Synthesis of pyrrolidine-based analogues of
 2-acetamidosugars as N -acetyl glucosaminidase inhibitors

Anh Tuan Tran, Bo Luo, Jagadeesh Yerri, Nicolas Auberger, Jérôme Désiré, Shinpei Nakagawa, Atsushi Kato, Yongmin Zhang, Yves Blériot, Matthieu Sollogoub

To cite this version:

Anh Tuan Tran, Bo Luo, Jagadeesh Yerri, Nicolas Auberger, Jérôme Désiré, et al.. Synthesis of pyrrolidine-based analogues of 2-acetamidosugars as N -acetyl glucosaminidase inhibitors. Carbohydrate Research, 2015, 409, pp.56-62. 10.1016/j.carres.2015.02.014 . hal-01136039

HAL Id: hal-01136039

https://hal.sorbonne-universite.fr/hal-01136039

Submitted on 26 Mar 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Synthesis of pyrrolidine-based analogues of 2-acetamidosugars as N-acetyl glucosaminidase inhibitors

Anh Tuan Tran, ${ }^{a}$ Bo Luo, ${ }^{\text {a }}$ Jagadeesh Yerri, ${ }^{\text {b }}$ Nicolas Auberger, ${ }^{\text {b }}$ Jérôme Désiré, ${ }^{\text {b }}$ Shinpei Nakagawa, ${ }^{\text {c }}$ Atsushi Kato, ${ }^{\text {c }}$ Yongmin Zhang, ${ }^{\text {a }}$ Yves Blériot, ${ }^{\text {b }}$ * Matthieu Sollogoub ${ }^{\text {a }}$ *
${ }^{a}$ Sorbonne Universités, UPMC Univ Paris 06, Institut Universitaire de France, UMRCNRS 8232, IPCM, F-75005 Paris, France. E-mail : matthieu.sollogoub@upmc.fr ${ }^{b}$ Glycochemistry Group of "Organic Synthesis" Team, Université de Poitiers, UMRCNRS 7285 IC2MP, 4 rue Michel Brunet, 86073 Poitiers Cedex 9, France. E-mail: yves.bleriot@univ-poitiers.fr
${ }^{c}$ Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan

Abstract

A ring-contraction strategy applied to β-azido, γ-hydroxyazepanes yielded after functional group manipulation new tetrahydroxylated pyrrolidines displaying an acetamido moiety, one of these iminosugars demonstrating low micromolar inhibition on N-acetylglucosaminidases.

Keywords. Iminosugars, Ring-contraction, Glycosidase inhibitors, Pyrrolidines

Highlights.

-A new family of amino-functionalised pyrolidines was synthesized.
-Aring-contraction of β-azido, γ-hydrox yazepanes was used.
-A low micromolar inhibitor of β - N -acetylehexosaminidase identified.

Polyhydroxylated pyrrolidines ${ }^{1,2}$ are well-established powerful glycosidase inhibitors, even though their analogy with hexopyranoses, and therefore the structural basis of their inhibition, are less straightforward than for the corresponding piperidines. ${ }^{3}$ Hexosaminidases are a very important class of glycosidases that cleave the pyranosidic N-acetyl-D-glucosamine unit from glycoconjugates. Several pyrrolidines bearing an acetamide group have been reported as potent hexosaminidases inhibitors. Interestingly, only one naturally occuring acetamido-containing pyrolidine was isolated so far: Pochonicine. ${ }^{4-6}$ The main classes of synthetic nitrogen functionalized polyhydroxylated pyrrolidines are represented in Figure 1, the most studied one being the 2,5-dideoxy-2,5-iminohexitols \mathbf{A}^{7-21} but other scaffolds such as $\mathbf{B},{ }^{22-24} \mathbf{C},{ }^{25-26} \mathbf{D}^{27} \mathbf{E}^{28}$ and \mathbf{F}^{8} have also been prepared. It is rather stricking that structure \mathbf{G}, which can be seen as a combination of \mathbf{A} and \mathbf{E} possessing as many hydroxyl groups as the hexosaminidase substrate and product, has never been synthesized and assessed as a hexosaminidase inhibitor. The present study reports the synthesis and hexosaminidase inhibitory evaluation of molecules derived from scaffold G. (Figure 1)

Pochonicine

Figure 1: Structures of the existing classes of acetamido-pyrrolidines A-F and of the target scaffold \mathbf{G}.

In the course of our studies aimed at the synthesis of GlcNAc-like piperidine homoiminosugars exploiting a ring-contraction methodology, ${ }^{29-32}$ a 2,3-trans-2-hydroxy,3-azido-azepane was required and obtained from the unsaturated 7membered ring $1 .{ }^{33}$ The obvious synthetic route transits via the formation of an epoxide, followed by its azidolysis. We observed that it was possible to operate the epoxydation with some degree of stereocontrol to afford either epoxides $\mathbf{2}$ or $\mathbf{3}$ as the main products. ${ }^{33}$ These latter could then be opened using sodium azide to give, in both cases, a significant amount of the 2 -azido derivatives 4 and 6 together with the desired 3 -azido compounds 5 and $7 .{ }^{33}$ (Scheme 1)

Scheme 1 : Synthesis of azidoazepanes 4-7. Reagents and conditions: a) Oxone, D-epoxone, $\mathrm{NaHCO}_{3}, 2: 54 \%$, b) Oxone, $\mathrm{CF}_{3} \mathrm{COCH}_{3}, \mathrm{NaHCO}_{3}, 2: 29 \%, 3: 51 \%$; c) $\mathrm{NaN}_{3}, \mathrm{NH}_{4} \mathrm{Cl}$, DMF/ $/ \mathrm{H}_{2} \mathrm{O}, 90^{\circ} \mathrm{C}$

Compounds $\mathbf{4}$ and $\mathbf{6}^{33}$ are also suitable candidates for a ring contraction reaction ${ }^{34}$ to give pyrrolidine derivatives ${ }^{35}$ through a γ-aminoacohol rearrangement. Hence, we decided to apply the TFAA-mediated ring contraction conditions developped by Cossy ${ }^{36}$ to β-azidoazepanes 4 and $\mathbf{6}$ that were first converted into the N-benzyl derivatives 8 (80%) and $\mathbf{1 3}$ (68%) respectively, using TFA followed by N benzylation ($\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}$). Their ring contraction with TFAA furnished the azidopyrrolidines 9 (93\%) and 14 (86\%) respectively in good yield. Reduction of the azide moiety $\left(\mathrm{PPh}_{3}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}\right)$ followed by N -acetylation was achieved to provide the acetamide $\mathbf{1 0}(80 \%)$ and $\mathbf{1 5}(60 \%)$ respectively. Final O-deacetylation followed by hydrogenolysis yielded the target pyrrolidines 11 (95\%) and $\mathbf{1 6}$ (88%). Compound 9 was also directly submitted to the action of hydrogen in the presence of Pd / C to give the diamine $\mathbf{1 2}$ in 95% yield as its hydrochloride salt (Scheme 2).

Scheme 2 : Synthesis of NHAc derived pyrrolidines 11 and 16. Reagents and conditions: a) i)TFA, DCM; ii) $\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}$; b) i) Trifluoroacetic anhydride (TFAA), $\mathrm{Et}{ }_{3} \mathrm{~N}$, toluene, reflux, ii) 10% aq. NaOH ; c) i) $\mathrm{PPh}_{3}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, 80^{\circ} \mathrm{C}$, ii) Pyridine, $\mathrm{Ac}_{2} \mathrm{O}$; d) i) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}$, ii) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{HCl}$; e) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{HCl}$

The ring contraction reaction is initiated by the esterification of the free hydroxyl group in azepane $\mathbf{1 3}$ to give intermediate \mathbf{H}, in which the amine displaces this leaving group to produce the fuded pyrrolidine-azetidinium ion I. Nucleophilic ring opening at the less hindered carbon affords pyrrolidine \mathbf{J} which leads to the five-membered iminosugar 14 upon saponification. The stereochemistry of the ring-contracted product is the one expected by this mechanism as attested by the NOE cross-correlation between H-3 and H-5 on 14. (Scheme 3)

ACCEPTED MANUSCRIPT

Scheme 3 : Proposed mechanism for the ring contraction step.

The three pyrrolidines 11, 12 and 16 were assayed as inhibitors of a panel of hexosaminidases and β-glucuronidases. Iminosugar 11 is a moderate inhibitor of β - N-acetylglucosaminidases with IC_{50} in the high micromolar range. The present work revealed that inversion of C-1 side chain in $\mathbf{1 1}$ to give $\mathbf{1 6}$ significantly enhanced its inhibition potency against these enzymes, pyrrolidine $\mathbf{1 6}$ demonstrating potent Jack bean $\beta-N$-acetylglucosaminidase inhibition, with a IC_{50} value of $3.4 \mu \mathrm{M}$. In contrast, replacement of the acetamide group by an amine as in $\mathbf{1 2}$ is detrimental to hexosaminidase inhibition (Table 1). It is noteworthy that pyrrolidine 11 showed low micromolar inhibition against bovine liver and E.coli β-glucuronidase, with IC_{50} values of 26 and $15 \mu \mathrm{M}$, respectively. Previous study suggested that β-glucuronidase recognized uronic acid and carboxylic acid part is required for tight binding. ${ }^{37,38}$ Thus, pyrrolidine $\mathbf{1 1}$ is an interesting case for β glucuronidase inhibition.

Table 1. Concentration of iminosugars giving 50% inhibition of various glycosidases

Enzyme:
$\overline{\boldsymbol{\beta}}$ - \boldsymbol{N}-Acetylglucosaminidase
Aspergillus oryzae
Bovine kidney
HL60
Human placenta
Jack bean
$\alpha-N$-Acetylgalactosaminidase
Chicken liver
${ }^{\mathrm{a}} \mathrm{NI}^{\mathrm{b}}{ }^{\mathrm{b}}(26.2 \%)$
NI (3.3\%)
NI (7.2\%)
$\boldsymbol{\beta}$-glucuronidase

Bovine liver	26	$\mathrm{NI}(0 \%)$	$\mathrm{NI}(48.5 \%)$
E.coli	15	$\mathrm{NI}(17.8 \%)$	145

${ }^{\text {a }} \mathrm{NI}$: No inhibition (less than 50% inhibition at $1000 \mu \mathrm{M}$).
${ }^{\mathrm{b}}$ () : inhibition $\%$ at $1000 \mu \mathrm{M}$

In conclusion, a ring-contraction methodology applied to seven-membered iminosugars bearing an azido group in β position furnished a low micromolar hexosaminidase inhibitor after conversion of the azide function into an acetamide and final deprotection. This work complements previous work on the conversion of polyhydroxylated azepanes into six-membered NHAc-homoiminosugars.

1. Experimental

1.1 Material and methods

All commercial reagents were used as supplied. Solvents (DMF, THF) were distilled under anhydrous conditions. TLC plates (Macherey-Nagel, ALUGRAM ${ }^{\circledR}$ SIL G/UV ${ }_{254}, 0.2 \mathrm{~mm}$ silica gel $60 \AA$) were visualized under 254 nm UV light and/or by dipping the TLC plate into a solution of 3 g of phosphomolybdic acid in 100 mL of ethanol followed by heating with a heat gun. Flash column
chromatography was performed using Macherey-Nagel silica gel $60(15-40 \mu \mathrm{~m})$. NMR experiments were recorded with a Bruker AM- 400 spectrometer at 400 MHz for ${ }^{1} \mathrm{H}$ nuclei and at 100 MHz for ${ }^{13} \mathrm{C}$ nuclei. The chemical shifts are expressed in part per million (ppm) using residual CHCl_{3} signal as internal reference $\left(\delta\left({ }^{1} \mathrm{H}\right)=7.26 \mathrm{ppm}\right.$ and $\left.\delta\left({ }^{13} \mathrm{C}\right)=77.16 \mathrm{ppm}\right)$ and the coupling constant J in hertz (Hz). NMR multiplicities are reported using the following abbreviations: $\mathrm{b}=$ broad, $\mathrm{s}=$ singulet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quadruplet, $\mathrm{m}=$ multiplet. HRMS were recorded on a Bruker microTOF spectrometer, using Tuning-Mix as reference. Optical rotations were measured on a Perkin-Elmer 341 digital polarimeter or a Jasco P-2000 polarimeter with a path length of 1 dm .

1.2 tert-butyl (2R,3R,4R,5R,6S)-6-azido-3,4-bis(benzyloxy)-2-((benzylo-xy)methyl)-5-hydroxyazepane-1-carboxylate (4)

Known epoxide 2^{33} ($465 \mathrm{mg}, 0.853 \mathrm{mmol}$) was dissolved in a DMF/ $\mathrm{H}_{2} \mathrm{O}$ mixture ($9.0 / 1.0 \mathrm{~mL}$), then $\mathrm{NaN}_{3}(277 \mathrm{mg}, 4.26 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{Cl}(226 \mathrm{mg}, 4.26 \mathrm{mmol})$ were added. The resulting mixture was stirred at $90^{\circ} \mathrm{C}$ for 3 days. After being cooled to room temperature, EtOAc and $\mathrm{H}_{2} \mathrm{O}$ were added and the layers were separated. The aqueous layer was extracted twice with EtOAc and the combined organic layers were dried over MgSO_{4}, filtered and evaporated. The residue was purified by flash chromatography (Cy/EtOAc: 9/1) to give $\mathbf{4}(285 \mathrm{mg}, 57 \%)$ as colorless oil and $\mathbf{5}^{6}(160$ $\mathrm{mg}, 32 \%)[\alpha]_{\mathrm{D}}+18.6\left(c=1.0, \mathrm{CHCl}_{3}\right)^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2$ rotamers): 7.39$7.26\left(\mathrm{~m}, 26 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.23-7.22\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 4.81\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=11.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.75$ (d, $\left.1 \mathrm{H},{ }^{2} J=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.69-4.59\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), .4 .49-4.40\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 4.02-3.91 (m, 6H, $\mathrm{H}_{8 \mathrm{a}}, \mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{3}{ }^{\prime}, \mathrm{H}_{5}, \mathrm{H}_{5}$), 3.87-3.53 (m, 12H, $\mathrm{H}_{8 \mathrm{~b}}, \mathrm{H}_{8 \mathrm{a}^{\prime}}, \mathrm{H}_{8 \mathrm{~b}}, \mathrm{H}_{2}$, $\mathrm{H}_{4}, \mathrm{H}_{4}, \mathrm{H}_{6}, \mathrm{H}_{6}, \mathrm{H}_{7 \mathrm{a}}, \mathrm{H}_{7 \mathrm{~b}}, \mathrm{H}_{7 \mathrm{a}^{\prime}}, \mathrm{H}_{7 \mathrm{~b}}$), 2.57 (bs, $0.8 \mathrm{H}, \mathrm{OH}$), 2.52 (bs, $\left.0.8 \mathrm{H}, \mathrm{OH}^{\prime}\right), 1.49$ (s, $9 \mathrm{H}, \mathrm{CH}_{3}, B o c$), 1.41 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3}, B o c$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2$ rotamers): δ 155.4, 155.1 (CO, Boc), 138.3, 138.1, 138.0, 138.0, 137.9, 137.8 ($\mathrm{C}_{\text {ipso }}$) 128.4, 128.3, $128.2,128.0,127.9,127.8,127.7,127.6,127.5,127.5\left(\mathrm{CH}_{\mathrm{ar}}\right), 81.8,81.4\left(\mathrm{C}_{4}, \mathrm{C}_{4}{ }^{\prime}\right)$,
 $\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, 72.5, $72.4\left(\mathrm{C}_{5}, \mathrm{C}_{5^{\prime}}\right), 69.5,69.0\left(\mathrm{C}_{8}, \mathrm{C}_{8}\right)$, 63.1, $62.4\left(\mathrm{C}_{6}, \mathrm{C}_{6}\right)$, $58.9\left(2 \mathrm{C}, \mathrm{C}_{2}\right.$, $\left.\mathrm{C}_{2}\right)$, 45.1, $43.7\left(\mathrm{C}_{7}, \mathrm{C}_{7}\right)$, 28.3, $28.2\left(\mathrm{CH}_{3}\right.$, Boc $)$; ESI-HRMS calcd. for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{NaO}_{6}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 611.2846$, found 611.2840.

1.3
 (3S,4R,5R,6R,7R)-3-azido-1-benzyl-5,6-bis(benzyloxy)-7-((benzylo-
 xy)methyl)azepan-4-ol (8)

To a solution of $4(46 \mathrm{mg}, 0.078 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added trifluoroacetic acid $(2.0 \mathrm{~mL})$ and the solution was stirred at room temperature for 1 hour. The solvents were evaporated and co-evaporated with toluene to remove completely the TFA. The obtained residue was dissolved in a mixture of $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}(5.0 / 0.5 \mathrm{~mL})$ and $\mathrm{BnBr}(13 \mu \mathrm{~L}, 0.101 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(32 \mathrm{mg}, 0.234 \mathrm{mmol})$ were added respectively. The mixture was refluxed for 18 h . After being cooled to room temperature, $\mathrm{H}_{2} \mathrm{O}$ and EtOAc were added and the layers were separated. The aqueous layer was extracted twice with EtOAc. Then the organic layer was dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (Cy/EtOAc: 8.5/1.5) to give $\mathbf{8}$ as colorless oil ($36 \mathrm{mg}, 80 \%$). $[\alpha]_{\mathrm{D}}$ $+19.0\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.37-7.19\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 4.74(\mathrm{~d}, 1 \mathrm{H}$, $\left.{ }^{2} J=11.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.69\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=11.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.54 \mathrm{~d}, 1 \mathrm{H},{ }^{2} J=11.5 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{Ph}$), 4.41 ($\mathrm{s}, 2 \mathrm{H}, 2 \mathrm{xCH}_{2} \mathrm{Ph}$), 4.36 (d, $1 \mathrm{H},{ }^{2} J=11.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.10 (ddd, 1 H , $\left.J_{\mathrm{H} 5-\mathrm{H} 4}=1.5 \mathrm{~Hz}, J_{\mathrm{H} 5-\mathrm{OH}}=4.0 \mathrm{~Hz}, J_{\mathrm{H} 5-\mathrm{H} 6}=6.0 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.05\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 4-\mathrm{H} 5}=1.5 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{H} 4-\mathrm{H} 3}=5.5 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.01\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=14.5 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.92\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=14.5 \mathrm{~Hz}\right.$, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 3.82-3.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{3}, \mathrm{H}_{6}\right), 3.68\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 8 \mathrm{a}-\mathrm{H} 2}=5.0 \mathrm{~Hz}, J_{\mathrm{H} 8 \mathrm{a}-\mathrm{H} 8 \mathrm{~b}}=9.5 \mathrm{~Hz}\right.$, $\left.\mathrm{H}_{8 \mathrm{a}}\right), 4.64\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 1 \mathrm{~b}-\mathrm{H} 2}=5.0 \mathrm{~Hz}, J_{\mathrm{H} 8 \mathrm{~b}-\mathrm{H8a}}=9.5 \mathrm{~Hz}, \mathrm{H}_{8 \mathrm{~b}}\right), 3.33\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 7 \mathrm{a}-\mathrm{H} 6}=4.5\right.$ $\left.\mathrm{Hz}, J_{\mathrm{H} 7 \mathrm{a}-\mathrm{H} 7 \mathrm{~b}}=14.5 \mathrm{~Hz}, \mathrm{H}_{7 \mathrm{a}}\right), 3.03\left(\mathrm{dt}, 1 \mathrm{H}, J_{\mathrm{H} 2-\mathrm{H} 1}=5.0 \mathrm{~Hz}, J_{\mathrm{H} 2-\mathrm{H} 3}=6.0 \mathrm{~Hz}, \mathrm{H}_{2}\right), 2.69$ $\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 7 \mathrm{~b}-\mathrm{H} 6}=6.5 \mathrm{~Hz}, J_{\mathrm{H} 7 \mathrm{~b}-\mathrm{H} 7 \mathrm{a}}=14.5 \mathrm{~Hz}, \mathrm{H}_{7 \mathrm{~b}}\right), 2.55\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{OH}-\mathrm{H} 5}=4.0 \mathrm{~Hz}, \mathrm{OH}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.1,138.3,138.2,138.1\left(\mathrm{C}_{\mathrm{ipso}}\right)$, 128.5, 128.4, $128.4,128.3,128.0,127.9,127.7,127.7,127.6,127.0\left(\mathrm{CH}_{\mathrm{ar}}\right), 82.1\left(\mathrm{C}_{4}\right), 76.6\left(\mathrm{C}_{3}\right)$, $73.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, $73.2\left(2 \mathrm{C}, \mathrm{C}_{5}, \mathrm{CH}_{2} \mathrm{Ph}\right), 72.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 68.9\left(\mathrm{C}_{8}\right), 63.9\left(\mathrm{C}_{6}\right), 63.5\left(\mathrm{C}_{2}\right)$, $57.2\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 51.6\left(\mathrm{C}_{7}\right)$; ESI-HRMS calcd. for $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 579.2971$, found 579.2975

1.4 (R)-2-azido-2-((2S,3R,4R,5R)-1-benzyl-3,4-bis(benzyloxy)-5-((benzyl-oxy)methyl)pyrrolidin-2-yl)ethan-1-ol (9)

To a solution of $\mathbf{8}(60 \mathrm{mg}, 0.104 \mathrm{mmol})$ in toluene (1.0 mL) were added trifluoroacetic anhydride ($28 \mu \mathrm{~L}, 0.194 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(26 \mu \mathrm{~L}, 0.194 \mathrm{mmol})$. The obtained solution was refluxed for 3 h and cooled to room temperature. A solution of
$\mathrm{NaOH}(10 \%, 5 \mathrm{~mL})$ was added and the mixture was stirred for 30 minutes. EtOAc and $\mathrm{H}_{2} \mathrm{O}$ were added and the layers were separated. The aqueous layer was extracted twice with EtOAc and the combined organic layers were dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The obtained crude was purified by flash chromatography (Cy/EtOAc: 9/1) to give compound $9(55 \mathrm{mg}, 92 \%) .[\alpha]_{\mathrm{D}}+1.3\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.27\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right.$), 7.18-71.7 (m, 2H, H_{ar}), $4.60(\mathrm{~d}$, $\left.1 \mathrm{H},{ }^{2} J=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.56\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.53\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 4.27 (s, 2H, CH2 Ph), 4.15-4.09 (m, 2H, H, $\left.\mathrm{H}_{4}\right), 4.07\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=14.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right)$, 4.97-3.81 (m, 4H, H6, H $\left.\mathrm{H}_{7 \mathrm{a}}, \mathrm{H}_{7 \mathrm{~b}}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.45\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{H} 5-\mathrm{H} 4}=J_{\mathrm{H} 5-\mathrm{H} 6}=6.5 \mathrm{~Hz}, \mathrm{H}_{5}\right)$, 3.36-3.31 (m, 1H, H ${ }_{8 \mathrm{a}}$), 3.18-3.12 (m, 2H, H ${ }_{8 \mathrm{~b}}, \mathrm{H}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 138.2, 138.1, 138.1, 137.4 ($\mathrm{C}_{\mathrm{ipso}}$), 129.4, 128.4, 128.2, 127.7, 127.7, 127.5, 127.5, $127.4\left(\mathrm{CH}_{\mathrm{ar}}\right), 83.5\left(\mathrm{C}_{4}\right), 81.5\left(\mathrm{C}_{3}\right), 72.8,72.4,71.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 69.8\left(\mathrm{C}_{8}\right), 67.3\left(\mathrm{C}_{5}\right), 66.4$ $\left(\mathrm{C}_{2}\right), 63.6\left(\mathrm{C}_{7}\right), 62.6\left(\mathrm{C}_{6}\right), 61.5\left(\mathrm{NCH}_{2} \mathrm{Ph}\right)$; ESI-HRMS calcd. for $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 579.2971$, found 579.2947.

1.5 (R)-2-acetamido-2-((2R,3R,4R,5R)-1-benzyl-3,4-bis(benzyloxy)-5-((benzyloxy)methyl)pyrrolidin-2-yl)ethyl acetate (10)

To a solution of azide 9 ($28 \mathrm{mg}, 0.044 \mathrm{mmol}$) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL} / 1.0 \mathrm{~mL})$ was added $\mathrm{Ph}_{3} \mathrm{P}(35 \mathrm{mg}, 0.132 \mathrm{mmol})$ and the resulting solution was stirred at $65{ }^{\circ} \mathrm{C}$ for 2 h . The solution was cooled to room temperature, solvents were evaporated and the crude was dried for 2 h under reduced pressure. The residue was dissolved in pyridine $(2.0 \mathrm{~mL})$ and $\mathrm{Ac}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$. The resulting solution was then stirred for 12 h at room temperature. Pyridine and $\mathrm{Ac}_{2} \mathrm{O}$ were removed by evaporation and co-evaporation with toluene (5 x 3 mL). The residue was purified by flash chromatography (cyclohexane/AcOEt: 6/4) to give 10 ($22 \mathrm{mg}, 76 \%$). $[\alpha]_{\mathrm{D}}-22.9$ ($c=$ $1.05, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.36-7.22 (m, 16H, H_{ar}), 7.19-71.5 (m, $\left.4 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 4.73-4.67\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 4.62\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.51\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=\right.$ $\left.12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.41\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=10.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.34\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=12.0 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.31\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=10.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.19\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.15$ $\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 7 \mathrm{a}-\mathrm{H} 6}=6.5 \mathrm{~Hz}, J_{\mathrm{H} 7 \mathrm{a}-\mathrm{H} 7 \mathrm{~b}}=10.5 \mathrm{~Hz}, \mathrm{H}_{7 \mathrm{a}}\right), 4.11\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 7 \mathrm{~b}-\mathrm{H} 6}=6.5 \mathrm{~Hz}, J_{\mathrm{H} 7 \mathrm{~b}}-\right.$ $\left.{ }_{\mathrm{H} 7 \mathrm{a}}=10.5 \mathrm{~Hz}, \mathrm{H}_{7 \mathrm{~b}}\right), 4.02-3.98\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{3}, \mathrm{H}_{4}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.55\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=13.0 \mathrm{~Hz}\right.$, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 3.27\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{H} 5-\mathrm{H} 4}=J_{\mathrm{H} 5-\mathrm{H} 6}=4.5 \mathrm{~Hz}, \mathrm{H}_{5}\right), 3.20-3.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{8 \mathrm{a}}, \mathrm{H}_{2}\right), 2.91$ $\left(\mathrm{dd}, J_{8 \mathrm{~b}, 2}=10.0 \mathrm{~Hz}, J_{8 \mathrm{~b}, 8 \mathrm{a}}=16.0 \mathrm{~Hz}, \mathrm{H}_{8 \mathrm{~b}}\right), 2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}, A c\right), 1.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$,
$A c$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.9,170.0$, (CO), 138.5, 138.5, 138.1, 137.1 ($\mathrm{C}_{\mathrm{ipso}}$), 129.5, 128.7, 128.5, 128.3, 128.3, 127.9, 127.8, 127.8, 127.5, 127.5, 127.2 $\left(\mathrm{CH}_{\mathrm{ar}}\right), 84.4\left(\mathrm{C}_{4}\right), 80.9\left(\mathrm{C}_{3}\right), 72.9,71.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 71.5\left(\mathrm{C}_{8}\right), 70.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 68.0\left(\mathrm{C}_{2}\right)$, $64.8\left(\mathrm{C}_{5}\right), 64.6\left(\mathrm{C}_{7}\right), 57.4\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 46.7\left(\mathrm{C}_{6}\right), 23.3,21.0\left(\mathrm{CH}_{3}, \mathrm{Ac}\right)$; ESI-HRMS calcd. for $\mathrm{C}_{39} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{6}:[\mathrm{M}+\mathrm{H}]^{+}: 637.3278$, found 637.3299.

1.6 N-((R)-1-((2R,3R,4R,5R)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl)-2hydroxyethyl)acetamide (11)

A solution of $\mathbf{1 0}(20 \mathrm{mg}, 0.314 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}(4 / 0.5 / 0.5 \mathrm{~mL})$ was stirred for 18 h at room temperature. The solvents were evaporated and co-evaporated three times with toluene. The obtained residue was dissolved in $\mathrm{MeOH}(2 \mathrm{~mL})$ and aqueous $\mathrm{HCl}(1 \mathrm{M}, 0.2 \mathrm{~mL})$ was added under argon. After addition of $\mathrm{Pd} / \mathrm{C}(10 \%, 20 \mathrm{mg})$, the argon was removed. The H_{2} was introduced and the mixture was bubbled for 5 minutes. After stirring the solution for 24 under H_{2} atmosphere, the mixture was filtered on micro-filter $(0.3 \mu \mathrm{~m})$. The solvent was evaporated to give compound 11 (6 $\mathrm{mg}, 82 \%)$ as a white solid. $[\alpha]^{18}{ }_{\mathrm{D}}+22.7(c=0.5, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$: $4.46\left(\mathrm{dt}, 1 \mathrm{H}, J_{\mathrm{H} 6-\mathrm{H} 7 \mathrm{a}}=J_{\mathrm{H} 6-\mathrm{H} 7 \mathrm{~b}}=5.5 \mathrm{~Hz}, J_{\mathrm{H} 6-\mathrm{H} 5}=10.5 \mathrm{~Hz}, \mathrm{H}_{6}\right), 4.23\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H} 4-\mathrm{H} 5}=2.5\right.$ $\left.\mathrm{Hz}, \mathrm{H}_{4}\right), 4.13\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 3-\mathrm{H} 4}=1.0 \mathrm{~Hz}, J_{\mathrm{H} 3-\mathrm{H} 2}=2.0 \mathrm{~Hz}, \mathrm{H}_{3}\right), 4.01\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 8 \mathrm{a}-\mathrm{H} 2}=5.0\right.$ $\left.\mathrm{Hz}, J_{\mathrm{H} 8 \mathrm{a}-\mathrm{H} 8 \mathrm{~b}}=12.0 \mathrm{~Hz}, \mathrm{H}_{8 \mathrm{a}}\right), 3.95-3.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{8 \mathrm{~b}}, \mathrm{H}_{5}\right), 3.84\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 7 \mathrm{a}-\mathrm{H} 6}=5.5\right.$ $\mathrm{Hz}, J_{\mathrm{H} 7 \mathrm{a}-\mathrm{H} 7 \mathrm{~b}}=12.0 \mathrm{~Hz}, \mathrm{H}_{7 \mathrm{a}}$), $3.77\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 7 \mathrm{~b}-\mathrm{H} 6}=5.5 \mathrm{~Hz}, J_{\mathrm{H} 7 \mathrm{~b}-\mathrm{H} 7 \mathrm{a}}=12.0 \mathrm{~Hz}, \mathrm{H}_{7 \mathrm{~b}}\right.$), $3.71\left(\mathrm{ddd}, 1 \mathrm{H}, J_{\mathrm{H} 2-\mathrm{H} 3}=2.0 \mathrm{~Hz}, J_{\mathrm{H} 2-\mathrm{H} 8 \mathrm{a}}=5.0 \mathrm{~Hz}, J_{\mathrm{H} 2-\mathrm{H} 8 \mathrm{~b}}=8.0 \mathrm{~Hz}, \mathrm{H}_{2}\right), 2.08(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}, \mathrm{Ac}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta 174.6(\mathrm{CO}), 75.0\left(\mathrm{C}_{4}\right), 74.9\left(\mathrm{C}_{3}\right), 69.0\left(\mathrm{C}_{2}\right)$, $61.9\left(\mathrm{C}_{5}\right), 61.1\left(\mathrm{C}_{7}\right), 59.6\left(\mathrm{C}_{8}\right), 47.4\left(\mathrm{C}_{6}\right), 21.9\left(\mathrm{CH}_{3}, \mathrm{Ac}\right)$; ESI-HRMS calcd. for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 235.1294$, found 235.1297.

1.7 N-((R)-1-((2R,3R,4R,5R)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl)-2hydroxyethyl)amonium (12)

$9(10 \mathrm{mg}, 0.017 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(2 \mathrm{~mL})$ and aqueous $\mathrm{HCl}(1 \mathrm{M}, 0.2$ mL) was added under argon. After adding $\mathrm{Pd} / \mathrm{C}(10 \%, 10 \mathrm{mg})$, the argon was removed. The H_{2} was introduced and the mixture was bubbled for 5 minutes. After stirring the solution for 24 under H_{2} atmosphere, the mixture was filtered on microfilter $0.3 \mu \mathrm{~m}$). The solvent was evaporated to give the desired product ($4.5 \mathrm{mg}, 95 \%$).
$[\alpha]{ }^{18}{ }_{\mathrm{D}}+63.7(c=0.2, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ RMN $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.41\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 4-\mathrm{H} 3}=1.0\right.$ $\left.\mathrm{Hz}, J_{\mathrm{H} 4-\mathrm{H} 5}=3.0 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.22\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 3-\mathrm{H} 4}=1.0 \mathrm{~Hz}, J_{\mathrm{H} 3-\mathrm{H} 2}=2.5 \mathrm{~Hz}, \mathrm{H}_{3}\right), 4.16(\mathrm{dd}$, $\left.J_{\mathrm{H} 5-\mathrm{H} 4}=3.0 \mathrm{~Hz}, J_{\mathrm{H} 5-\mathrm{H} 6}=9.0 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.07-4.00\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{8 \mathrm{a}}, \mathrm{H}_{6}, \mathrm{H}_{7 \mathrm{a}}\right), 3.94-3.89(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}_{8 \mathrm{~b}}, \mathrm{H}_{7 \mathrm{~b}}\right),\left(\mathrm{ddd}, 1 \mathrm{H}, J_{\mathrm{H} 2-\mathrm{H} 3}=2.5 \mathrm{~Hz}, J_{\mathrm{H} 2-\mathrm{H} 8 \mathrm{a}}=4.5 \mathrm{~Hz}, J_{\mathrm{H} 2-\mathrm{H} 8 \mathrm{~b}}=8.5 \mathrm{~Hz}, \mathrm{H}_{2}\right) ;{ }^{13} \mathrm{C}$ RMN (100 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 75.6\left(\mathrm{C}_{3}\right), 74.1\left(\mathrm{C}_{4}\right), 68.8\left(\mathrm{C}_{2}\right), 59.5\left(2 \mathrm{C}, \mathrm{C}_{5}, \mathrm{C}_{7}\right), 59.0\left(\mathrm{C}_{8}\right)$, $48.6\left(\mathrm{C}_{6}\right), \mathrm{HRMS}$ calcd for $\mathrm{C}_{7} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}:[\mathrm{MH}]^{+}: 193.1188$ found 193.1191.

1.8 tert-butyl (2R,3R,4R,5S,6R)-6-azido-3,4-bis(benzyloxy)-2-((benzylo-xy)methyl)-5-hydroxyazepane-1-carboxylate (6)

To a solution of known epoxide $3^{33}(160 \mathrm{mg}, 0.294 \mathrm{mmol})$ in a mixture of $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}$ (2.9/0.3 mL) was added $\mathrm{NaN}_{3}(88 \mathrm{mg}, 1.358 \mathrm{mmol})$ followed by $\mathrm{NH}_{4} \mathrm{Cl}(53 \mathrm{mg}$, $1.358 \mathrm{mmol})$. The mixture was stirred for 28 h at $90^{\circ} \mathrm{C}$. EtOAc $(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50$ mL) were added. The layers were separated and the aqueous layer was extracted with EtOAc (50 mL). The combined organic layers were dried on MgSO_{4}, filtered and evaporated. The residue was purified by flash chromatography (Cy/ EtOAc: 96/4 95/5) to give compound $7^{6}(90 \mathrm{mg}, 52 \%)$ and $6(70 \mathrm{mg}, 40 \%)$ as a pale yellow oil. $[\alpha]_{\mathrm{D}}-38.5\left(c=1,0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2\right.$ rotamers $): \delta 7.37-7.26(\mathrm{~m}$, $\left.26 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.214-7.18\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 4.78\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} \mathrm{~J}=11.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.72,4.71(2 \mathrm{~s}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.51\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} \mathrm{~J}=11.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.47\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} \mathrm{~J}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.38\left(\mathrm{~d}, 2 \mathrm{H}^{2}{ }^{2} \mathrm{~J}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.27,4.26\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}, \mathrm{OH}^{\prime}\right), 4.10-4.08(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}_{2}, \mathrm{H}_{2}$) , 4.02-3.84 (m, 10H, $\mathrm{H}_{3}, \mathrm{H}_{3^{\prime}}, \mathrm{H}_{4}, \mathrm{H}_{4^{\prime}}, \mathrm{H}_{5}, \mathrm{H}_{5}, \mathrm{H}_{6}, \mathrm{H}_{6^{\prime}}, \mathrm{H}_{7 \mathrm{a}}, \mathrm{H}_{7 \mathrm{a}^{\prime}}$), 3.67 (dd, 2H, $\left.J_{\mathrm{H} 8 \mathrm{a}-\mathrm{H} 2}=4.5 \mathrm{~Hz}, J_{\mathrm{H} 8 \mathrm{a}-\mathrm{H} 8 \mathrm{~b}}=9.5 \mathrm{~Hz}, \mathrm{H}_{8 \mathrm{a}}, \mathrm{H}_{8 \mathrm{a}^{\prime}}\right), 3.55\left(\mathrm{dd}, 2 \mathrm{H}, J_{\mathrm{H} 8 \mathrm{~b}-\mathrm{H} 2}=4.5 \mathrm{~Hz}, J_{\mathrm{H} 8 \mathrm{~b}-\mathrm{H} 8 \mathrm{a}}=\right.$ $9.5 \mathrm{~Hz}, \mathrm{H}_{8 \mathrm{~b}}, \mathrm{H}_{8 \mathrm{~b}}$) , $3.31\left(\mathrm{dd}, J_{\mathrm{H} 7 \mathrm{~b}-\mathrm{H} 6}=1.5 \mathrm{~Hz}, J_{\mathrm{H} 7 \mathrm{~b}-\mathrm{H} 7 \mathrm{a}}=15.5 \mathrm{~Hz}, \mathrm{H}_{7 \mathrm{~b}}, \mathrm{H}_{\mathrm{b}}\right.$) , $1.42(\mathrm{~s}$, $\left.18 \mathrm{H}, \mathrm{CH}_{3}, B o c\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}, 2$ rotamers): $\delta 158.9(\mathrm{CO}, B o c), 138.0$, $137.9,137.7\left(\mathrm{C}_{\mathrm{ipso}}\right) 128.4128 .4,127.8,127.7,127.6,127.5,127.4\left(\mathrm{CH}_{\mathrm{ar}}\right) 81.5(2 \mathrm{C}$, $\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}, B o c\right),} 80.5\left(2 \mathrm{C}, \mathrm{C}_{4}, \mathrm{C}_{4},\right), 74.4\left(2 \mathrm{C}, \mathrm{C}_{3}, \mathrm{C}_{3}\right), 73.9,72.9\left(\mathrm{CH}_{2} \mathrm{Ph}, 72.0(2 \mathrm{C}\right.\right.$, $\mathrm{C}_{5}, \mathrm{C}_{5}$) $68.9\left(2 \mathrm{C}, \mathrm{C}_{8}, \mathrm{C}_{8}\right.$) , $66.1\left(2 \mathrm{C}, \mathrm{C}_{6}, \mathrm{C}_{6}\right.$), $57.6\left(2 \mathrm{C}, \mathrm{C}_{2}, \mathrm{C}_{2}\right.$), $44.7\left(2 \mathrm{C}, \mathrm{C}_{7}, \mathrm{C}_{7}\right.$) , $28.2\left(\mathrm{CH}_{3}, B o c\right)$; ESI-HRMS calcd. for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 611.2846$, found 611.2858.

To a solution of $\mathbf{6}(42 \mathrm{mg}, 0.071 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added trifluoroacetic acid $(2 \mathrm{~mL})$ and the obtained solution was stirred at room temperature for 1 h . The solution was evaporated and co-evaporated with toluene ($3 \times 5 \mathrm{~mL}$). The residue was dissolved in $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}(4 / 0.4 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(49 \mathrm{mg}, 0.355 \mathrm{mmol}), \mathrm{BnBr}(13 \mu \mathrm{~L}$, $0.107 \mathrm{mmol})$ were added respectively. The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 16 h and cooled to room temperature. EtOAc and $\mathrm{H}_{2} \mathrm{O}$ were added and the layers were separated. The aqueous layer was extracted twice with EtOAc and the combined organic layers were dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The obtained crude was purified by flash chromatography to give $13(28 \mathrm{mg}, 68 \%) .[\alpha]_{\mathrm{D}}+43.7$ ($c=1,0$, CHCl_{3}); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.40-7.26\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.20-7.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right.$), $5.06\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=11.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.93\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=11.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.63\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J\right.$ $=11.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.47-4.40 (m, 3H, $\mathrm{CH}_{2} \mathrm{Ph}$), 3.95-3.88 (m, 2H, H4, NCH ${ }_{2} \mathrm{Ph}$), 3.77 $\left(\mathrm{d}, 1 \mathrm{H},{ }^{2} J=13.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.10-3.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{8 \mathrm{a}}, \mathrm{H}_{3}\right), 3.61\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H8b}-\mathrm{H} 2}=3.5\right.$ $\left.\mathrm{Hz}, J_{\mathrm{H8b}-\mathrm{H} 8 \mathrm{a}}=10.0 \mathrm{~Hz}, \mathrm{H}_{8 \mathrm{~b}}\right), 3.53\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{H} 5-\mathrm{H} 4}=J_{\mathrm{H} 5-\mathrm{H} 6}=8.0 \mathrm{~Hz}, \mathrm{H}_{5}\right), 3.31(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}), 3.21\left(\mathrm{ddd}, 1 \mathrm{H}, J_{\mathrm{H} 6-\mathrm{H} 7 \mathrm{~b}}=4.0 \mathrm{~Hz}, J_{\mathrm{H} 6-\mathrm{H} 5}=8.0 \mathrm{~Hz}, J_{\mathrm{H} 6-7 \mathrm{a}}=11.5 \mathrm{~Hz}, \mathrm{H}_{6}\right), 3.12(\mathrm{dd}$, $\left.1 \mathrm{H}, J_{\mathrm{H} 7 \mathrm{a}-\mathrm{H} 6}=11.5 \mathrm{~Hz}, J_{\mathrm{H} 7 \mathrm{a}-7 \mathrm{~b}}=14.0 \mathrm{~Hz}, \mathrm{H}_{7 \mathrm{a}}\right), 2.90\left(\mathrm{dt} 1 \mathrm{H}, J_{\mathrm{H} 2-\mathrm{Hla}}=J_{\mathrm{H} 2-\mathrm{Hlb}}=3.5 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{H} 2-\mathrm{H} 3}=9.0 \mathrm{~Hz}, \mathrm{H}_{2}\right), 2.63\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 7 \mathrm{~b}-\mathrm{H} 6}=4.0, J_{\mathrm{H} 7 \mathrm{~b}-\mathrm{H} 7 \mathrm{a}}=14.0 \mathrm{~Hz}, \mathrm{H}_{7 \mathrm{~b}}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 139.1, 138.3, 138.1, $138.0\left(\mathrm{C}_{\mathrm{ipso}}\right)$, 128.8, 128.6, 128.4, 128.4, 128.4, 128.1, 128.0, 127.7, 127.7, 127.4 ($\mathrm{CH}_{\mathrm{ar}}$), $83.2\left(\mathrm{C}_{4}\right), 79.2\left(\mathrm{C}_{3}\right), 78.1\left(\mathrm{C}_{2}\right), 76.1$, 75.3, $73.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 67.8\left(\mathrm{C}_{8}\right), 64.4\left(\mathrm{C}_{6}\right), 63.7\left(\mathrm{C}_{2}\right), 59.6\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 48.9\left(\mathrm{C}_{7}\right)$; ESIHRMS calcd. for $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 579.2971, found 579.2952.

1.10

(S)-2-azido-2-((2R,3R,4R,5R)-1-benzyl-3,4-bis(benzyloxy)-5-((benzyloxy)methyl)pyrrolidin-2-yl)ethan-1-ol (14)
To a solution of $\mathbf{1 3}(28 \mathrm{mg}, 0.048 \mathrm{mmol})$ in toluene (0.5 mL) were added trifluoroacetic anhydride ($14 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(13 \mu \mathrm{~L}, 0.097 \mathrm{mmol})$. The obtained solution was refluxed for 3 h and cooled to room temperature. A solution of $\mathrm{NaOH}(10 \%, 2 \mathrm{~mL})$ was added and the mixture was stirred for 30 minutes. AcOEt and $\mathrm{H}_{2} \mathrm{O}$ were added and the layers were separated. The aqueous layer was extracted twice with AcOEt and the combined organic layers were dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The obtained crude was purified by flash chromatography (Cyclohexane/AcOEt: 95/5) to give compound 14 (24 mg, 86\%). $[\alpha]^{19}{ }_{\mathrm{D}}+16.8(c=$ $0.5, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.22\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 4.56\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J\right.$
$\left.=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.50-4.43\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.16\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 4-\mathrm{H} 3}=2.0 \mathrm{~Hz}, J_{\mathrm{H} 4-\mathrm{H} 5}=\right.$ $\left.4.0 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.10\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{H} 3-\mathrm{H} 2}=J_{\mathrm{H} 3-\mathrm{H} 4}=2.0 \mathrm{~Hz}, \mathrm{H}_{3}\right), 4.05\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=14.0 \mathrm{~Hz}\right.$, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 3.86\left(\mathrm{td}, 1 \mathrm{H}, J_{\mathrm{H} 6-\mathrm{H} 5}=4.0 \mathrm{~Hz}, J_{\mathrm{H} 6-\mathrm{H} 7 \mathrm{a}}=J_{\mathrm{H} 6-\mathrm{H} 7 \mathrm{~b}}=6.5 \mathrm{~Hz}, \mathrm{H}_{6}\right), 3.76\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J\right.$ $\left.=14.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.68-3.56\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{8 \mathrm{a}}, \mathrm{H}_{8 \mathrm{~b}}, \mathrm{H}_{7 \mathrm{a}}, \mathrm{H}_{7 \mathrm{~b}}\right), 3.46\left(\mathrm{td}, 1 \mathrm{H}, J_{\mathrm{H} 2-\mathrm{H} 3}=2.0\right.$ $\left.\mathrm{Hz}, J_{\mathrm{H} 2-\mathrm{H} 8 \mathrm{a}}=J_{\mathrm{H} 2-\mathrm{H} 8 \mathrm{~b}}=6.0 \mathrm{~Hz}, \mathrm{H}_{2}\right), 3.27\left(\mathrm{t}, J_{\mathrm{H} 5-\mathrm{H} 4}=J_{\mathrm{H} 5-\mathrm{H} 6}=4.0 \mathrm{~Hz}, \mathrm{H}_{5}\right), 3.07(\mathrm{~s}, 0.9$ $\mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.2,138.0,137.9,137.6\left(\mathrm{C}_{\mathrm{ipso}}\right), 128.5$, 128.4, 128.3, 128.3, 127.9, 127.9, 127.7, 127.6, 127.6, 127.1 ($\left.\mathrm{CH}_{\text {ar }}\right), 85.7\left(\mathrm{C}_{4}\right), 83.6$ $\left(\mathrm{C}_{3}\right), 73.2,71.7,71.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 68.9\left(\mathrm{C}_{5}\right), 66.6\left(\mathrm{C}_{8}\right), 63.2\left(\mathrm{C}_{2}\right), 62.9\left(\mathrm{C}_{7}\right), 62.0\left(\mathrm{C}_{6}\right)$, $51.9\left(\mathrm{NCH}_{2} \mathrm{Ph}\right)$; ESI-HRMS calcd. for $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 579.2971, found 579.2977.

1.11 (S)-2-acetamido-2-((2S,3R,4R,5R)-1-benzyl-3,4-bis(benzyloxy)-5-

 ((benzyloxy)methyl)pyrrolidin-2-yl)ethyl acetate (15)To a solution of azide $14(24 \mathrm{mg}, 0.042 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL} / 1.0 \mathrm{~mL})$ was added $\mathrm{Ph}_{3} \mathrm{P}(32 \mathrm{mg}, 0.125 \mathrm{mmol})$ and the resulting solution was stirred at $65^{\circ} \mathrm{C}$ for 2 h. The solution was cooled to room temperature, solvents were evaporated and the reaction crude was dried for 2 h under reduced pressure. The residue was dissolved in pyridine $(2.0 \mathrm{~mL})$ and $\mathrm{Ac}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$. The resulting solution was then stirred for 12 h at room temperature. Pyridine and $\mathrm{Ac}_{2} \mathrm{O}$ were removed by evaporation and co-evaporation with toluene ($5 \times 3 \mathrm{~mL}$). The residue was purified by flash chromatography (Cy/EtOAc: 6.5/3.5) to give $\mathbf{1 5}$ as a white solid ($16 \mathrm{mg}, 60 \%$). $[\alpha]_{\mathrm{D}}-12.3\left(c=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.36-7.26 (m, 20H, H_{ar}), $6.67\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{NH}-\mathrm{H} 6}=6.5 \mathrm{~Hz}, \mathrm{NHAc}\right), 4.56\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=11.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.51-4.44$ $\left(\mathrm{m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.32-4.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 6), 4.14\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 7 \mathrm{a}-\mathrm{H} 6}=5.0 \mathrm{~Hz}, J_{\mathrm{H} 7 \mathrm{a}-\mathrm{H} 7 \mathrm{~b}}=11.0\right.$ $\mathrm{Hz}, \mathrm{H}_{7 \mathrm{a}}$), $4.08\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.99\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 7 \mathrm{~b}-\mathrm{H} 6}=7.5 \mathrm{~Hz}, J_{\mathrm{H} 7 \mathrm{~b}-\mathrm{H} 7 \mathrm{a}}=11.0 \mathrm{~Hz}, \mathrm{H}_{7 \mathrm{~b}}\right)$, $3.94\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 3.90\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=14.5 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.81\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=14.5 \mathrm{~Hz}\right.$, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 3.71\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 8 \mathrm{a}-\mathrm{H} 2}=4.5 \mathrm{~Hz}, J_{\mathrm{H} 8 \mathrm{a}-\mathrm{H} 8 \mathrm{~b}}=9.0 \mathrm{~Hz}, \mathrm{H}_{8 \mathrm{a}}\right), 3.54\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{H} 8 \mathrm{~b}-\mathrm{H} 2}=\right.$ $\left.J_{\mathrm{H} 8 \mathrm{~b}-\mathrm{H8a}}=9.0 \mathrm{~Hz}, \mathrm{H}_{8 \mathrm{~b}}\right), 3.50\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 2-\mathrm{H} 8 \mathrm{a}}=4.5 \mathrm{~Hz}, J_{\mathrm{H} 2-\mathrm{H} 8 \mathrm{~b}}=9.0 \mathrm{~Hz}, \mathrm{H}_{2}\right), 3.40-3.39$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 1.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}, A c\right), 1.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}, A c\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 170.7,170.5(\mathrm{CO}), 139.0,138.2,137.6,137.1\left(\mathrm{C}_{\text {ipso }}\right), 128.7,128.6,128.5$, 128.4, 128.4, 128.4, 128.3, 128.2, 128.1, 127.9, 127.7, 127.6, 127.6, $127.0\left(\mathrm{CH}_{\mathrm{ar}}\right)$, $83.9\left(\mathrm{C}_{4}\right), 82.6\left(\mathrm{C}_{3}\right), 73.3,71.6,71.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 68.0\left(\mathrm{C}_{8}\right) 66.7\left(\mathrm{C}_{5}\right), 64.2\left(\mathrm{C}_{2}\right), 63.7$
$\left(\mathrm{C}_{7}\right), 50.7\left(\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 47.0\left(\mathrm{C}_{6}\right), 22.8,20.7\left(\mathrm{CH}_{3}, \mathrm{Ac}\right)\right.$; ESI-HRMS calcd. for $\mathrm{C}_{39} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 637.3278$ found 637.3281.

1.12 N -((S)-1-((2S,3R,4R,5R)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl)-

 2-hydroxyethyl)acetamide (16)A solution of $\mathbf{1 5}(8 \mathrm{mg}, 0.013 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}(2 / 0.25 / 0.25 \mathrm{~mL})$ was stirred for 18 h at room temperature. The solvents were evaporated and co-evaporated three times with toluene. The obtained residue was dissolved in $\mathrm{MeOH}(1 \mathrm{~mL})$ and aqueous $\mathrm{HCl}(1 \mathrm{M}, 0.1 \mathrm{~mL})$ was added under argon. After adding $\mathrm{Pd} / \mathrm{C}(10 \%, 10 \mathrm{mg})$, the argon was removed. The H_{2} was introduced and the mixture was bubbled for 5 minutes. After stirring the solution for 24 under H_{2} atmosphere, the mixture was filtered on micro-filter $(0.3 \mu \mathrm{~m})$. The solvent was evaporated to give compound 16 (3 $\mathrm{mg}, 88 \%) .[\alpha]^{22}{ }_{\mathrm{D}}=+18.3(c=0.16, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): 4.44(\mathrm{q}, 1 \mathrm{H}$, $\left.J_{\mathrm{H} 6-\mathrm{H} 7 \mathrm{a}}=J_{\mathrm{H} 6-\mathrm{H} 7 \mathrm{~b}}=J_{\mathrm{H} 6-\mathrm{H} 5}=5.5 \mathrm{~Hz}, \mathrm{H}_{6}\right), 4.20\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 4-\mathrm{H} 3}=6.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4-\mathrm{H} 5}=8.0 \mathrm{~Hz}\right.$, $\left.\mathrm{H}_{4}\right), 4.14\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 3-\mathrm{H} 4}=6.5 \mathrm{~Hz}, J_{\mathrm{H} 3-\mathrm{H} 2}=8.0 \mathrm{~Hz}, \mathrm{H}_{3}\right), 3.98\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 8 \mathrm{a}-\mathrm{H} 2}=3.5 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{Hla}-\mathrm{Hlb}}=12.5 \mathrm{~Hz}, \mathrm{H}_{8 \mathrm{a}}\right), 3.91\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 8 \mathrm{~b}-\mathrm{H} 2}=5.5 \mathrm{~Hz}, J_{\mathrm{H} 8 \mathrm{~b}-\mathrm{H} 8 \mathrm{a}}=12.5 \mathrm{~Hz}, \mathrm{H}_{8 \mathrm{~b}}\right) 3.84$ $\left(2 \mathrm{~d}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{H}_{7 \mathrm{a}}, \mathrm{H}_{7 \mathrm{~b}}\right), 3.78\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 5-\mathrm{H} 6}=5.5 \mathrm{~Hz}, J_{\mathrm{H} 5-\mathrm{H} 4}=8.0 \mathrm{~Hz}, \mathrm{H}_{5}\right), 3.63$ $\left(\mathrm{ddd}, 1 \mathrm{H}, J_{\mathrm{H} 2-\mathrm{H} 8 \mathrm{a}}=3.5 \mathrm{~Hz}, J_{\mathrm{H} 2-\mathrm{H} 8 \mathrm{~b}}=5.5 \mathrm{~Hz}, J_{\mathrm{H} 2-\mathrm{H} 3}=8.0 \mathrm{~Hz}, \mathrm{H}_{2}\right), 2.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, $A c) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta 175.9(\mathrm{CO}), 74.8\left(\mathrm{C}_{4}\right), 74.3\left(\mathrm{C}_{3}\right), 62.7\left(\mathrm{C}_{2}\right), 61.7$ $\left(\mathrm{C}_{5}\right), 60.5\left(\mathrm{C}_{7}\right), 57.5\left(\mathrm{C}_{8}\right), 51.0\left(\mathrm{C}_{6}\right), 21.8\left(\mathrm{CH}_{3}, \mathrm{Ac}\right)$; ESI-HRMS calcd. for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 257.1113$, found 257.1108.

Acknowledgements

Support for this research was provided by Sanfilippo foundation Switzerland, and Dorphan.

References

1. Stocker, B. L.; Dangerfield, E. M.; Win-Mason, A. L.; Haslett, G. W.; Timmer, M. S. M. Eur. J. Org. Chem. 2010, 1615-1637.
2. Davis, B. G. Tetrahedron: Asymm. 2009, 20, 652-671.
3. Caines, M. E. C.; Hancock, S. M.; Tarling, C. A.; Wrodnigg, T. M.; Stick, R. V.; Stütz, A. E.; Vasella, A.; Withers, S. G.; Strynadka, N. C. J. Angew. Chem. Int. Ed. 2007, 46, 44744476.
4. Usuki, H.; Toyo-oka, M.; Kanzaki, H.; Okuda, T.; Nitoda, T. Bioorg. Med. Chem. 2009, 17, 7248-7253.
5. Kitamura, Y.; Koshino, H.; Nakamura, T.; Tsuchida, A.; Nitoda, T.; Kanzaki, H.; Matsuoka, K.; Takahashi, S. Tetrahedron Lett. 2013, 54, 1456-1459.
6. Zhu, J.-S.; Nakagawa, S.; Chen, W.; Adachi, I.; Jia, Y.-M.; Hu, X.-G.; Fleet, G. W. J.; Wilson, F. X.; Nitoda, T.; Horne, G.; van Well, R.; Kato, A.; Yu, C.-Y. J. Org. Chem. 2013, 78, 10298-10309.
7. Wrodnigg, T. M.; Stütz, A. E.; Withers, S. G. Tetrahedron Lett. 1997, 38, 5463-5466.
8. Takebayashi,M.; Hiranuma,S.; Kanie, Y.; Kajimoto, T.; Kanie, O.; Wong, C.-H. J. Org. Chem. 1999, 64, 5280-5291.
9. Liu, J.; Shikhman, A. R.; Lotz, M. K.; Wong, C.-H. Chem. Biol. 2001, 8, 701-711.
10. Popowycz, F.; Gerber-Lemaire, S.; Schütz, C.; Vogel, P. Helvetica Chimica Acta 2004, 87, 800-810.
11. Wrodnigg, T. M.; Diness, F.; Gruber, C.; Häusler, H.; Lundt, I.; Rupitz, K.; Steiner, A. J.; Stütz, A. E.; Tarling, C. A.; Withers, S. G.; Wölfler, H. Bioorg. Med. Chem. 2004, 12, 3485-3495.
12. Liang, P.-H.; Cheng, W.-C.; Lee, Y.-L.; Yu, H.-P.; Wu, Y.-T.; Lin, Y.-L.; Wong, C.-H. ChemBioChem 2006, 7, 165-173.
13. Tsou, E.-L.; Yeh, Y.-T.; Liang, P.-H.; Cheng W.-C. Tetrahedron 2009, 65, 93-100.
14. Ganesan, M.; Madhukarrao, R. V.; Ramesh N. G. Org. Biomol. Chem. 2010, 8, 15271530.
15. Shih, H.-W.; Chen, K.-T.; Chen, S.-K.; Huang, C.-Y.; Cheng, T.-J. R.; Ma, C.; Wong, C.H.; Cheng, W.-C. Org. Biomol. Chem. 2010, 8, 2586-2593.
16. Pototschnig; G.; Morales De Csáky, C.; Montenegro Burke, J. R.; Schitter, G.; Stütz, A. E.; Tarling, C. A.; Withers, S. G.; Wrodnigg, T. M. Bioorg. Med. Chem. Lett. 2010, 20, 4077-4079.
17. Wrodnigg, T. M.; Withers, S. G.; Stütz, A. E. Bioorg. Med. Chem. Lett. 2011, 11 10631064.
18. Win-Mason, A. L.; Dangerfield, E. M.; Tyler, P. C.; Stocker, B. L.; Timmer M. S. M. Eur. J. Org. Chem. 2011, 4008-4014.
19. Win-Mason, A. L.; Jongkees, S. A. K.; Withers, S. G.; Tyler, P. C.; Timmer, M. S. M.; Stocker, B. L. J. Org. Chem. 2011, 76, 9611-9621.
20. Stocker, B. L.; Jongkees, S. A. K.; Win-Mason, A. L.; Dangerfield, E. M.; Withers, S. G.; Timmer, M. S. M. Carbohydr. Res. 2013, 367, 29-32.
21. Cheng, T.-J. R.; Chan, T.-H.; Tsou, E.-L.; Chang, S.-Y.; Yun, W.-Y.; Yang, P.-J.; Wu, Y.-T.; Cheng, W.-C.; Chem. Asian J. 2013, 8, 2600-2604.
22. Kim, D.-K.; Kim, Y.-W.; Kim, H.-T.; Kim, K. H. Bioorg. Med. Chem. Lett. 1996, 6, 643646.
23. Pohlit, A. AM. ; Correia, C. R. D. Heterocycles 1997, 45, 2321-2325.
24. Popowycz, F.; Gerber-Lemaire, S.; Demange, R.; Rodriguez-Garcia, E.; Carmona Asenjo, A. T.; Robina, I.; Vogel, P. Bioorg. Med. Chem. Lett. 2001, 11, 2489-2493.
25. Long, D. D.; Frederiksen, S. M.; Marquess, D. G.; Lane, A. L.; Watkin, D. J.; Winkler, D. A.; Fleet, G. W. J. Tetrahedron Lett. 1998, 39, 6091-6094.
26. Ayers, B. J.; Glawar, A. F. G.; Martínez, R. F.; Ngo, N.; Liu, Z.; Fleet, G. W. J.; Butters, T. D.; Nash, R. J.; Yu, C.-Y.; Wormald, M. R.; Nakagawa, S.; Adachi, I.; Kato, A.; Jenkinson, S. F. J. Org. Chem. 2014, 79, 3398-3409.
27. Rountree, J. S. S. Butters, T. D.; Wormald, M. R.; Dwek, R. A.; Asano, N.; Ikeda, K.; Evinson, E. L.; Nashd, R. J.; Fleet, G. W. J. Tetrahedron Lett. 2007, 48, 4287-4291.
28. Kiel, F.-M.; Poggendorf, P.; Picasso, S.; Jäger, V. Chem. Commun. 1998, 3, 119-120.
29. Poitout, L.; Le Merrer, Y.; Depezay, J.-C. Tetrahedron Lett. 1996, 37, 1613-1616.
30. Liu, T.; Zhang, Y.; Y. Blériot, Y. Synlett, 2007, 6, 905-908.
31. Bagal, S. K.; Davies, S. G.; Lee, J. A.; Roberts, P. M.; Russell, A. J.; Scott, P. M.; Thompson, J. E. Org. Lett. 2010, 12, 136-139.
32. Blériot, Y.; Auberger, N.; Jagadeesh, Y.; Gauthier, C.; G. Principe, Tran, A. T.; Marrot, J.; Désiré, J.; Yamamoto, A.; Kato, A.; Sollogoub, M. Org. Lett. 2014, 16, 5512-5515.
33. Blériot, Y.; Tran, A. T.; Prencipe, G.; Jagadeesh, Y.; Auberger, N.; Zhu, S.; Gauthier, C.; Zhang, Y., Désiré, J.; Adachi, I.; Kato, A.; Sollogoub, M. Org. Lett. 2014, 16, 5516-5519.
34. Lohray, B. B.; Prasuna, G.; Jayamma,Y.; Raheem, M. A. Ind. J. Chem., Sect. B Org. Chem. Incl. Med. Chem. 1997, 36, 220-232.
35. Agoston, K.; Geyer, A.; Tetrahedron Lett. 2004, 45, 1895-1898.
36. Métro, X.; Duthion, B.; Gomez Pardo D.; Cossy, J.; Chem. Soc. Rev. 2010, 39, 89-102.
37. Yoshimura, Y.; Ohara, C.; Imahori, T.; Saito, Y.; Kato, A.; Miyauchi, S.; Adachi, I.; Takahata, H. Bioorg. Med. Chem. 2008, 16, 8273-8286.
38. Rasnussen, T. S.; Koldsø, H.; Nakagawa, S.; Kato, A.; Schiøtt, B.; Jensen, H. H. Org. Biomol. Chem. 2011, 9, 7807-7813.

Highlights.

-A new family of amino-functionalised pyrolidines was synthesized.
-Aring-contraction of β-azido, γ-hydrox yazepanes was used.
-A low micromolar inhibitor of β - N -acetylehexosaminidase identified.

SUPPLEMENTARY INFORMATION

Synthesis of pyrrolidine-based analogues of 2-acetamidosugars as N -acetyl glucosaminidase inhibitors

Anh Tuan Tran, ${ }^{a}$ Bo Luo, ${ }^{\text {a }}$ Jagadeesh Yerri, ${ }^{\text {b }}$ Nicolas Auberger, ${ }^{\text {b }}$ Jérôme Désiré, ${ }^{b}$ Shinpei Nakagawa, ${ }^{\text {c }}$ Atsushi Kato, ${ }^{\text {c }}$ Yongmin Zhang,, Yves Blériot, ${ }^{\text {b }}$ * Matthieu Sollogoub ${ }^{\text {a }}$ *

${ }^{a}$ Sorbonne Universités, UPMC Univ Paris 06, Institut Universitaire de France, UMR-CNRS 8232, IPCM, F-75005 Paris, France. E-mail : matthieu.sollogoub@upmc.fr
${ }^{b}$ Glycochemistry Group of "Organic Synthesis" Team, Université de Poitiers, UMR-CNRS 7285 IC2MP, 4 rue Michel Brunet, 86073 Poitiers Cedex 9, France. E-mail: yves.bleriot@univ-poitiers.fr
${ }^{c}$ Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan

Parameter	Value
Spectrometer	spect
Solvent	CDCl3
Temperature	300.0
Number of Scans	32
Spectrometer Frequency	400.13
Spectral Width	7211.5
Nucleus	$1 H$

CnO

Parameter	Value
Spectrometer	spect
Solvent	CDCl3
Temperature	300.0
Number of Scans	8
Spectrometer Frequency	400.13
Spectral Width	7211.5
Nucleus	$1 H$

Γ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	T	T	1	1
J0	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

Parameter	Value spect
Spectrometer	sp o
Solvent	D20
Temperature	300.0
Number of Scans	32
Spectrometer Frequency	400.13
Spectral Width	7211.5
Nudeus	$1 H$

	Parameter	Value
	dectrometer	spect
So	, ent	CDCl3
Ter	perature	300.0
	hber of Scans	32
	cctrometer Frequ	400.13
Sp	cctral Width	7211.5
	leus	1 H

1

Parameter	Value
Spectrometer	spect
Solvent	CDCl3
Temperature	300.0
Number of Scans	1024
Spectrometer Frequency	100.61
Spectral Width	29761.9
Nucleus	13 C

Parameter	Value
Spectrometer	spect
Solvent	CDCl3
Temperature	300.0
Number of Scans	32
Spectrometer Frequency	400.13
Spectral Width	7211.5
Nudeus	$1 H$

Parameter	Value
Spectrometer	spect
Solvent	CDCli3
Temperature	300.0
Number of Scans	8
Spectrometer Frequency	400.13
Spectral Width	7211.5
Nucleus	$1 H$

Parameter	Value
Spectrometer	spect
Solvent	CDCl3
Temperature	300.0
Number of Scans	64
Spectrometer Frequency	400.13
Spectral Width	7211.5
Nudeus	1 H

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
30	190	180	170	160	150	140	130	120	110	$\stackrel{100}{\mathrm{f} 1(\mathrm{ppm})}$	90	80	70	60	50	40	30	20	10

Parameter	Value
spect	
Spectrometer	D20
Solvent	300.0
Temperature	64
Number of Scans	64
Spectrometer Frequency	400.13
Spectral Width	7211.5
Nucleus	1H

Parameter	Value
Spectrometer	spect
Solvent	D20
Temperature	300.0
Number of Scans	2048
Spectrometer Frequency	100.61
Spectral Width	29761.9
Nucleus	$13 C$

