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Abstract

This study concerns a novel symbolic cognitive vision framework emerged from the Cog-
nitive Microscopy (MICOED initiative. MICO aims at supporting the evolution towards
digital pathology, by studying cognitive clinical-compliant protocols involving routine vir-
tual microscopy. We instantiate this paradigm in the case of mitotic count as a component
of breast cancer grading in histopathology. The key concept of our approach is the role
of the semantics as driver of the whole slide image analysis protocol. All the decisions
being taken into a semantic and formal world, MICO represents a knowledge-driven plat-
form for digital histopathology. Therefore, the core of this initiative is the knowledge
representation and the reasoning. Pathologists’ knowledge and strategies are used to ef-
ficiently guide image analysis algorithms. In this sense, hard-coded knowledge, semantic
and usability gaps are to be reduced by a leading, active role of reasoning and of seman-
tic approaches. Integrating ontologies and reasoning in confluence with modular imaging
algorithms, allows the emergence of new clinical-compliant protocols for digital pathology.
This represents a promising way to solve decision reproducibility and traceability issues
in digital histopathology, while increasing the flexibility of the platform and pathologists’
acceptance, the one always having the legal responsibility in the diagnosis process. The
proposed protocols open the way to increasingly reliable cancer assessment (i.e. multiple
slides per sample analysis), quantifiable and traceable second opinion for cancer grading,
and modern capabilities for cancer research support in histopathology (i.e. content and
context-based indexing and retrieval). Last, but not least, the generic approach introduced
here is applicable for number of additional challenges, related to molecular imaging and, in
general, to high-content image exploration.
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1. Introduction

Cancer is a deadly disease and major cause of death worldwide. Every year, 7.4 million
people (about 13% of the people dying worldwide [1]) die because of cancer.

Breast cancer is a very common type of cancer, especially for woman, for whom it
comprises 22.9% of all cancers [2]. Breast cancer is also a very deadly disease. In 2013, 234
580 new cases and 40 030 deaths from breast cancer are estimated in the United States [I].
The estimated new cases of breast cancer in the United States in 2013 were about 232 340
cases in female and 2 240 in male. The mortality was about 39 620 cases for female and
410 for male, with 1 woman out of 5,7 sick dying from breast cancer [I]. About 1 in 8 U.S.
women (almost 12%) developed invasive breast cancer over the course of her lifetime? [1].
In Europe, breast cancer is the most current form of cancer for women, with 42 000 new
cases a year [3].

The last few decades, digital technologies have been emerging on the market, like
high resolution histopathological slide scanners or efficient software viewers for large-scale
histopathological images. Similarly, pattern recognition image processing algorithms have
been shown to be quite effective and mature for medical applications [4]. However, these
technologies are still not being intensively used in pathology departments, and will not be
adopted without being properly adapted to the medical domain and practices.

Cautious in creating and respecting new protocols in digital pathology, this study pro-
poses a novel approach in cognitive vision, combining imaging, reasoning and ontologies.
The work has been done in the framework of the Cognitive Microscopy project (MICCE),
dealing with a cognition-driven visual explorer for breast cancer grading. The traceability
of a second opinion being a key issue, the proposed system is so able to explicitly consider
the visual (and contextual) medical knowledge, by indicating at each step, the rules and
the ontologies used to generate the quantitative diagnosis support.

After presenting the challenge of the cognitive virtual microscopy, we analyse the prob-
lem of knowledge representation in digital histopathology, in order to further describe the
effective use of reasoning, ontologies and imaging tools, in the context of breast cancer
grading.

2. Cognitive Virtual Microscopy

Histopathology became widely accepted as a powerful exam for diagnosis and prognosis
in mainstream diseases such as breast cancer. Currently, analysis of medical images in
histopathology largely remains the work of human experts. For pathologists, this consists
of hundreds of slides examined dailyf’} a tedious repetitive work which will greatly benefit
from reliable and traceable digital second opinion. Beside, the work of a pathologist is
mostly based on an intensive visual micro-semiology training (at least a decade to reach a
real expertise in most of specialties) and know-how, embedded in a very complex medical
contextual knowledge.

Zwww.breastcancer.org

3For exemple, at the Pitié-Salpétriére Hospital, Paris, about 1500 slides need to be examined daily by
the Pathology Department.


http://www.breastcancer.org/symptoms/understand_bc/statistics.jsp

In this sense, considering the cognitive part of the pathologist’s work is essential when we
envisage a reliable second opinion support. The Cognitive Microscope (MICOH) initiative
aims at developing a cognition-driven visual explorer for histopathology, focusing on the
use case of mitotic count in breast cancer grading. MICO proposes a radical change in
medical practice by proposing a cognition-driven medical imaging environment, enabling
safer decision support in histopathology.

The system integrates image visualisation and exploration support, as the use of spe-
cific visual medical knowledge, in order to set up the bases of a cognition-driven medical
imaging, able to address pervasive adaptation and physical-virtual confluence challenges
for histopathology. The analysis capabilities and results are made available to the patholo-
gist through a platform combining virtual microscopy and cognitive reasoning. This allows
medical staff to interact with the platform at the appropriate level of abstraction. The plat-
form combines multi-scale whole slide image (WSI) exploration and analysis, as medical
knowledge representation and inference using ontologies.

Among the existing cognitive vision approaches [5], we chose to go for the symbolic one,
enabling a better interaction with the users (the pathologists - in our case), a traceability for

verification and quality control, as an effective maintenance capability, by using referenced
on-line medical thesauri (Snomed-CT[Y, ADICAPf]etc.).

3. Knowledge Representation in Histopathology

Histopathology is the study of signs of disease using the microscopic examination of
a biopsy or surgical specimen processed and fixed onto glass slide [6]. Histopathologists
often are experts able to analyse tissue samples on glass slide using light microscope to
grade cancers [3]. Sample observation is important because it allows the expert to make a
judgement on the state of the disease. Therefore, it helps to target the appropriate cure.
Histology involves invasive procedures and is the most accurate way of grading cancers so
far. The histopathological diagnosis plays also a legal role in most of advanced countries.

Accurate grading of invasive breast cancer requires good fixation, processing, section
cutting, staining and careful application of grading criteriaﬁ.

A pathologist may have to analyse different kind of biological, cytological or histological
extractions. Since the cytology is the analysis of cells and no information is kept about
their spatial organisation, the histology represents the study of a tissue. There are different
techniques for tissue extraction. In the case of breast cancer, biopsy, tumorectomy, mastec-
tomy or axillary curage may be operated, depending mostly on the nodule size. After its
extraction, the tissue is analysed using a microscope. Figure [1] shows an example of lesion
induced by breast cancer [7].

3.1. Breast cancer grading

In case of solid tumour, cancer diagnosis is morphological and made using human tissue
samples [3]. Histological slides are extracted from these samples. Histopathologists exper-

4SNOMED Clinical Terms (Snomed-CT): ihtsdo.org/snomed-ct

SFrench Association for the Development of the Informatics in Cytology and Anatomo-Patholog (ADI-
CAP): ladicap.asso.fr

6cancerscreening.nhs.uk.
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Figure 1: Examples of histological images of breast lesion.

tise enables medical diagnosis by the observation of these histopathological slides. Figure
shows an example of what histopathologists may see using light microscope.

Histological grading helps to categorise the breast cancer, and therefore to treat it better.
Breast cancer grading is now based on international standards. For a long period of time,
the most widespread grading system has been the Scarff-Bloom-Richardson (SBR) system.
Recently, the Nottingham Grading System (NGS) [§], a more reproducible variation of it
[7], has become increasingly popular, being recommended -as mentioned- by the World
Health Organisation.

The NGS consists in the study on three criteria, by establishing a cancer state evaluation
protocol using of the respective scores. The three analysed criteria are tubules formation,
nuclear pleomorphism and mitotic count [9]. A grade of 1 depicts a low level of cancer for
the patient, while a grade of 3 means an advanced state of cancer. In the UK, in 2005, for
example, about 20% of symptomatic breast cancers were grade 1, 30% grade 2, and 50%
grade 38

Histopathological slide analysis is a complex task requiring advanced expertise. There
are some drawbacks to the current histological grading process. Some grading tasks like
counting mitosis can be very tedious and time consuming, inducing delay before diagnosis.
Moreover, in most of the hospitals there are fewer and fewer experts, since increasingly
important quantities of histopathological slides are produced every dayﬂ. Furthermore,
one must admit that the criteria ruling histopathological analysis or grading are not fully
formally described. Actually, there is currently no way to formally double-check judgements
from histopathology experts about biological objects (for instance, it is very difficult to
formalise how looks a mitosis and why a particular pattern corresponds to a mitosis). This
lack of formalisation might be one reason of the long training and expertise time needed for
the histopathologist to become a recognised pathologist expert in his medical area. Beside,
even after reaching this expertise, one pathologist need to remain polyvalent, in order
to insure the reactivity of the whole Pathology service/department if needed (extemporal
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Figure 2: Slide digitisation process

histologic examination, holidays, expert absences, etc.).

Reproducibility of diagnosis is also an issue either between different pathologists (cross
expertise in tele-pathology), post-operation exam, or longitudinal follow-up. In all these
situations, a minimum of formalism supporting the pathological demarcate will be of great
use, together with a flexible use of pattern recognition tools available on the market.

3.2. Medical technologies progress

Lastly, new medical technologies have been released on the market, such as high reso-
lution slide scanners, or large medical image software viewers. These technologies are not
currently being used — as a part of the routine protocol — in hospitals. However, they might
help to improve the cancer grading process.

High resolution slide scanners. may be used to scan the histopathological slides (Figure
. Some scanners are able to digitize several slides at a time. The images produced by a
slide scanner are known as Whole Slide Images (WSI). A single image is generally about
140 000 by 60 000 pixels RGB (3 bytes per pixel), that is about 8 gigapixel. Each image is
usually about 1 to 2GB when compressed, and 15 to 25GB when uncompressed. Such huge
images require special softwares to be manipulated. However, WSI represents an efficient
way to store the slides, protecting their critical information from degradation.

Slide visualisation softwares. Whereas histopathologists are using light microscope to ob-
serve the slides, slide visualisation softwares offer interesting capabilities to virtual mi-
croscopy. First, computerized view allows displaying different parts of the WSI next to
each other, in order to compare them, which can be very useful (for example) during nu-
clear pleomorphism analysis. This live reference-structure is impossible with a microscope,
were the histopathologist has to look at one part of the WSI, memorise it and then move to
another part of the image, basing his/her judgement on his/her (somehow volatile) visual
memory. Second, visualisation tools allow to precisely measure the size of the observed
biological objects. Again, this might be useful in the case of nuclear pleomorphism analysis
or mitosis candidates pre-selection. Third, the viewers are very promising for collaborative
work. For instance, they allow the pathologist to add cross-annotations on the whole slide
image (Figure , for a better collaboration and discussion between experts. Also, most of
the WSI viewers platformg’| are able to share WSI and the information associated to collab-

"CaloPix is an example of visualisation and data structure platform and Teleslide, a server application
allowing sharing expertise and collaborating annotations on WSI : |http://tribvn.fr/
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Figure 3: Example of WSI annotations using Calopix

orating pathologist, via internet. This is an important breakthrough in this field since, still
in the current clinical practice, the histopathologists are sending slides to each other (for
diagnosis confirmation) by postal mail. Postal mail is slow, and worse, the slide is broken in
transit from time to time. Fourth, viewers are also great tools to display information from
different origins. Unified information storage infrastructure, or PACS (Picture Archiving
and Communication Systems)ﬂ store general information (age, sex, medical antecedents)
and other information like screening (scanner, MRI, etc.) coming from different parts of
the hospital. Allowing the histopathologists to access all the information about a patient
(including the WSI) from the same interface, would help them to take into account rele-
vant contextual information while grading the WSI. Finally, software viewers may also be
considered as user interfaces for image processing macros or algorithms.

Due to these new technologies, histopathology is about to significantly evolve. Some
procedures will probably need to be modified or completely revised to comply with the new
tools, and it is hoped that new methods will also emerge (i.e. routine telepathology [3]), in
the interest of both histopathologists and patients as, after all, in the interest of the quality
of healthcare. However, the right tools still need to be built, and the pathologists need to
learn how to use them in clinical routine.

3.3. Proposed Digital Pathology Protocol

At the initiative of the pathology department of La Pitié-Salpétriére Hospital, we intro-
duced a new digital pathology protocol for pattern collection and annotation. This Whole

¥i.e. AGFA Healthcare’ PACS http://www.agfahealthcare.com/global /en/main /|
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Figure 4: Collection and WSI exploration model for digital histopathology

Slide Image (WSI) computer-assisted analysis protocol uses a simple and efficient struc-
tured magnification scheme: the explored territory is sampled in 10X frames, embedding
4 frames 20X each, each of them embedding again 4 frames at 40X (See Figure |4)). This
will constitute a standard digital pathology protocol we are extending at the moment to
a larger French consortium in telepathology (FlexMInﬂ FUI project) and we are planning
to extend as a standard protocol, at a larger scale, in the future, for the benefit of a faster
and wide clinical adoption of digital pathology and telepathology.

3.4. Knowledge representation and reasoning

3.4.1. Semantic Web technologies

As discussed, pathology is a highly (visual) cognitive medical speciality. However, most
of information is currently available in a weakly structured form. Therefore, from the
knowledge management perspective, the current information systems are not fully efficient
for searching, extracting, maintaining and mining information. Indeed, the keyword-based
search reaches its limits, and tedious human intervention is often required to extract relevant
information from documents [10].

Semantic Web technologies enable designing operational knowledge management sys-
tems, presenting the advantage of a large community adoption and a dynamic evolution. By
organising knowledge in conceptual spaces according to its meaning, keyword based search
is replaced by query answering, automated tools being so able to check inconsistencies, to
extract new knowledge, and to present it in human-friendly way. Therefore, it becomes
possible to extract existing knowledge or to make inferences over several documents [11].

9FlexMIm project: |https ://www.comp.nus.edu.sg/~danielr/projects. htm|



https://www.comp.nus.edu.sg/~danielr/projects.htm

3.4.2. A matter of meta-data

Currently, most of the information targets human readers, rather than targeting pro-
grams. For instance, most of the services, technical documentation or web pages are writ-
ten to be understandable by human only. In addition to containing formatted information
aimed at human, they could also contain information about their content, or meta-data.
Such representation is far more easily processable by machines. Indeed, the functionali-
ties outlined in the previous paragraph will not happen using text-based manipulation of
information, but by taking advantage of machine-processable meta-data [I0]. The term
meta-data refers to such information: data about data. Meta-data capture part of the
meaning of data, thus the term semantic in Semantic Web.

3.4.8. Ontologies

There are various definitions of an ontology. Merriam Webster’s dictionary [12] defines
Ontology as a branch of philosophy which studies what exists in all areas of reality. In
Artificial Intelligence (AI), the meaning of ontology (with a lower-case “0”) can be slightly
different. A suitable definition is given by Studer [I3] : an ontology is a formal, explicit
specification of a shared conceptualization. A ‘conceptualization’ refers to an abstract model
of some phenomenon in the world by identifying the relevant concepts of that phenomenon.
‘Explicit’ means that the type of concepts used and the constraints on their use are explicitly
defined. ‘Formal’ refers to the fact that the ontology should be machine understandable,
which excludes natural language. ‘Shared’ reflects the notion that an ontology captures
consensual knowledge, that is, it is not private to some individual, but accepted by a group.

Concretely speaking, an ontology consists in a finite list of concepts and relationships
linking those concepts, formally describing a domain. The concepts may be classes or
instances, and the ontology may be viewed as a graph. Typically, the relationships include
hierarchies of classes.

Ontological analysis. clarifies the structure of knowledge [I4]. A domain ontology is the
ineluctable core of any system of knowledge representation of the same domain. Without
it, or similar conceptualization, there cannot be a vocabulary for representing knowledge.
As ontologies help to increase the efficiency and consistency of describing resources, they
allow for more sophisticated functionalities in knowledge management and information
retrieval for application development [14]. Basically, the role of ontologies in the knowledge
engineering process is to facilitate the construction of a domain model, by providing a
vocabulary of terms and relations with which a domain can be modelled [13].

Ontology as a theory. Ontologies are content theories about the type of concepts and re-
lations between concepts that are possible in a specified domain of knowledge [14]. In its
strongest form, an ontology tries to capture universally valid knowledge, independent of its
use, a view closely related to its philosophical origin. However, Al researchers quickly gave
up this view, because it turned out that specific use of knowledge influenced its modelling
and representation [15].

Within a given domain, an ontology is not just a representation — in a computer — of
that domain but also claims to reflect a certain rate of consensus about the knowledge in
that particular domain.



As all representations are surrogates for reality, and therefore distinct from it, they
must be imperfect approximations of reality. Moreover, creating an ontology means se-
lecting representations, in other words making a set of ontological commitments. These
commitments of blurring or emphasising some aspects of the described objects are unavoid-
able (they are also useful because they allow to focus on the aspects relevant or useful to the
domain application). As a consequence, a knowledge representation is a set of ontological
commitments [16]. Thus, it may exist several concurrent ontologies describing the same
objects. It doesn’t mean one is better than the others, but maybe it is indeed better for a
specific application domain.

Ontology levels. Depending on their generality degree, different kind of ontologies may be
identified. Among others, we may distinguish the following types [14]:

e Upper level ontologies provide notions to which all concepts in existing ontologies are
necessarily related. As a consequence, they are valid across several domains [13].

e General ontologies represent knowledge at an intermediate level of detail, indepen-
dently of a specific task.

e Domain ontologies capture the knowledge valid for a particular domain. Within
domain ontologies, the ontologies designed for specific tasks are called application
ontologies.

Ontology design. While designing ontologies, it is a good practice to separately define asser-
tions and terminological knowledge. Indeed, description logics traditionally split concepts
and their relationships from the instances and their attributes and roles, expressed as fact
assertions [I7]. The concept split is known as the T-Box (terminological knowledge) and
represents the schema or taxonomy of the domain at hand. The T-Box is the structural
and intentional component of conceptual relationships. The second split of instances is
known as the A-Box (assertions) and describes the attributes of instances, the roles be-
tween instances, and other assertions about instances regarding their class membership
with the T-Box concepts. The T-Box is where the reasoning work occurs and the A-Box is
where assertions occurs: While T-Box operations are based more on inferencing or verifying
class memberships in the hierarchy, A-Box operations are more rule-based and govern fact
checking.

The Resource Description Framework (RDF) is a language for representing information
in the Web. Its purpose is to represent meta-data about Web resources, being designed to
allow information to be processed by applications, instead of viewed / analysed by people
[18]. RDF provides a common framework able to express this information in order to be
shared between applications by keeping its original meaning. Being a common framework,
application designers can leverage the availability of common RDF parsers and processing
tools. The ability to exchange information between different applications means that the
information may be made available to applications other than those for which it was orig-
inally created [I8]. This characteristic represents a fondamental property of our system,
initially designed for digital pathology, but usable for a large spectrum of high-content
image /spaces analysis contextes.



RDF is based on the idea of identifying things using Web identifiers (called Uniform
Resource Identifiers, or URIs), and describing resources in terms of simple properties and
property values. This enables RDF to represent simple statements about resources as a
graph of nodes and arcs representing the resources, and their properties and values.

RDF model encodes data in the form of triples [19]. Actually, the majority of data
processed by machine may be described using triples [II]. It also enable us to translate
human language into a model that machines can interpret. All sentences are sliced in
triples, made of the following three entities [20]: Subject: what or who we are talking
about ; Predicate: what property of the subject we are discussing ; Object: what we are
saying about the property of the subject. The subject and object of a triple are both URIs
that each identify a resource, or a URI and a literal string respectively. The predicate
specifies how the subject and object are related, and is also represented by a URI [19] [T1].

3.4.4. Resource Description Framework Schema

RDF properties may be thought of as attributes of resources and in this sense correspond
to traditional attribute-value pairs. RDF properties also represent relationships between
resources. RDF however, provides no mechanism for describing these properties, nor the
relationships between these properties and other resources. That is the role of the RDF
vocabulary description language, RDF Schema (RDF/S). RDF Schema is extending RDF
vocabulary to define classes and properties that may be used to describe classes, properties
and other resources. Such extension is required to allow the description of taxonomies of
classes and properties, or to set the domain and range of properties. RDF Schema may be
defined as a semantic extension of RDF [21].

RDF /S is often expressed using RDF /XML syntax. This syntax is often used to serialise
a RDF graph as a XML document.

3.4.5. OWL

Web Ontology Language OWL is a semantic markup language designed to publishing
and share ontologies on the World Wide Web [22]. OWL is developed as a vocabulary
extension of RDF /S. OWL language provides two specific subsets. OWL Lite is designed for
easy implementation and to provide a functional basic subset. OWL DL (where DL stands
for “Description Logic”) is designed to support the existing Description Logic business
segment and to provide a language subset that has desirable computational properties for
reasoning systems. The complete OWL language (called OWL Full to distinguish it from
the subsets) relaxes some of the constraints on OWL DL so as to make available features
which may be of use to many database and knowledge representation systems, but which
violate the constraints of Description Logic reasoners [22].

3.4.6. Notation 3 €& N3 Logic

RDF/ XML syntax is not very easily readable by humans. It is much more convenient
to use the equivalent language Notation 3 (N3). N3 is a compact and easily readable
alternative to RDF as XML syntax [23].

It has been mentioned previously that knowledge models such as Resource Descrip-
tion Framework (RDF/S) may provide a unifying representation of richly structured data.
Adding logic to these data implies the use of rules to make inferences, to choose courses
of action and answer questions. This logic must be powerful enough to describe complex

10



properties of objects. N3Logic is a first order based logic that allows rules to be expressed
in an open environment. It extends RDF with syntax for nested graphs and quantified
variables and with predicates for implication and accessing external resources. The main
goal of N3Logic is to be a minimal extension to the RDF data model such that the same
language can be used for logic and data [24]. N3Logic uses N3 syntax and extends RDF
with a vocabulary of predicates. N3 aims to do for logical information what RDF does
for data: to provide a common data model and a common syntax, so that extensions of
the language are made simply by defining new terms in an ontology [24]. Since N3Logic
uses first order logic, it is possible to do semantic inferences using this formalisation and
a semantic inference engine. It exists several N3 compatible semantic reasoners, such as
CWM™ and EULER 1]

Nevertheless, there are are some particularities induced by the openness of the used
knowledge bases: first, whereas a closed system may be built based on a single knowledge
base of believed facts, an open Web-based system exists in an unbounded set of intercon-
nected information resources. This requires that an entity be aware of the information
source and responsible for its disposition. A language for use in this environment typ-
ically requires the ability to express which document or message asserts what. That is
why N3Logic offers the possibility to quote facts [24]. Last but not least, to avoid para-
doxes, N3Logic has been kept to limited expressive power: by excluding general first order
negation [24].

Rules. So far, knowledge base facts have been described. Another kind of knowledge is
described in this section: the rules. Rules allow one to infer new knowledge from existing
knowledge [20]. Expressed using first order logic, a rule looks like:

Vo, P(x) = Q(z) (1)

The above reads “P implies Q”, or in an instructive manner: “if the premise P is true, then
the consequence (Q is also true”. It is possible to write such rules using N3.

Queries. Queries allow to extract targeted knowledge from the knowledge base. To be
extracted, the knowledge must respect the constraints described within the query. Also,
it is possible to choose the output format of the extracted individuals. Expressed using
N3, queries take the same shape as rules, although their effect is quite different. The N3
queries premisses describe the constraints that should be respected in order for individuals
to be extracted. The N3 queries consequences describe the format of the results returned
by the query.

3.5. Goal of the study

The goal of this study is to contribute to the cognition-driven aspect of the MICO
platform. Indeed, until now ontologies and semantic tools have been used to exploit image
processing results in order to infer medical knowledge, crucial to the pathologist. The
vision of our approach also integrates the driving of image exploration & analysis using

OCWM (a forward chaining reasoner): http://www.w3.0rg/2000/10/swap/doc/cwn
HEULER (a semibackward reasoner): http://eulersharp.sourceforge.net/
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semantic tools. Providing a semantic profile for each algorithm, gathering knowledge about
the WSI to be analysed and matched with medical knowledge, it would be convenient to
infer an adapted analysis process in order to get better and faster results. Besides the
scientific deliverables, the MICO initiative leads to a Proof of Concept of a semantically
driven medical image analysis platform based on the basic principles described here, and
which will be deployed and validated by the pathologists. This platform will provide the
opportunity to validate research concepts within an integrated system in order to allow
moving forward at the clinical application level.

4. Operational Ontology-Driven High-Content Image Analysis

4.1. Conceptual graph

The first step in devising a knowledge representation based system is to perform an
ontological analysis of the field or domain [I4]. The following conceptual graph (Figure
5) is the result of a series of cross-knowledge meetings with the pathologists, involving
researchers and computer scientists. It represents the premises of the structure used for
the MICO semantic platform.

On the Figure[5] green and yellow colours represent concepts from histopathology, while
grey and blue concepts may belong to imaging domain. Because there are overlaps between
domains, the colour legend is approximative. The design of such conceptual graph shows
the difficulty of merging views of experts coming from different domains within the same
theory. This finding is responsible for some of the motivations going towards a split of
MICO ontology into several ontological domains (Cf. Section .

4.2. Processes definition

Nottingham criteria evaluation on an histopathological slide image is a tedious and
time consuming task for histopathologists. We address these issues and proposes a new
approach for Nottingham grading, aiming at making it faster and more reliable, thanks to
expert knowledge augmented computations. This section deals with proposals for Notting-
ham criteria automation. Nottingham criteria automated evaluation requires heavy image
processing computations. However, it is not possible to compute the needed algorithms
on a whole slide image within reasonable time. Strategies are proposed to overcome the
processing power limitations. As the histopathology expert doesn’t need to watch every
part of the whole slide image in order to grade it, MICO aims to understand and reproduce
this expertise during automated grading.

4.2.1. Mitosis analysis strategy

Mitotic score is one of the three Nottingham criteria. This score is quite easy to com-
pute once the highest mitosis density within the histopathological slide is known. This
section describes the digital strategy proposed for highest mitosis density evaluation with-
out exhaustive analysis of the whole slide image (Fig. [6)).

The digital protocol starts by a territory corresponding to the invasive area to be graded.
This relevant territory is split into 40X frames (see Section . In the tumour, for the
mitotic score, we are looking for the area having the highest concentration of mitotic
nuclei. To perform this search faster, we operate a sampling on the set of frames covering
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the tumour (see Fig. @: the frames are grouped into blocks of 3x3 frames. In each 3x3
block, only the top left frame is analysed for mitosis detection. This sampling of one frame
analysed out of nine gives us a broad picture of the concentration of mitosis in each area of
the tumour. To select the area having highest number of mitosis, we now consider blocks of
4x4 frames such that the frames at each corner of a block have already been analysed for
mitosis detection. We compute the sum of mitosis detected so far in each 4x4 block, and
we select the block (or the blocks) having highest number of mitosis for further analysis.
In this block of 16 frames, the four frames at the corners of the block have already been
analysed. We now proceed to detection of mitosis on the 12 remaining frames of the block.
So all the 16 frames of the block are now analysed. According to Nottingham Grading
System, mitotic count is given for 10 adjacent frames. To comply with this definition,
we select from our block of 16 frames the 10 frames with highest number of mitosis. The
resulting mitotic count for the tumour territory will be equal to the sum of mitosis detected
in these 10 frames. Of course, in case we had analysed more than one 4x4 block, the final
mitotic count will be the highest one among all the 4x4 blocks so analysed.

13



aila
8[8]8] 71

[
[e]s]7]¢9]

Selection of the 10
consecutive frames
having the highest
mitosis count

ofsfw]s
o|o|s]a
NBEEDS
o|o|w|~

- 8 9
i ) o e . =
Stereology frame Selection of the 4*4 I
ion from the ROA Mitosis count on each frames area having the M"‘,’;‘:::mm"(ﬁg the
(1 frame selected for selected frames highest mitotic count .,
+ selected 4*4 area
each 3*3 frames square) sum

Figure 6: Mitosis count flow

The SUM of mitosis
counts among the 10
frames is computed

This strategy gives an overview of what should be done to achieve a clinically acceptable
mitosis score approximation. However, more details are needed for its realisation, like the
different steps of the strategy, and the kind of data exchanged to go from one step to
another. Therefore, mitotic scoring flow has to be split in modular algorithms, allowing a
precise description in terms of inputs and outputs, in a more accurate manner.

4.3. Algorithms definition

Several modular algorithms are designed from the mitotic count strategy as a first step
towards a cognitive platform realisation. In order to insure a broad usability of these mod-
ules, a particular attention is paid to the definition of the algorithms interfaces. Because
its convenience for a semantic platform (Cf. section and because its self-described
caracteristics, easy to read and to maintain [25], Extensible Markup Language (XML) is
chosen as the modality for information exchange with the modular algorithms. In addi-
tion of input output oriented design and well formed XML data samples, Document Type
Declarations (DTD) are provided as definition of the grammar driving exchanges with the
algorithms.

Seven algorithms are needed in the use case of the mitotic score analysis of an histopatho-
logical whole slide image:

TerritoryExtractor Extracts a labelled polygon from Calopix WFML file.
FrameGenerator Cuts a polygon into frames.
FrameSampler3x3 Outputs a sample of a given frame matrix (stereology) (Fig. [7)).

FrameSelectordx4 Selects a 4x4 frames area from a given frame matrix according to the
frames characteristics.

FrameSelector10 Selects ten frames from the 4x4 frame matrix according to the frames
characteristics.

MitosisExtractor Extracts the mitosis of a given frame. This module is the most complex
imaging module in the given example. The algorithm used here is issued from a recent
quasi-exhaustive state of the art of our team [26] as the PhD work of Humayun Irshad

[27] (Fig. [§).

ScoreCalculator Provides a mitotic score by aggregation of the mitotic count from the
selected ten adjacent frames.

14



SVSimagePath: string

SetOf(
frameTopLeftCorner: (double, double) (um)
frameSize: double (um))

IN

out
FrameSample

setOf(frameXYtopLeftC
orner, frameSize)

OouT
N FrameExtractor

ouT

> setOf(framelmageFilePath: string)

nbFrames: int
setOf(

OutputFolder: string

WideFieldUniquelD: string
SlideTitle: string

id: int
frameTopLeftCorner: (double, double) (um)
frameSize: double (um))

WideFieldUniquelD: string

SlideTitle: string

ROlldentifier: string

Observer: string

FullTime: xsd:date

ObservationType: string = FrameSelection

ROlldentifier: string
ObservationSite: string
ObservationComputerHostname: string

ObservationMethod: string = Stereology3x3
Version: double

ObservationSite: string

ObservationComputerHostname: string
Confidence: double

Figure 7: FrameSampler3x3 - module-actor of the setreology process

WideFieldUniquelD: string
SlideTitle: string

ObservationLocation: string
ObservationComputerHostname: string

pixelDimensionX: double (m)
pixelDimensionY: double (um)

WideFieldUniquelD: string
SlideTitle: string
Observer: string
FullTime: xsd:date

Type: string =
ObservationMethod: string
Version: double
ocation: string

Of
ObservationComputerHostname: string
ObservationConfidence: double

setOf(area: double (um?)

IN
out AnalysedFrameTopLeftCorner: (double,

double) (um)

N AnalysedFrameSize: double (1m)

| rameTopLeftCorner: (double, double) (um) N IToAbsolute out o
frameSize: double (1m) erter set - (double, double) (Lm))
IN nbMitosis: int
setOf(relativeCentroid: (double, double) (px)) setOf(MitosisFeature) :
setOf(setOf(relativeMitosisPoint: (int,nt) (px) grayLevel: double,
ouT circularity: double,
energy: double
Inertia: double
InverseDifferenceMomentum: double
N out
framelmageFilePath: string — \gRunHighGrey is: double
confidence : double
N out ) )
tOf ilePath: string)
IN
MaskCreator our

N etOf ilePath: string)

IN

w out setOf(windowTopLeftComer: (double,

OutputFolder: string
mitosisWindowSize: double (m)

Figure 8: MitosisExtractor

15

double) (um))

out
> setOf(windowSize: double (um))




4.4. MICO Platform: A semantic approach

MICO aims at supporting histopathologists during the cancer grading process, by taking
benefit of the last medical and image processing technologies, while relying on histopathol-
ogy experts’ knowledge. Image processing algorithms allow fast image analysis and are
expected to provide reliable and reproducible results. Hence, the use of such algorithms
should help to make the grading process faster. MICO platform is also expected to reuse the
best expert strategies in order to improve the grading process. NGS is to be implemented
into the platform, as the non formally defined expert knowledge required to efficiently oper-
ate the same criteria analysis. Histopathological knowledge obviously plays a predominant
role in our platform. Therefore, particular attention is given to the use of proper knowledge
modelling and inferences technologies. Moreover, the issue of the impact of the knowledge
on the platform behaviour is also addressed. How to ensure the knowledge has the position
it deserve within the platform? This is the idea behind the proposed semantic approach:
“Ontology at the helm”. Indeed, MICO platform is built to be driven by the knowledge:
each of MICO platform action should be induced by a decision, and each decision should
be made within a formal knowledge based world. Such platform architecture offers several
benefits like the improved traceability of decisions, the ability to be understood by the
user, the ability to support him, a good flexibility, an improved technology acceptance and
smarter use of image processing algorithms.

Traceability Medical tools must obey to strict regulations: because MICO platform is
aimed to help histopathologists to take decisions by providing statements about medi-
cal cases, its decisions should obviously have some kind of traceability. Since semantic
reasoning takes place in a formal world, each inference is proven: as a consequence,
each decision is proven, and the proof trace may be viewed if necessary.

System understanding & Decision support MICO is definitely not aimed to replace
the histopathologists, but to support them while taking important decisions, as to
help them doing tedious and time consuming tasks. Thus, after the execution of
low level tasks and inferences, the system should communicate relevant results to the
expert, using suitable modality and formalization. These result should be human
understandable and should be expressed with concepts from histopathology experts
theory of histopathology, or histopathology domain ontology. Indeed, putting the user
in the loop requires him to have a good understanding of what the system is doing.
This may be archived by making sure expert and system use the same language, i.e.
the expert activity language. MICO should support histopathologists by providing
relevant information at the right time and using the right form, in order to minimize
the effort needed to interpret the message and make higher level decisions.

Flexibility With a full semantic approach, all the facts and processes are expressed in
an open manner. They are also fully described and therefore easily understood. A
good understanding of the system knowledge is a first step toward its modification.
Since the histopathologist user is not a computer scientist, semantic technologies only
may allow him to modify the system knowledge. Compared to “hard coded” imaging
systems, semantic systems are more flexible and easier to maintain.
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Technology acceptance As mentioned previously, the use of semantic web technologies
may help the user to understand what the system truly does, and therefore increase
its perceived ease of use. In order for the system to take benefit of expert knowledge,
it must be build in close collaboration with them. Communication with the user helps
to understands his real needs, and to involve him in the project. By increasing the
system perceived ease of use and its perceived usefulness, this approach will probably
help the user to accept and use the technology.

Operational image processing Image processing algorithms might be effective, but they
may also need quite a lot of processing power. Therefore, it may not be possible to
compute a whole histopathological slide image (up to 25GB uncompressed) within
reasonable time. A smarter approach is obviously needed, in order to grade the im-
age without having to analyse every part of it. After all, the expert doesn’t need
to have a close look at every part of the slide in order to grade it. As a matter of
fact, the histopathologists only use the 40X detailed view on very small parts of the
slides. These analysis spots are selected using slide overview magnifications. Simi-
larly, expert knowledge could be used to guide image processing algorithms, to target
interesting spots in order to spare as much processing power as possible, and to make
the overall grading faster.

4.4.1. Ouverview

MICO platform is composed of two main components: a semantic core, and a set of
image processing algorithms. The core is made of an ontology interacting with a semantic
inference engine: it may be considered as a glass box. On the contrary, image processing
algorithms are binaries, and may be considered as black boxes.

4.4.2. Semantic core

MICO semantic core is the place where all the decisions are taken, and also the
place where all the platform knowledge is held. It is made of two main components: a
semantic reasoning engine (EULER) and an ontology. While EULER is in charge of the
decisions, the ontology contains several layers of structured information about both image
processing and histopathology domains. MICO semantic core is maybe the most important
part of the platform, at least in regards to the semantic aspects of the project. It always
works the same way, following a simple three steps life cycle, as illustrated in Figure

First step During the knowledge acquisition step, external information is aggregated into
the core ontology. It usually comes from MICO modules, and may be the result of
image processing programs execution. If MICO semantic core is being launched for
the first time, then a whole knowledge base is generated from seed files.

Second step Thanks to the inference engine, new knowledge may be discovered from
existing facts, and queries are launched to select the knowledge relevant to further
processing or user feedback.

Third step The last step of the MICO semantic core life cycle consists in the execution
of the orders revealed in the previous step using queries, and the orders execution
acknowledgement. Typically, an order is the parametrized launch of an image pro-
cessing algorithm.
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Figure 9: MICO semantic platform overview

A notable particularity of MICO semantic core is the way it manages knowledge. Indeed,
some knowledge management systems or expert systems work with a frozen state knowledge
base: once they are designed and developed, their knowledge base stays more or less the
same. MICO semantic core approach differs in the sense its knowledge base is made to
evolve with time: each time new knowledge is discovered thanks to inferences or programs
outputs, it is incorporated into the knowledge base. As a result, the same inference never
has to be made more than one time. Also, the concepts defining a knowledge state may
be easier to identify, access, share, and link with external ontologies. Knowledge relevant
to the user may be easier to monitor. Finally, it is a first step towards rules generation.
However, there are drawbacks to being so exhaustive. Since the knowledge base grows with
its use, it might become to large for the system to process it in reasonable time. In such a
case, either the “useless” items should be removed, or an adapted database system should
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be used to store the ontology.

Ontologies. The ontology is the place where all the platform knowledge is stored. MICO
ontology is actually made of several ontologies describing different topics. Each ontology
is made of three kind of components: the structure, the individuals, and the rules. The
individuals may be initialization knowledge, acquired or inferred knowledge: they compose
the ontology A-Box. On the contrary, structure definition or rules belong to the ontology
T-Box. MICO ontology is written using Notation3 and is paired with EULER semantic
inferences engine. The current section describes the ontology structure, its logical rules
and queries.

Overall structure Several kind of information are described into MICO ontology.
For instance, a description for the initialization context is needed to start the processing
of a new whole slide image. Similarly, a description of the information outputted by the
image processing algorithms is needed to be able to interpret it when it comes up. Also,
histopathologists vocabulary should be described to have the ability to provide results of
the same language. Thus, the ontology should contains concepts from image processing
domain to communicate with the image processing algorithms, and concepts from medical
domain to exchange with histopathology experts during the grading process.

During the early steps of the project, it has been empirically found out it can be tough
to merge or to unify concepts coming from different domains within the same ontology.
Because such concepts may not perfectly overlap, and because people representation of their
domain is tightly linked with the same domain traditional denominations, such compromise
is complex (and maybe not reasonable 7) to achieve. On this matter, MICO approach is
to consider every expert conceptualization as legitimate: experts using the platform should
have the right to keep their habits wile defining and using their expertise. That is why it is
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preferred to allow theories coming from different domains to coexist, even if they describe
the same object. In such a case, translation rules should be written to give the system the
ability to convert a knowledge from one ontology to another (Figure .

There is another reason to argue in favour of “splitting” the knowledge into several on-
tologies: it is about the difficulties induced by the evolution of image processing algorithms
interfaces. Indeed, the input and output of these algorithms have been evolving and will
probably continue to evolve. It would be interesting to minimize as much as possible the
impact of this evolution on the platform, in particular on the analysis rules validity. To
protect the reasoning rules from the algorithms format evolution, a distinction is made
between the algorithms returning raw data and the higher knowledge level induced by it.
This distinction implies conversion rules, to convert raw data to higher level knowledge of
the same domain. Therefore, changes of an algorithm output format would only impact
the description of its output and the conversion rules to convert the same output to higher
level knowledge. The reasoning or conversion rules operating on higher level knowledge
would not be impacted, because the used high level ontology structure would not be al-
tered after modifications of algorithms output format. Thus, the platform would not be
strongly affected by image algorithms input and output format evolutions.

To sum up about the two kind of separations between ontologies: as illustrated on the
Figure [11], ontologies coming from different domains are all legitimate, and their existence
is allowed in MICO platform. This is the case for the medical domain and the image
processing domain. Within the same domain, the use of ontologies having different levels
of abstraction is recommended, in order to make a proper distinction between changing
data and the meaning of these data. This separation is indeed one of the good practices
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of AGFA Healthcare R&D. According to AGFA: high level ontologies are called Domain
Ontologies (DO) and low level ontologies are called Data Definition Ontologies (DDO).

The rules may have different purposes in the platform. Some rules aim to infer
knowledge from measurements while others aim to convert knowledge from one theory
to another, or to infer new knowledge from existing knowledge. According to the AGFA
terminology, the rules allowing to translate knowledge from one ontology to another are
called Conversion Rules, while the rules allowing to populate an ontology using knowledge
from the same ontology are called Analysis Rules. The Listing [I] is a rule example from
the developed platform prototype. This particular rule aims to detect when it is possible
to launch a territory extraction analysis on an histopathological whole slide image WFML
file. If the platform context fit the rule requirements, then an order is published in the
ontology. Each order contains information about both the image processing algorithm to
be launched (in this specific case, a territory extractor algorithm), and the parameters to
be provided as algorithm input. These parameters are generated from ontology content.

Listing 1: TerritoryExtraction Launch Rule

{
?wfuid a ido:wideFieldUniquelID;
ido:hasSlideTitle 7?slideTitle;
ido:hasWFMLAbsolutePath ?wfmlPath.
ng:mitosisCount ng:shouldBeAnalysedOn ?territory.
env:currentComputation a env:Computation;
env:isComputedOn [env:isLocatedIn ?obsSite; env:hostname ?computerName].
?wfuid rdf:label ?wfuidLabel.
?territory rdf:label ?territorylabel.
?slideTitle rdf:label ?slideTitlelabel.
?0bsSite rdf:label ?obsSitelabel.
}o=>
{
algo:algorithm territoryExtractor_v1l-0 algo:mustBeLaunchedWithInput
{
xml:wideFieldUniqueID xml:hasValue ?wfuidLabel.
xml:slideTitle xml:hasValue ?slideTitlelabel.
xml:observationSite xml:hasValue ?obsSitelabel.
xml:computerHostname xml:hasValue ?computerName.
xml :WFMLPath xml:hasValue ?wfmlPath.
xml:territoryLabel xml:hasValue ?territoryLabel

}.

The queries take the same shape as the rules, even if their purpose is quite different.
They are used to extract relevant information from the knowledge base. The extracted
relevant individuals may be results to be displayed to the user or orders aiming to launch
image processing algorithms. In the developed platform, the queries are typically used
to isolate algorithm launch orders. The Listing 2| is a query example from the developed
platform prototype. This particular query aims to detect when it is opportune to launch a
territory extraction analysis on an histopathological whole slide image WFML file. In this
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example, it is chosen to actually launch the algorithm when the known information allows
its launch and it has not already been launched with the same context.

Listing 2: TerritoryExtraction Launch Query

{

algo:TerritoryExtractor algo:observationType ?observationType.

?algorithm a algo:TerritoryExtractor;
algo:hasAbsoluteFilePath ?absolutePath;
algo:mustBeLaunchedWithInput ?input.

?input log:includes {xml:wideFieldUniqueID xml:hasValue ?wfid}.

[Je:findall (?anotherInput{?algorithm algo:wasLaunchedWithInput...

...[log:includes {xml:wideFieldUniqueID xml:hasValue ?wfid}]1}()).

}=>

{

?algorithm algo:mustBeLaunchedWithInput ?input;
algo:hasAbsoluteFilePath ?7absolutePath;
algo:observationType ?observationType.

4.4.3. Modules

MICO platform is made of both a semantic core and image processing algorithms. Since
the image processing algorithms are not aware of any conceptualization domain, they are
not able to directly communicate with the semantic core. And because they are generic
tools and could be applied on different contexts, they should not be tight to a specific
domain. Therefore, they should not interfere with non generic high level concepts. That
is why a conversion layer is needed to allow communication between the generic image
processing algorithms and the formal world describing the application domain, or MICO
ontology. The combination of an image processing algorithm and its conversion layers
is called a MICO module (Figure . Each MICO module conversion layer is actually
made of two layers. The first layer (next to the image processing algorithm) is an XML
interface. Such XML layer allows a first description of the algorithms input and outputs.
The second layer is made of both a XML <+ Notation3 converter and a semantic profile.
For instance, when an algorithm produces data, it is first expressed using XML. Then,
an XSL semantic profile is used by an XSLT engine to convert the XML to Notation3.
The N3 is finally incorporated into MICO knowledge base. Such conversion from raw
data to low level knowledge can be achieved because the algorithms outputs are highly
described, highly contextualized. Because a data without context has no meaning, each
algorithm measurement (output) contains various meta information like the measurement
location, date, time, the kind of measurement, the method used, etc. Indeed, these meta
information are crucial to make a proper N3 modelling. Thanks to the modules conversion
layers, communication is possible between black boxes (the image processing algorithms)
and white boxes (the semantic core).

5. Conclusion

The researches presented in this paper represent a considerable step towards a clinically
viable digital pathology. The objective of our study is to make histopathological WSI
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analysis reliable and traceable, for a better second opinion, based on quantitative support.

A working prototype has been proposed for the use case of a WSI, focusing on cancer
grading, and in particular, to the mitotic count. The implemented analysis is compliant
with the Nottingham Grading System, supported by the World Health Organisation.

The prototype realised is composed of two main components: a semantic core, and
a set of image processing algorithms. Generic image processing algorithms have been
designed for the our MICO platform. They have been developed by different members
of our team. A semantic description of each algorithm has been written, and they have
been incorporated into the platform. MICO semantic core has also been designed and
developed. Two main components have been implemented inside the core: a semantic
reasoning engine and an ontology. While the semantic reasoning engine is in charge of
the platform decisions, the ontology contains several layers of knowledge about both image
processing and histopathology domains.

Being a very ambitious challenge, leading to a potential breakthrough in imaging, this
work has also the meaning of its genericity. Indeed, the approach is applicable for number
of additional challenges, related, for example, to cytology, biology, molecular imaging and,
in general, to a large set of high-content high-throughput automatic screening approaches.
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