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A gelatin-mediated gold nanoparticles self-assembly has been 
performed on silica particles during gold ions reduction using 
ascorbic acid as reductant and PVP as stabilizer. Gold 
nanoshells with near infrared photothermal properties have 
been successfully designed.  

In the past decades, gold based nanomaterials have undergone an 

important development and intensive investigations due to their 

unique optical properties coming from a so-called Surface Plasmon 

Resonance (SPR) phenomenon.1–3 Such properties combined to gold 

biocompatibility have found a great interest particularly in 

biomedical applications with the rising of Nanomedicine4,5 and 

development of Theranostic agents.6,7 Until now, a multitude of gold 

plasmonic nanostructures have been described including 

nanospheres,8 nanorods,9,10 nanorice,11 nanorings,12 nanocages,13 

nanoshells14,15 and so forth for which their dimensions and 

morphologies allow to modulate the SPR features in a wide 

absorption range from UV-Vis region to infrared region. In particular, 

gold nanoshells (GNS) have attracted a great attention in the past 

years due to their absorption in such Near Infrared Region (NIR) also 

called “biological window” where human tissues are transparent to 

light.14 Such optical properties of GNS have found applications in 

cancer photothermal therapy where localized ablation of tumor cells 

is performed via near infrared laser irradiation.16,17 On the other hand, 

in the field of the design of gold nanostructures, a great effort is 

nowadays done on the control of assembly and aggregation of gold 

nanomaterials in order to generate 2D or 3D architectures mainly for 

molecular recognition, biosensing or bioanalytical assays18,19 using 

organic linkers,20–22 polymers or biopolymers.23 In the latter case, 

several macromolecules including DNA,24 chitosan25–27 or proteins28–30 

have been successfully conjugated to gold nanoparticles to drive a 

specific organization. In this context, gelatin is particularly attractive 

for the design of gold nanostructure due to its good biocompatibility, 

capping properties and ability to reduce gold ions.31,32 We 

demonstrate here for the first time that gelatin can be successfully 

used as mediator of gold nanoparticles self-assembly on silica 

particles in order to generate GNS. Indeed, gelatin is known to 

strongly interact with silica through electrostatic interactions33–35 and 

is able to bond noble metals via amino or carboxylate groups.36 

Taking advantage of these dual properties, a GNS synthesis method 

based on ascorbic acid mediated gold ions reduction in presence of 

gelatin-modified silica particles (NPSiGel) is described. Our approach 

could be purposed as an alternative to the main known gold 

nanoshell elaboration methods described elsewhere e.g. (i) the 

galvanic replacement process14 and (ii) the two steps seed-growth 

method. 15 Indeed, the main advantages of our approach comparing 

to the latter ones lie in the formation of the gold shell without a 

seeding step and without a preliminary synthesis of metal (e.g. silver 

or cobalt) gabarit particles that generally results in the formation of 

alloys.37,38  

Our synthetic procedure is described as follow: silica nanoparticles 

(NPSi) were first elaborated via a typical Stöber process39 in an 

ethanol/water solution using tetraorthosilicate (TEOS) as silica source 

and ammonium hydroxide as catalyzer. The molar ratio TEOS : Water : 

Ethanol : Ammonia was 1 : 19.2 : 63.7 : 1.1. Twenty milliliters of the 

obtained silica particles were washed several times and a gelatin 

(Type A from porcine skin, 300 Bloom, Aldrich) coating has been 

performed in 1 wt. % of biopolymer aqueous solution at 40 °C to 

provide silica/gelatin nanoparticles (NPSiGel). After several cycles of 

centrifugation/washing, samples of gold coating on NPSiGel were 

carried out as follow: 0.08 g of PVP (Polyvinylpyrrolidone, Aldrich, 

50 000 g/mol) was first dissolved in 15 ml of deionised water before 

pouring 0.005 g of ASA (Ascorbic Acid, Aldrich). The solution was 

stirred until complete dissolution of ASA. Then, 25 μl of NPSiGel 

solution was poured in the previous solution. After 30s of agitation, x 

= 0.25, 0.5, 1, 2, 3  or 4 ml of a 0.2 wt.% chloroauric solution 

(HAuCl4.3H2O, Aldrich) was added in the previous solution under 600 

rpm magnetic stirring giving gold concentrations of 1.3, 2.5, 5, 10, 15 

or 20 mM respectively. For x ≤ 1 ml, the gold solution was injected at 

only one go. For x > 1 ml, aliquots of 1 ml were added every 5s. After 
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Based on these results, a mechanism of gold nanoparticles self-

assembly on NPSiGel can be purpose. As described in the 

experimental section, gold deposition is extremely fast since the 

color of particle solutions does not evolves a few seconds after each 

gold precursor addition. On the other hand, no secondary bulk gold 

nucleation (outside NPSiGel particles) was identified which was 

confirmed by SEM analysis during the centrifugation/washing steps. 

These two observations are in agreement with an advantageous gold 

reduction at the very close vicinity of the NPSiGel particles surface. 

Moreover, the ASA concentration (1.89 mM) leads to a pH value of 3.6 

which favors strong electrostatic interactions between negative gold 

ions and gelatin (IEP at pH = 8-9) coated silica nanoparticles. 

Moreover, due to the constants of dissociation of ASA (pKa,1 = 4.17, 

pKa,2 = 11.58), a majority of non-dissociated protonated form of ASA 

are present which promote hydrogen bonds between ASA 

carboxylate groups and amino gelatin groups as described for other 

systems.43 This favors a preferential location of ASA near NPSiGel and 

consequently gold reduction on NPSiGel surface while avoiding 

secondary bulk gold nucleation. In addition, the use of PVP stabilizer 

promotes gold nanoparticles formation on NPSiGel surface instead of 

“swallowing-like” gold growth as observed without PVP (ESI,† Fig. 

S3). The presence of PVP is essential to avoid strong aggregation of 

NPSiGel particles during gold deposition and to improve 

homogeneous gold coverage.  

To correlate optical properties of the evolution and growth of the 

gold coating to the previous results, UV-Vis-NIR spectroscopy 

analyses were carried out. The Figure 3 overlays absorption spectra of 

gold coated NPSiGel particles in function of the amount of gold 

precursor added. The evolution of spectra exhibits a red shift as the 

gold coverage increases and as gold nanoparticles self-assembly and 

aggregation occurs at the NPSiGel surface. Such red shift is a typical 

feature of plasmon resonance evolution during GNS formation.15 

However, different plasmonic regimes can be identified along the 

progressive growth of the gold layer. At low x value, only one peak is 

observable with maxima of absorption (λmax) centered at 559 nm and 

565 nm for x = 0.25 ml and x = 0.5 ml respectively. The location of 

such resonance bands is similar to the one typically observed for near 

non aggregated 20 nm spherical gold nanoparticles.8 This is also 

associated to few immobilized gold nanoparticles on NPSiGel (see 

Fig. 1b and Fig. 1c) leading to low plasmon-plasmon interactions 

between gold nanoparticles.20 

 
Fig.  3.  Evolution  of  UV‐Vis‐NIR  absorption  spectra  of  core‐shell  silica/gold 
nanoparticles in function of the gold precursor amount added.  

At intermediate x value (x = 1 ml, Fig.1d), the absorption starts to 

undergo a significant red shift (λmax = 635 nm) with a resonance band 

broadening. This feature has to be put in relation with the increase of 

plasmon-plasmon interactions between gold nanoparticles.20,44 For 

larger amounts of gold precursor (x = 2 and 3 ml, Fig. 1e and Fig. 1f), a 

higher absorption broadening occurs and is linked to the appearance 

of a dipole resonance mode at high wavelengths close to 800 nm as 

the gold nanoshell and hollow nanostructure is forming around 

NPSiGel. Such mode is concomitant to lower wavelengths resonance 

contribution close to 650 nm probably associated to the overlapping 

of plasmon-plasmon interactions and higher order multipole modes 

as described by Mie scattering theory.45 Finally, at highest gold 

concentration (x = 4 ml), the absorption is dominated by the dipole 

resonance mode of the formed GNS (peak at λmax = 802 nm).  

Laser irradiation at 808 nm (fiber coupled laser diode equipment, 6 

W/cm2, 7 cm from the target) was performed on such GNS with 

highest gold concentration (20 mM) to valid their potentiality in 

terms of photothermal activity. 3 ml of gold nanoshells solution was 

poured in a quartz cuvette and was irradiated through a series of 30 

min laser on-off pulses under stirring. The temperature of the 

solution was measured in situ using a thermocouple (type K, accuracy 

= ± 1.5 °C). As a comparison, irradiation experiments were also 

carried out on water, NPSi suspension and NPSiGel suspension at the 

same particles concentration than gold nanoshells. As shown on 

Figure 4, each irradiation period is accompanied by a temperature 

jump of near 25 °C for nanoshells in comparison to a slight bump of 

near 3-4 °C corresponding to laser heat dissipation for water, NPSi 

and NPSiGel suspensions. This result demonstrates unambiguously 

the efficiency of the photothermal properties of the gold nanoshells. 

 
Fig.  4.  Evolution  of  the  temperature  of  water  solution  (particles  free),  NPSi, 
NPSiGel  and  GNS  solutions  during  a  series  of  808  nm  30  min  pulses  laser 
irradiation.  

In conclusion, we developed an original synthesis method to 

generate gold nanoshells through gelatin-mediated gold 

nanoparticles self-assembly on silica nanospheres occurring during 

gold ions reduction. This constitutes an alternating method to 

conventional galvanic replacement and seed-growth approaches 

previously described.14,15 Such gold nanoshells exhibit near infrared 

light absorption features and present photothermal activity under 

laser irradiation.  
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