Solid state NMR and diatoms: probing the interfaces
Sylvie Masse, Guillaume Laurent, T. Coradin

To cite this version:
Sylvie Masse, Guillaume Laurent, T. Coradin. Solid state NMR and diatoms: probing the interfaces. Biominalerization short course, Dec 2014, Paris, France. hal-01138970
SOLID STATE NMR AND DIATOMS: PROBING THE INTERFACES

Sylvie MASSE, Guillaume LAURENT and Thibaud CORADIN
Laboratoire de Chimie de la Matière Condensée de Paris

INTRODUCTION

Whole-cell, SDS-treated and H$_2$O$_2$-treated samples were isotopically enriched with 29Si, 13C/31Si/4N and 15C/4N, respectively. While SDS is used to clean the frustule, H$_2$O$_2$ treatment seems to be much more aggressive, probably leading to partial dissolution-recrystallization.

CHEMICAL TREATMENT

While a lot of work is still needed to fully understand diatoms frustule interface, solid-state NMR appears to be a powerful toolbox. Indeed, this technique is able to selectively probe either mobile or rigid species at a very local scale. Varying methods, species proximity can be checked and connectivity evaluated.

MOBILE SPECIES

Liquid-state-inspired NMR experiments mainly highlight the most mobile species: unsaturated lipids. Nevertheless ENSY exp. shows spin diffusion between two broad protons regions.

SDS-TREATED SAMPLE

RIGID SPECIES

Solid-state NMR experiments allow to probe another part of the sample: the rigid one. Playing with the selected nuclei, spatial proximities can be assessed.

CONCLUSION AND REFERENCES