k〉. (5)

These excited-state wave functions and ener-
gies provide natural first approximations to the
excited-state wave functions and energies of the
physical system. For µ = 0, they reduce to the
single-determinant eigenstates and associated en-
ergies of the non-interacting KS Hamiltonian,

ĤKS|ΦKS
k 〉 = EKS

k |ΦKS
k 〉, (6)
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while, for µ → ∞, they reduce to the excited-
state wave functions and energies of the physical
Hamiltonian

Ĥ |Ψk〉 = Ek|Ψk〉. (7)

In Ref. 38, it was shown that the asymptotic
expansion of the total energy of state k around
the physical system is

Eµ
k = Ek +

1

µ2
E

(−2)
k +

1

µ3
E

(−3)
k +O

(

1

µ4

)

, (8)

whereE
(−2)
k and E

(−3)
k are the corrections entering

at the second and third powers of 1/µ, respectively.
Following the scheme proposed in Refs. 39, 40, it
is possible to estimate the energy of the physical
system Ek from the energy of the partially inter-
acting system Ek and its first- and second-order
derivatives with respect to µ.
¿From the Taylor expansion of the energies

when µ → ∞, the first-order derivatives of the
energies with respect to µ behave as

∂Eµ
k

∂µ
= −

2

µ3
E

(−2)
k +O

(

1

µ4

)

, (9)

around the real system. Inserting this into Eq. (8),
the exact energies Ek can be written as a function
of the energies along the adiabatic connection and
of their first-order derivative as

Ek = Eµ
k +

µ

2

∂Eµ
k

∂µ
+O

(

1

µ3

)

. (10)

This scheme gives extrapolated energies

EEE,µ
k = Eµ

k +
µ

2

∂Eµ
k

∂µ
, (11)

that are correct up to and including the second
power of 1/µ relative to the energies of the physical
system. The correction given by the extrapolation
scheme vanishes at µ = 0 by construction, but
should improve the description of the energies as
soon as the interaction is switched on. One should
note that the absence of a correction at µ = 0 is
only due to the choice of 1/µk as the basis for the
expansion. Other basis functions such as µ2/(a+
µ5) would lead to a correction at µ = 0 but are
not considered in this work.
A more elaborate scheme can be developed by

using also the correction E
(−3)
k and the second-

order derivative. In this case, the first- and second-
order derivatives are given by

∂Eµ
k

∂µ
= −

2

µ3
E

(−2)
k −

3

µ4
E

(−3)
k +O

(

1

µ5

)

, (12)

∂2Eµ
k

∂µ2
=

6

µ4
E

(−2)
k +

12

µ5
E

(−3)
k +O

(

1

µ6

)

, (13)

and, after eliminating E
(−2)
k and E

(−3)
k , the ex-

trapolated energies become

EEE2,µ
k = Eµ

k + µ
∂Eµ

k

∂µ
+

µ2

6

∂2Eµ
k

∂µ2
. (14)

Higher-order derivatives should further reduce er-
rors. Additionally, several points along the adia-
batic connection could be used to perform the ex-
trapolation to increase the accuracy of the extrap-
olated energies. However, only first- and second-
order corrections at a single point of the adiabatic
connection are considered hereinafter.

B. Linear adiabatic connection

If the linear adiabatic connection is performed,
then the partially interacting Hamiltonian is de-
fined as Ĥλ = T̂ + λŴee + V̂ λ where V̂ λ is ad-
justed to keep the ground-state density constant.
This potential can be expressed in terms of the
connecting parameter λ as

V̂ λ = V̂ne + (1− λ)V̂Hx + V̂c − V̂ λ
c , (15)

where V̂ λ
c enters at second order in λ and is equal

to V̂c at λ = 1. The energies of the partially inter-
acting system can then be expanded around the
physical system as

Eλ
k = Ek +(λ− 1)E

(1)
k +(λ− 1)2E

(2)
k +O(λ− 1)3,

(16)

where E
(1)
k and E

(2)
k are the contributions entering

at the first and second power of (λ − 1), respec-
tively. As in the range-separated case, by differ-
entiation with respect to λ, it is then possible to
extrapolate the energies of the physical system at

first order by considering only the correction E
(1)
k

as

EEE,λ
k = Eλ

k + (1 − λ)
∂Eλ

k

∂λ
. (17)

When λ = 0, this extrapolation is equivalent to
the first-order correction of Görling–Levy pertur-
bation theory [23, 25].
A second-order correction can be obtained by

using also the correction E
(2)
k . The first- and

second-order derivatives are

∂Eλ
k

∂λ
= E

(1)
k + 2(λ1)E

(2)
k +O(λ− 1)2, (18)

∂2Eλ
k

∂λ2
= 2E

(2)
k +O(λ − 1), (19)

and the extrapolated energies become

EEE2,λ
k = Eλ

k +(1−λ)
∂Eλ

k

∂λ
+
1

2
(1−λ)2

∂2Eλ
k

∂λ2
. (20)
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III. COMPUTATIONAL DETAILS

Calculations were performed for the He and
Be atoms and the H2 molecule with a develop-
ment version of the DALTON program [43], see
Refs. 44–46. Following the procedure of Ref. 38, a
full CI (FCI) calculation was first carried out to get
the exact ground-state density within the basis set
considered: uncontracted t-aug-cc-pV5Z for He,
uncontracted d-aug-cc-pVDZ for Be, and uncon-
tracted d-aug-cc-pVTZ for H2. A Lieb optimiza-
tion of the short-range potential vsr,µ(r) was then
performed to reproduce the FCI density with the
long-range electron–electron interaction wlr,µ

ee (r12).
Finally, an FCI calculation was carried out with
the partially-interacting Hamiltonian constructed
from wlr,µ

ee (r12) and vsr,µ(r) to obtain the zeroth-
order energies and wave functions.

Starting from the analytical form of the fit given
in the supplementary material of Ref. 38, it is then
straightforward to calculate the analytical deriva-
tives of the energies with respect to µ. In the lin-
ear case, a cubic fit of the energies was performed.
The extrapolated energies were calculated using
Eqs. (11), (14), (17), and (20).

All the unextrapolated curves shown hereinafter
correspond to the curves of Ref. 38.

IV. RESULTS AND DISCUSSION

A. Range-separated adiabatic connection of

the helium atom

1. Ground-state energy

The results of the first- and second-order extrap-
olation schemes on the ground-state total energy
of the helium atom are shown in Figure 1 (top).
By construction, the extrapolation has no effect
at µ = 0 and the ground-state energy of the KS
system is, therefore, unaffected by the extrapola-
tion. However, for µ > 0, the extrapolated ener-
gies show a systematic improvement with respect
to the unextrapolated ground-state energy, that is,
the ground-state energy of the partially interacting
Hamiltonian without any correction.

Without extrapolation, a range-separation pa-
rameter of about 6 bohr−1 is needed to give an
error smaller than 10 mhartree relative to the en-
ergy of the physical system. With the first- and
second-order corrections added, the same accuracy
is achieved with a range-separation parameter of
only 2.8 and 1.5 bohr−1, respectively.
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Figure 1: (Color online) Helium ground-state energy
(top) Eµ

0 , and first S (middle) and P (bottom) excita-
tion energies ∆E

µ

k = E
µ

k − E
µ
0 calculated without ex-

trapolation (full lines), with first-order extrapolation
(dashed) and second-order extrapolation (dot–dashed)
as a function of µ. The dotted horizontal lines are the
physical energies. The colored regions represent er-
rors of ±10 and ±1 mhartree for the ground-state and
excitation energies, respectively.
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2. Rydberg excitation energies

Figure 1 also shows the effects of extrapolation
on the lowest Rydberg S (middle) and P (bottom)
excitation energies of helium. The convergence
of the excitation energies towards their physical
limit is overall improved by the first- and second-
order corrections with respect to the unextrapo-
lated curves. In fact, the range-separation param-
eter required to achieve an accuracy of 1 mhartree
is divided by approximately a factor 2 or a factor
3 by the first- and second-order schemes, respec-
tively. For the excitation energies considered here,
a range-separation value of 2 and 1 bohr−1 suffices
to reduce the error to less than 1 mhartree with the
first- and second-order schemes, respectively.
The 1S and 3S excitation energies change mono-

tonically with increasing µ. Accordingly, extrap-
olation provides a systematic improvement, the
sign of the derivative pulling the excitation ener-
gies towards their physical limits at both first- and
second-order levels.
The 3P excitation energy also changes monoton-

ically with µ and the first-order extrapolation pro-
vides therefore a systematic improvement. How-
ever, the first-order extrapolated energy does not
converge monotonically towards its physical limit
(not visible), leading to a slight degradation of the
excitation energies around µ = 1.5 bohr−1 at sec-
ond order.
Finally, the 1P excitation energy shows a non-

monotonic behavior even before extrapolation, ex-
hibiting a “bump” for small µ that is probably a
basis-set effect [38]. In fact, for such small µ, only
the very long-range part of the interaction is mod-
ified, which is poorly described by Gaussian basis
functions. The higher a given state is in energy,
the more sensitive it becomes to this basis-set de-
fect.
As a consequence, the 1P excitation energy ap-

proaches its physical limit from above, its first-
order derivative changing sign around 0.7 bohr−1.
In this region, the extrapolated energies become
less accurate than the unextrapolated energy.
However, this behavior is observed only in a small
region. As soon as the excitation energy recovers a
monotonic convergence towards its physical limit
(for µ larger than 0.7 bohr−1), the energy is im-
proved by the extrapolation and converges faster
to its physical limit.

B. Range-separated adiabatic connection for

the valence excitation of the beryllium atom

The ground-state energy of the beryllium atom
is shown in Figure 2 (top). Since beryllium has a
core orbital, the convergence of its total energies
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Figure 2: (Color online) Ground-state energy E
µ
0 (top)

and excitation energies ∆E
µ

k = E
µ

k − E
µ
0 (bottom) of

beryllium as a function of µ. The unextrapolated ener-
gies are shown as full lines, the first-order extrapolated
energies are plotted in dashed lines and the second-
order ones in dot-dashed lines. The energies of the
physical system are given as horizontal dotted lines.
An error of ±50 mhartree is colored around the phys-
ical ground-state energy and an error of ±2 mhartree
is colored around the physical excitation energies.

is slower than for helium as the density is more
contracted and a larger range-separation parame-
ter is needed to describe correctly the core region.
However, this affects all valence states in a similar
fashion (not shown here).
Extrapolation systematically improves the con-

vergence of the ground-state energy along the adi-
abatic connection. First-order extrapolation re-
duces the error to less than 50 mhartree with
µ ≈ 5 bohr−1, an order of magnitude smaller than
the error without the extrapolation correction but
still large. Second-order extrapolation gives the
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same error reduction already with µ ≈ 3 bohr−1.
The effect of the extrapolation on the valence ex-

citation energies of beryllium is shown in Figure 2
(bottom). As the errors associated with the core
largely cancel in the excitation energies, the un-
extrapolated excitation energies already converge
faster than do the total energies. With first-order
extrapolation, an error smaller than 2 mhartree is
reached with µ ≈ 0.5 bohr−1, to be compared with
a much larger error of 4 hartree in the total en-
ergies with the same µ value. The second-order
extrapolation allows one to reach the same accu-
racy with a range-separation parameter as small
as 0.3 bohr−1. However, once again, some bumps
are observed in the extrapolated energies proba-
bly due to the limited size of the basis set. This
fast convergence of the excitation energies with re-
spect to the range-separation parameter is due to
the fact that in beryllium, static correlation is im-
portant and the multi-configurational character of
the wave function is quickly established when the
interaction is switched on; see Ref. 47.

C. Range-separated adiabatic connection for

the hydrogen molecule

Finally, we consider extrapolation of the lowest
excitation energies of the hydrogen molecule along
the range-separated adiabatic connection, at the
equilibrium geometry and at a stretched geome-
try. The results of the first- and second-order ex-
trapolations on the singlet and triplet Σ+

g → Σ+
u

excitation energies at the equilibrium geometry are
shown in Figure 3 (top). First- and second-order
extrapolations provide a systematic improvement
in the excitation energies, µ ≈ 2 bohr−1 for first
order and µ ≈ 1 bohr−1 for second order being suf-
ficient to reproduce the physical energies to within
1 mhartree.
Having stretched the hydrogen molecule to three

times the equilibrium distance, we apply extrapo-
lation to the singlet and triplet excitations to the
1Σ+

u state and to the double excitation to the 2Σ+
g

state—see the bottom part of Figure 3. Again, the
improvement is systematic. The triplet extrap-
olated energy shows a monotonic behavior with
respect to µ, whereas the singlet energy shows
a slight bump at 0.8 bohr−1. However, all ex-
trapolated excitation energies converge faster than
their unextrapolated counterparts. Extrapolation
works remarkably well, reducing errors to less than
5 mhartree with µ ≈ 0.6 bohr−1, compared with
2 bohr−1 without extrapolation. In particular, ex-
trapolation allows us to describe double and sin-
gle excitation energies equally well. In this case,
one should note that the second-order scheme does
not improve significantly the convergence of the
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Figure 3: (Color online) Unextrapolated (full lines),
first-order extrapolated (dashed lines) and second-
order extrapolated (dot-dashed lines) excitation en-
ergies ∆E

µ
k = E

µ
k − E

µ
0 of the H2 molecule at the

equilibrium internuclear distance Req (top) and three
times the equilibrium distance (bottom) as a function
of µ. The excitation energies of the physical system
∆Ek = ∆E

µ→∞
k are plotted as horizontal dotted lines.

An error of ±1 mhartree is colored around the physical
excitation energies at equilibrium and an error of ±5
mhartree at stretched geometry.

11Σ+
g → 23Σ+

g (σ
+
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2 and 11Σ+
g → 11Σ+

u excitation
energies because of their nonmonotonicity proba-
bly due to the limited basis set.
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Figure 4: (Color online) Helium ground- and excited-
state energy (top), S excitation energies (middle),
and P excitation energies (bottom) calculated with-
out extrapolation (full lines), with first-order extrapo-
lation (dashed), and second-order extrapolation (dot–
dashed) along the linear connection. The dotted hor-
izontal lines are the physical energies. The colored
regions represent errors of ±1 mhartree for the excita-
tion energies.

D. Linear adiabatic connection for the

helium atom

1. Total energies

The total energies of the helium atom along the
linear adiabatic connection are plotted in Figure 4
(top). When λ = 0, no interaction is included, so
the KS energies are recovered as for µ = 0. When
λ = 1, the full interaction is present and the en-
ergies of the physical system are recovered, which
corresponds to the limit µ → ∞. The two limiting
cases are, therefore, identical for the two adiabatic
connections but the way they are connected dif-
fers.
The evolution of the total energies with respect

to λ is almost linear. Although this behavior is
easier to predict and should provide an efficient
framework for extrapolations, the value of λ re-
quired to have an error of 10 mhartree is very close
to 1; in the range-separation case, an intermediate
value of µ is sufficient. In general, we note that, in
the linear case, the calculation of the wave func-
tion is by and large equally expensive at all points
along the connection since the electron-electron
cusp must always be described (except at λ = 0);
in the range-separated case, by contrast, the cal-
culation becomes less expensive with decreasing µ
since the description of the cusp is then avoided.

2. Excitation energies and comparison with the

range-separated case

The lowest (Rydberg) excitation energies of he-
lium along the linear adiabatic connection are also
plotted in Figure 4 (middle and bottom). As for
the total energies, the end points are the same as
in the range-separated case but the behavior of the
energies along the connection is more linear. As in
the range-separated case, the 1P excitation energy
does not evolve monotonically with λ, probably
because of basis-set limitations.
When the first- and second-order extrapola-

tion corrections are added, a systematic improve-
ment is observed for the triplet excitation ener-
gies. With the second-order correction, the physi-
cal energies are already reproduced to 1 mhartree
at λ = 0. The singlet excitation energies are less
affected by the correction but are still overall im-
proved, the amount of interaction required to re-
produce the physical limit within an accuracy of
1 mhartree dropping to 50%. Moreover, unlike in
the range-separated case, the KS excitation en-
ergy also benefits from this correction, which no
longer vanishes in this limit. Indeed, at λ = 0, the
extrapolated excitation energy matches the results
obtained in Ref. 25, using first-order Görling–Levy
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Figure 5: Error in the 3S excitation energy along the
range-separated and linear adiabatic connections for
the helium atom as functions of µ and λ. The un-
extrapolated energies are given in full lines and the
extrapolated ones in dashed lines. An error smaller
than 1 mhartree around the physical limit is given by
the colored region.

perturbation theory.
To compare the range-separated and linear

cases, the effects of first-order extrapolation on
the lowest excitation energy of helium are shown
in Figure 5 in both cases. Without extrapolation,
the scaling parameter λ must be greater than 0.95
to reproduce energies within 1 mhartree. By con-
trast, a small change in µ near zero gives a large
change in the energies; thus, a range-separation
parameter of 2 bohr−1 is sufficient to ensure the
same accuracy. Clearly, the range-separated con-
nection includes the most significant region of the
interaction first, whereas the linear connection
treats all ranges equally, independently of their im-
portance for the excitation energies.
For the KS system, it is obviously better to use

the correction obtained from the linear connection
as the corresponding range-separated correction
vanishes. For a partially interacting system, the
comparison is more difficult.

V. CONCLUSION

In this work, we have exploited the asymptotic
behavior of the energies of a partially interacting
system along the range-separated adiabatic con-
nection to design an energy correction that allows
us to extrapolate to the physical energies of the
system from its partially interacting energies. The

simplest possible extrapolations were obtained by
using either only the first-order derivative of the
energies with respect to the range-separation pa-
rameter at a given point or by using the first- and
second-order derivatives.

This extrapolation scheme was tested at the FCI
level of theory on the helium and beryllium atoms
and on the hydrogen molecule (at equilibrium and
at stretched geometry), where it significantly im-
proves the convergence of energies and excitation
energies towards their physical limits. Moreover,
the improvements are systematic, except at µ = 0
(where the correction is zero by construction) and
in a few cases where the partially interacting ener-
gies present a bump for small µ. In all cases, with
respect to the unextrapolated case, the extrapo-
lation schemes reduce the smallest value of the
range-separation parameter required to reproduce
the physical energies of the system with a given
accuracy by approximately a factor of 2 with the
first-order scheme and by a factor of 3 with the
second-order scheme. This is of particular rele-
vance for truncated wave functions, as the smaller
the range-separation parameter is, the fewer Slater
determinants are needed to describe the wave func-
tions with an equivalent accuracy.

Finally, the extrapolation scheme was applied
along the linear adiabatic connection, where it also
improves significantly the description of the exci-
tation energies along the connection.

All results discussed here were obtained with-
out the use of approximate functionals. The pro-
posed extrapolation scheme should now be tested
in a more pragmatic case, where the potential
is not obtained by Lieb optimization but from
different approximations such as the (semi)local
approximations or more interestingly approxima-
tions where the long-range behavior of the poten-
tial is correct, such as the optimized-effective po-
tential (OEP) [48, 49]. The effects of the inclusion
of higher-order derivatives and of multiple points
on this extrapolation should also be explored.
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