J. C. Elliott, Structure and chemistry of apatites and other calcium orthophosphates, 1994.

C. Rey, C. Combes, C. Drouet, H. Sfihi, and A. Barrough, Physico-chemical properties of nanocrystalline apatites: Implications for biominerals and biomaterials, Materials Science and Engineering: C, vol.27, issue.2, pp.198-205, 2007.
DOI : 10.1016/j.msec.2006.05.015

URL : https://hal.archives-ouvertes.fr/hal-00164914

A. Bengtsson, A. Shchukarev, P. Persson, and S. A. Sjöberg, A solubility and surface complexation study of a non-stoichiometric hydroxyapatite, Geochimica et Cosmochimica Acta, vol.73, issue.2, pp.257-267, 2009.
DOI : 10.1016/j.gca.2008.09.034

R. Z. Legeros, Calcium phosphates in oral biology and medicine, Monographs in Oral Science, vol.15, 1991.
DOI : 10.1159/issn.0077-0892

M. Epple, K. Gensan, R. Heumann, J. Klesing, A. Kotvun et al., Application of calcium phosphatenanoparticles in biomedicine, J. Mater. Chem., vol.18, issue.1, pp.18-23, 2010.
DOI : 10.1039/B910885H

. Jones, An evaluation of the reactivity of synthetic and natural apatites in the presence of aqueous metals, Sci. Tot. Environ, vol.407, pp.2953-2965, 2009.

A. Nzihou and P. Sharrock, Role of Phosphate in the Remediation and Reuse of Heavy Metal Polluted Wastes and Sites, Waste and Biomass Valorization, vol.139, issue.3, pp.163-174, 2010.
DOI : 10.1007/s12649-009-9006-x

X. Cao, L. Q. Ma, D. R. Rhue, and C. S. Appel, Mechanisms of lead, copper, and zinc retention by phosphate rock, Environmental Pollution, vol.131, issue.3, pp.435-444, 2004.
DOI : 10.1016/j.envpol.2004.03.003

M. Mouflih, A. Aklil, and S. Sebtib, Removal of lead from aqueous solutions by activated phosphate, Journal of Hazardous Materials, vol.119, issue.1-3, pp.119-183, 2005.
DOI : 10.1016/j.jhazmat.2004.12.005

Z. Elouear, J. Bouzid, N. Boujelben, M. Feki, F. Jamoussi et al., Heavy metal removal from aqueous solutions by activated phosphate rock, Journal of Hazardous Materials, vol.156, issue.1-3, pp.156-412, 2007.
DOI : 10.1016/j.jhazmat.2007.12.036

S. Saoiabi, A. Laghzizil, A. Saoiabi, J. L. Ackerman, and T. Coradin, Lead and zinc removal from aqueous solutions by aminotriphosphonate-modified converted natural phosphates, Chemical Engineering Journal, vol.211, issue.212, pp.211-212, 2012.
DOI : 10.1016/j.cej.2012.09.017

URL : https://hal.archives-ouvertes.fr/hal-01461432

M. Neumeier, L. A. Hails, S. A. Davis, S. Mann, and M. Epple, Synthesis of fluorescent core???shell hydroxyapatite nanoparticles, J. Mater. Chem., vol.26, issue.4, pp.1250-1254, 2011.
DOI : 10.1039/C0JM02264K

F. Shi, Y. Li, H. Wang, and Q. Zhang, Fast Synthesis of Rutile/Apatite Core/Shell Structured Photocatalyst in Simulated Body Fluid, Advanced Materials Research, vol.465, pp.465-66, 2012.
DOI : 10.4028/www.scientific.net/AMR.465.66

I. M. Tang, N. Krishnamra, N. Charoenphandhu, R. Hoonsawat, and W. , Pon-On, Biomagnetic of apatite-coated cobalt ferrite: a core?shell particle for protein adsorption and pH-controlled release, Nanoscale Res. Lett, vol.6, issue.19, 2011.

L. Dong, Z. Zhu, Y. Qiu, and J. Zhao, Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent, Chemical Engineering Journal, vol.165, issue.3, pp.165-827, 2010.
DOI : 10.1016/j.cej.2010.10.027

G. X. Huang, Z. F. Xie, and . Liu, Use of iron oxide nanomaterials in watsewater treatment: a review, Sci Total Environ, vol.424, pp.1-10, 2012.

C. H. Hou, S. M. Hou, Y. S. Hsueh, J. Lin, H. C. Wu et al., The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy, Biomaterials, vol.30, issue.23-24, pp.3956-3960, 2009.
DOI : 10.1016/j.biomaterials.2009.04.020

D. Wang, X. Duan, J. Zhang, A. Yao, L. Zhou et al., Fabrication of superparamagnetic hydroxyapatite with highly ordered three-dimensional pores, Journal of Materials Science, vol.177, issue.15
DOI : 10.1007/s10853-009-3555-z

Z. Yang, X. Gong, and C. Zhang, Recyclable Fe3O4/hydroxyapatite composite nanoparticles for photocatalytic applications, Chemical Engineering Journal, vol.165, issue.1, pp.117-121, 2010.
DOI : 10.1016/j.cej.2010.09.001

A. Mir, D. Mallik, S. Bhattacharya, D. Mahata, A. Sinha et al., Aqueous ferrofluids as templates for magnetic hydroxyapatite nanocomposites, Journal of Materials Science: Materials in Medicine, vol.8, issue.8
DOI : 10.1007/s10856-010-4090-9

E. B. Ansar, A. Yokogowa, W. Wunderlich, and V. Varma, Synthesis and Characterization of Iron Oxide Embedded Hydroxyapatite Bioceramics, Journal of the American Ceramic Society, vol.28, issue.1, pp.95-2695, 2012.
DOI : 10.1111/j.1551-2916.2011.05033.x

R. K. Singh, A. M. El-fiqui, K. D. Patel, and H. W. Kim, A novel preparation of magnetic hydroxyapatite nanotubes, Materials Letters, vol.75, pp.75-130, 2012.
DOI : 10.1016/j.matlet.2012.01.129

X. S. Cruz, J. Ramirez-gomez, and . Osuna-alarcon, In vitro and in vivo biocompatibility of apatite-coated magnetite nanoparticles for cancer therapy, J. Mater. Sci.:Mater. Med, pp.24-1035, 2013.

P. Karrari, O. Merhpour, and M. Abdollahi, A systematic review on status of lead pollution and toxicity in Iran; Guidance for preventive measures, DARU Journal of Pharmaceutical Sciences, vol.20, issue.1, pp.1-17, 2012.
DOI : 10.1542/peds.114.1.19

A. A. Volokh, B. A. Gundorina, B. A. Revich, M. V. Frontasyeva, and C. S. , Phosphorus fertilizer production as a source of rare-earth elements pollution of the environment, Science of The Total Environment, vol.95
DOI : 10.1016/0048-9697(90)90059-4

M. He, F. Wang, Z. Wu, and . Fu, Antimony pollution in China, Science of The Total Environment, vol.421, issue.422, pp.421-422, 2012.
DOI : 10.1016/j.scitotenv.2011.06.009

H. Deng, X. L. Li, Q. Peng, X. Wang, J. P. Chen et al., Monodisperse magnetic single-crystal ferrite microspheres, Angew. Chem. Int. Ed, pp.44-2782, 2005.
DOI : 10.1002/anie.200462551

L. Hammari, H. Merroun, T. Coradin, S. Cassaignon, and A. , Mesoporous hydroxyapatites prepared in ethanol???water media: Structure and surface properties, Materials Chemistry and Physics, vol.104, issue.2-3
DOI : 10.1016/j.matchemphys.2007.04.002

URL : https://hal.archives-ouvertes.fr/hal-00334146

M. A. Vergés, R. Costo, A. G. Roca, J. F. Marco, G. F. Goya et al., Uniform and water stable magnetite nanoparticles with diameters around the monodomainmultidomain limit, J. Phys. D : Appl. Phys, pp.41-134003, 2008.

S. K. Lower, P. A. Maurice, S. J. Traina, and E. H. Carlson, Aqueous Pb sorption by hydroxylapatite; applications of atomic force microscopy to dissolution, nucleation, and growth studies, American Mineralogist, vol.83, issue.1-2, pp.83-147, 1998.
DOI : 10.2138/am-1998-1-215

H. Hashimoto, T. Nishimura, and Y. Umetsu, Hydrolysis of Antimony(III)-Hydrochloric Acid Solution at 25°C, MATERIALS TRANSACTIONS, vol.44, issue.8, pp.44-1624, 2003.
DOI : 10.2320/matertrans.44.1624

Q. H. Li, S. W. Xiao, Z. H. Liu, X. Y. Guo, and D. M. Zhang, Template effect of tartrate ion on the morphology of antimony trioxide, Chem. J. Chinese U, vol.21, pp.1344-1347, 2000.

H. Bouyarmane, S. Asri, A. Rami, C. Roux, M. A. Mahly et al., Pyridine and phenol removal using natural and synthetic apatites as low cost sorbents: Influence of porosity and surface interactions, Journal of Hazardous Materials, vol.181, issue.1-3, pp.181-736, 2010.
DOI : 10.1016/j.jhazmat.2010.05.074

URL : https://hal.archives-ouvertes.fr/hal-00504830

B. Karn, T. Kuiken, and M. Otto, Nanotechnology and in situ remediation: a review of the benefits and risks, Environ. Health Perspect, vol.117, pp.1813-1831, 2009.