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Abstract: Coastal photosynthetic microbial mats are highly structured microbial communities 

that populate a variety of shallow environments such as estuaries, sheltered sandy beaches, 

intertidal flats, salt marshes or hypersaline salterns. In soft sediments, most of these microbial 

mats are formed of vertically stratified, multicolored and cohesive thin layers, of several 

functional groups of microorganisms, such as cyanobacteria, colorless sulfur bacteria, purple 

sulfur bacteria, or sulfate-reducing bacteria, distributed along vertical microgradients of 

oxygen, sulfide and light. These microbial communities are highly productive, significant 

contributors to carbon, nitrogen and sulfur cycles and to sediment stability in some shallow-

water habitats. Many examples of these communities have been cited in the past, but 

comparatively few microbial mats have been presented where mass developments of 

anoxygenic purple bacteria have been observed. Yet, application of molecular approaches has 

provided fresh insight into the ecology, diversity and evolution of microbial mats. In situ 

measurements using electrochemical and optical microprobes allowed a d etailed 

characterization of the physical and chemical environment whereas reflectance measurements 

revealed the spatial or temporal heterogeneity of microbial mat surfaces. We hereby report the 

main discoveries made through the introduction of these powerful techniques and point out 

the potential insight that might be gained into the study of anoxygenic purple bacterial mats. 
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1. Introduction 

 

Microorganisms have the ability to colonize different types of habitats and interact with each 

other, forming more or less complex communities. Microbial mats that develop in different 

geographical locations are a remarkable example of these associations. They are found for 

instance in coral reefs, hypersaline ponds and lakes, salterns, thermal springs, Antarctic lakes, 

and coastal sediments (Stal and Caumette, 1994). In the latter, they develop at the sediment-

water interface in shallow environments such as estuaries, intertidal areas, sandy beaches or 

hypersaline salt marshes (Herbert, 1985, S tal and Caumette, 1994, V an Gemerden et al., 

1989a, Van Gemerden et al., 1989b). Coastal microbial mats are principally inhabited by 

bacteria (heterotrophic, autotrophic and chemotrophic) as well as eukaryotic microalgae such 

as benthic diatoms. These consortia are often referred to as microbial mats, laminated 

microbial communities, microphytobenthos or simply biofilms, in the literature (or any 

combination) but describe ultimately the association of different microbial cells, embedded in 

an extracellular polymeric substance (EPS) matrix. These mats can exhibit different 

morphologies based on the physicochemical environments they experience. Most of the time, 

the cells are organized according to their physiologies in vertical laminated structure 

consisting of successive layers.  

In the coastal zone, microbial mats are mostly photosynthetic and are composed of several 

functionally complementary groups of microorganisms whose composition can vary greatly 

depending on the energy and nutrient source from the top and bottom. Cyanobacteria are often 

the pioneer organisms and generally dominate the top layer. According to the chemical and 

light gradients available they can for instance be followed by aerobic or facultative 

heterotrophic bacteria, chemolithotrophic bacteria (among them colorless sulfur bacteria), 

anoxygenic phototrophs (purple and green) and sulfate-reducing bacteria, forming several 

laminated layers distributed within the EPS matrix principally produced by cyanobacteria. 

Purple bacteria perform anaerobic anoxygenic (without release of oxygen) photosynthesis as, 

unlike cyanobacteria, they are unable to perform water photolysis due to the lack of the 

photosystem II. They mostly use, as electron donors, the intermediate products of organic 

matter degradation from primary producers and some compounds originated from 

fermentation and anaerobic respiration. In microbial mats, a large diversity in purple bacteria 
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is generally observed and the genus Thiocapsa is often highly represented (Van Gemerden et 

al., 1989b). 

In the last decade, community structure as well as physical-chemical environment of the 

microbial mats have been reviewed at several occasions (Franks and Stolz, 2009, Paerl and 

Pinckney, 1996, S tal and Caumette, 1994, Van Gemerden, 1993). The introduction of 

molecular approaches has indeed provided new insight into the ecology of these mats by 

allowing the characterization of the community structure (Ranchou-Peyruse et al., 2006, 

Wieland et al., 2003). Thanks to the development of high resolution microelectrodes, the 

physical and chemical environment of these mats was characterized at very small spatial 

scales (µm to mm, Revsbech and Jørgensen, 1983, Visscher et al., 1991). Pigment diversity 

and in situ reflectance measurements revealed the spatial or temporal heterogeneity of 

microbial mat surfaces (e.g. Brotas and Plante-Cuny, 2003, P aterson et al., 1998). Finally, 

their role in sediment biostabilisation was revealed (Paterson, 1997). This paper reports the 

main discoveries made through the introduction of these powerful techniques and points out 

the gap in current knowledge regarding anoxygenic phototrophic biofilms.  

 

2. Microbial communities in coastal purple phototrophic mats 

2.1. Structure of coastal purple phototrophic mats 

 

Photosynthetic microbial mats develop in many different habitats with salinities ranging from 

freshwater to hypersaline conditions (Overmann and Garcia-Pichel, 2006, Van Gemerden, 

1993). Some prominent marine and hypersaline habitats where laminated microbial 

communities frequently develop in visible masses are represented by coastal sediments of the 

Great Sippewissett salt marsh (USA) (Nicholson et al., 1987, Rothermich et al., 2000), coastal 

lagoons in the southern France (Caumette, 1986, Guyoneaud et al., 1996), marine salterns in 

France (Caumette et al., 1994, G iani et al., 1989) and in Guerrero Negro (Baja California, 

Mexico, (Canfield and Des Marais, 1993, Ley et al., 2006), sandy flats of the Ebro Delta (Mir 

et al., 1991, Navarrete et al., 2000), and sheltered beaches on the Orkney islands (Van 

Gemerden et al., 1989a, Van Gemerden et al., 1989b, W ieland et al., 2003). In such 

ecosystems, the surface sediment layer covers a transition zone between oxic and anoxic 

conditions characterized by steep gradients of oxygen and sulfide. These gradients favor the 

maturation of vertically stratified, multicolored and cohesive layers of several functional 
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groups of microorganisms. Although the uppermost layer, brown and green in color, may 

contain benthic diatoms, the dense top material is typically formed by unicellular and 

filamentous cells of cyanobacteria that are generally the driving force as they provide growth 

substrates for other organisms. For instance, newly colonized sands mostly comprised 

Oscillatoria sp. and Spirulina sp. (Franks and Stolz, 2009). The gliding cyanobacterium 

Microcoleus chthonoplastes often replaces these pioneer species and becomes dominant in 

mature intertidal mats (Stal et al., 1985, Van Gemerden, 1993). Below the cyanobacteria, a 

distinct layer of purple sulfur bacteria is often present, sometimes overlying a layer of green 

sulfur bacteria. Sometimes, a white layer or patches due to sulfide-oxidizing bacteria 

(including Beggiatoa spp.) are visible at the surface of marine sediments that have a 

sufficiently high production of sulfide from bacterial sulfate reduction (Jorgensen, 1977). 

They are followed vertically by sulfate-reducing bacteria whose activity leads to the 

precipitation of iron sulfides visible as black mud. Aerobic heterotrophic organisms are also 

functionally important as their activity leads to oxygen depletion, and fermentative organisms 

provide growth substrates for sulfate-reducers.  Other, numerically less important groups are 

nitrifying and denitrifying bacteria and methanogens. Numerous examples have been 

described in the literature of colored blooms and mass accumulations of phototrophic bacteria 

in the coastal zones and lagoons (Caumette and Baleux, 1980, Imhoff, 2001, and references 

herein). Mass developments of purple sulfur bacteria have been observed during warm 

summer months in the intertidal zone of sandy beaches (Herbert, 1985, Van Gemerden et al., 

1989a, Van Gemerden et al., 1989b). Three different laminated microbial mats were 

described, distinguished by the position of the cyanobacterial layer above or beneath the 

purple sulfur bacterial layer, or its complete absence and therefore exclusive development of 

purple sulfur bacteria in the top layer. On the Orkney islands (Herbert, 1985, Van Gemerden 

et al., 1989a, Van Gemerden et al., 1989b) and in Roscoff Aber Bay (Fig. 1; Hubas, C., Jesus 

B. M., Jeanthon, C., unpublished data), the latter pattern occurs seasonally when beaches are 

supplied with a high load of organic matter due to decomposition of macroalgae. These purple 

sulfur bacteria are therefore almost permanently exposed to oxygen at the sediment surface 

(e.g. Herbert and Welsh, 1994). Among the purple bacteria, the purple nonsulfur bacteria are 

also widely distributed in aquatic environments rich in organic matter (Guyoneaud et al., 

1996, Hiraishi and Ueda, 1995). 
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2.2. Cultural and molecular diversity of purple sulfur phototrophic mats 

 

Most ecological studies on the distribution of anoxygenic phototrophs in natural environments 

have been based on biochemical features such as photopigment composition (see section 3.1) 

and / or on estimations of bacterial numbers, isolation and characterization of pure cultures 

(Guyoneaud et al., 1996, Nicholson et al., 1987, Ranchou-Peyruse et al., 2006, Van Gemerden 

et al., 1989a). The most prominent purple sulfur bacteria, frequently observed and also 

isolated from marine coastal sediments, have been reviewed by van Gemerden and Mas  

(1995) and by Imhoff (2001). They were assigned to Thiocapsa roseopersicina, Thiocystis 

violacea and Allochromatium vinosum. As an example, various organisms have been 

cultivated from microbial mat communities of the Ebro Delta, one site among the most 

intensively studied. Vacuolated bacteria, such as Thiocapsa rosea and Lamprobacter 

modestohalophilus as well as non vacuolated bacteria such as Marichromatium gracile, T. 

roseopersicina or Ectothiorhodospira sp. have been isolated (Martinez-Alonso et al., 2005, 

Villanueva et al., 2010). T. roseopersicina , which is easily cultivated, is very common in 

marine coastal habitats and predominant in most systems where it can reach abundances of 

106 to 107 cells.cm-3 (Van Gemerden et al., 1989a).. The adaptation to a wide range of 

salinities and the high metabolic versatility and flexibility of this organism (tolerance to 

oxygen and possible aerobic growth in the dark) are important competitive advantages that 

explain the success of its distribution (de Wit and van Gemerden, 1987 , de  Wit and van 

Gemerden, 1990). Allochromatium spp and Marichromatium spp are also often observed and 

may be locally dominant (Imhoff, 2001). From red layers found in mats of hypersaline 

environments, other members of the family Chromatiaceae such as Halochromatium 

salexigens, H. glycolicum and Halothiocapsa halophila have also been isolated (Caumette et 

al., 1988, 1991, Caumette et al., 1997). 

In the last decades, the species composition of microbial mats has mostly been described by 

dissecting cores into thin horizontal layers and extracting nucleic acids or other cell 

components for chemical and molecular analysis (Martinez-Alonso et al., 2005, Mouné et al., 

2003, Navarrete et al., 2000, Ranchou-Peyruse et al., 2006, Villanueva et al., 2010). With 

these techniques, a high degree of bacterial diversity was generally found. As an example, the 

microbial mats within hypersaline lagoons at Guerrero Negro generated more than 1500 16S 

rRNA sequences representing over 750 s pecies (Ley et al., 2006). Denaturing gradient gel 

electrophoresis separation of 16S rRNA gene amplification products obtained using specific 

primer combination for Chromatiaceae, the main family of purple sulfur bacteria, showed that 
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the diversity of members of this family in microbial mats in the Ebro Delta was high and 

pointed out the presence of novel species not related to any known purple sulfur bacteria 

(Martinez-Alonso et al., 2005). 

The pufM gene encodes for the medium (M) subunit of the photosynthetic reaction center of 

the anoxygenic photosynthetic bacteria of the Alpha-, Beta-, and Gammaproteobacteria and 

of the Chloroflexaceae. Molecular analyses using this functional gene have also been applied 

in order to specifically study the depth distribution of anoxygenic phototrophs in mat 

communities (Fourçans et al., 2004, W ieland et al., 2003). Using this method, vertical diel 

migration of an anoxygenic phototrophic community in responses to oxygen concentrations 

and pH was detected at a m icroscale depth level (Fourçans et al., 2006). Only few studies 

detailed the  di versity of anaerobic purple bacteria by the analysis of pufM environmental 

libraries since the pioneering work of Achenbach et al. (2001) and Karr et al. (2003) on 

Antarctic lake waters and mats. An environmental clone library of the pufM gene was 

obtained from a thin cyanobacterial mat developed at the top of black sediment samples from 

the Berre lagoon (France) (Ranchou-Peyruse et al., 2006). Surprisingly, most of clones were 

closely related to aerobic anoxygenic phototrophic bacteria related to the Roseobacter clade 

whereas only two Roseobacter strains were isolated. The culture-dependent approach 

performed in parallel revealed the dominance of anaerobic purple sufur bacteria in these 

samples. The coexistence of both aerobic and anaerobic anoxygenic phototrophic bacteria has 

also been demonstrated in sediments from Antarctic and saline lakes (Karr et al., 2003, Thiel 

et al., 2010).   

 

3. Pigment diversity and reflectance measurements 

3.1. Pigment diversity of microbial mats 

 

The microenvironment within a mat is characterized by physical-chemical gradients (e.g. 

light, pH, nutrients), leading to high variability in the distribution of phototrophic 

microorganisms, both vertically within the top mm of the sediment (taxonomic stratification) 

and horizontally (high patchiness). Frequently, there is also significant temporal variability on 

biofilms that colonize intertidal areas as a result of the large physicochemical variations 

caused by the tide. The high variability exhibited by biofilms in such small scales cause 

significant sampling problems, e.g. to fully capture biofilm variability, many samples have to 
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be taken, often more than it is logistically possible. Also, until recently, most of the available 

techniques for assessing microorganisms abundance or pigment diversity in biofilms were 

destructive (e.g. pigment extraction with organic solvents and quantification by HPLC). The 

destruction of the biofilm removes the existing physical-chemical gradients, changing 

significantly the environmental conditions of the biofilm under investigation. Thus, there is 

growing interest in developing remote sensing techniques that allow the non-destructive and 

non-invasive study of phototrophic microbial biofilms.  S uch techniques include: spectral 

reflectance, O2 micro-electrodes, optodes, Pulse-Amplitude-Modulation (PAM) fluorometry, 

Fast Repetition Rate Fluorometry (FRRF) fluorometry and Infra Red CO2 Gas Analyzer 

(IRGA) benthic chambers (e.g. Kühl, 2005, K uhl and Polerecky, 2008, Migné et al., 2002, 

Stephens et al., 2003, T har et al., 2001, V opel and Hawes, 2006, Wiggli et al., 1999). All 

these techniques allow the repetition of measurements in the same biofilm area and some can 

be used to infer about biofilm biomass or taxonomic composition. In this section we focused 

on the use of spectral reflectance in the study of photosynthetic microbial mats.  

Microbial biofilm taxonomic diversity is reflected in the presence of different pigments. Some 

of these pigments can be used as “signatures” of the presence of specific groups in the 

biofilm, e.g. diatom dominated biofilms will show the abundant presence of fucoxanthin and 

chlorophyll c; cyanobacteria dominated biofilms will show a variety of cyanobacterial 

specific pigments (e.g. mixoxanthophyll, equinenone, etc.); and an anoxygenic bacterial 

biofilm will mainly show bacteriochlorophylls and carotenoids (Table 1).  If for diatom and 

cyanobacterial biofilms numerous studies exist showing their pigment composition (e.g. 

Andréfouët et al., 2003, B rotas and Plante-Cuny, 2003, S tephens et al., 2003), only few 

papers focus on anoxygenic bacterial biofilms (e.g. Masse et al., 2002). Spectral reflectance 

can be used to identify and quantify the presence of different pigments in the biofilms, but it 

is first necessary to determine the spectral signatures of these pigments. It is thus useful to 

have good “ground truth” studies, i.e. spectral measurements taken together with 

measurements of the pigments present in the biofilm. Currently there are few studies that have 

attempted to establish the pigment spectral signatures of anoxygenic phototrophic biofilms. 

Although they are not consensual about which wavelengths should be used to detect 

bacteriochlorophyll, there are 3 m ain absorbance peaks attributed to bacteriochlorophyll a: 

around 800 nm, around 850 nm and around 870 nm. The exact wavelengths depend on the 

type of bacteria present (Table 1). 
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3.2. Spectral reflectance of microbial phototrophic mats 

 

Spectral reflectance measurements have been used often in the estimation of biofilm 

microalgal biomass, using chlorophyll a as a biomass proxy (e.g. Carrère et al., 2004). 

Chlorophyll a strongly absorbs red light and reflects most of the infrared light. Using this 

information, a wide variety of chlorophyll a based reflectance studies were developed, e.g. 

Normalized Difference Vegetation Index (NDVI), modified soil-adjusted vegetation index 

(MSAVI). To our knowledge no s imilar index exists to estimate anoxygenic phototrophic 

biofilms; although bacteriochlorophyll a is frequently used to infer about the presence of 

anoxygenic phototrophic bacteria (e.g. Gitelson et al., 1999, Kühl and Jørgensen, 1992, Stal et 

al., 1984, S teenbergen and Korthals, 1982), it is not common to use the pigment content to 

quantify anoxygenic phototrophic bacterial biomass. Bacteriochlorophyll a dominated 

biofilms typically show absorption features in the infrared region, whereas chlorophyll a 

dominated biofilms do not (e.g. Stal et al., 1984). In the Roscoff Aber Bay where anoxygenic 

photosynthetic biofilms seasonally developed at the sediment surface, reflectance spectra 

recorded from different sediment areas allowed the determination of bacteriochlorophyll 

absorption features in the infrared region, with absorption maxima at 792 and 850 nm (Fig. 2).  

A spectral reflectance index is currently being developed by the authors to estimate 

bacteriochlorophyll content of this biofilm using bacteriochlorophyll absorption features.  

Spectral reflectance has also been widely used with benthic phototrophic biofilms to follow 

diatom vertical migration within the sediment matrix (e.g. Serôdio et al., 2009), to follow 

photo-regulatory vertical movements (e.g. Perkins et al., 2010), to follow photo-physiological 

mechanisms (Jesus et al., 2008), and to a lesser extent to identify the presence of different 

taxonomic groups, e.g. microalgae, cyanobacteria, green and purple bacteria (e.g. Bachar et 

al., 2008, Prášil et al., 2009, Wiggli et al., 1999).   P resently, most of the research done with 

spectral reflectance on anoxygenic biofilms seems to have been focused on the identification 

of the presence of different taxonomic groups in the biofilm. With the introduction of hyper-

spectral (HS) imaging technology it b ecame possible to map sediment biofilms with high 

spectral and spatial resolution (e.g. Bachar et al., 2008). HS imaging is a very sensitive and 

minimally invasive tool that can be used in the investigation of biofilm spatial organization 

role in mat ecosystem functions, providing the possibility of imaging microbial identity and 

activity at high spatio-temporal resolution. Presently, the majority of the work involving HS 

imaging seems to address mainly questions relating spatial distribution of the different 

taxonomic groups that colonize the sediment, vertically and horizontally (Kuhl and Polerecky, 
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2008, Polerecky et al., 2009). However, some research has started to emerge using 

combinations of imaging techniques to infer about the relationships between the different 

microalgal groups and their environment. For instance, Bachar et al. (2008) used 

hyperspectral imaging of reflectance spectra (4th derivative of spectral images with 460-

913 nm spectral resolution at 30 × 30 µm spatial resolution) and of emission spectra to map 

the distribution of different pigments (chlorophyll a, phycocyanin, bacteriochlorophyll a and 

bacteriochlorophyll c). Both spectral methods were sensitive enough to detect biofilm 

stratification within the sediment, showing the spectral signatures of chlorophyll a and 

zeaxanthin closer to the sediment surface, a mid layer 3-4 mm of bacteriochlorophyll c and 

bacteriochlorophyll a at deeper layers (5.5-7 mm). Using HS imagery these authors rejected 

their original hypothesis that Chloroflexaceae would be closely associated with the 

distribution of oxygenic phototrophs and proposed an alternative hypothesis that 

Chloroflexaceae is maximal in locations where both photosynthate excretion and sulfate 

reduction occur during a light / dark cycle.  

In conclusion, although considerable research on microalgae phototrophic biofilms using 

spectral reflectance tools already exists, there is a gap in current knowledge regarding the use 

of these techniques for quantification and study of anoxygenic phototrophs.   

 

4. Role of microbial mats in the functioning of coastal ecosystems 

4.1. Role of microbial mats in sediment stability 

 

Although the cohesive strength of one sediment may depend on its physicochemical 

properties, such as water content, density, mineralogy, plasticity, salinity and pH (Dade et al., 

1992), its stability may correlate better with biological parameter than with nonbiological 

ones (Paterson et al., 2000). Microbial exopolymeric secretions are increasingly recognized as 

a major stabilising factor (Stal, 2010). Extracellular Polymeric Substances (EPS) are a 

ubiquitous component of marine ecosystems primarily composed of carbohydrates, proteins 

and lesser amounts of other components. They have multiple roles in aquatic systems: 

attachment to substrata, flotation and locomotion, feeding, protection against desiccation / UV 

/ pollution, development of biofilms, communication (Decho, 1990). These molecules, mostly 

produced by diatoms and bacteria, compose a highly hydrated matrix more or less associated 

with cells. Tightly-wound capsules are secreted during exponential growth phase and 
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allegedly serve protective effects to the cell, whereas loose slimes allow microorganisms to 

attach each other and to sediment (Decho, 1990). The high amounts of EPS present in the 

sediment glue the grains together, thus enhancing the resistance of sediment to erosion and 

making it more stable (Paterson et al., 2000, Stal, 2010). If the resistance to erosion generally 

correlates well with carbohydrate and protein concentrations, variations in EPS quality 

influence as well sediment stability (Sutherland et al., 1998, van Duyl et al., 2000). Moreover, 

cyanobacterial filaments trap sediment particles and reinforce cohesion (Stal, 2010). Figure 3 

summarised the potential influence of microbial mats on sediment stability. Given the 

importance of sediment stability in coastal ecosystems (which are typically constrained by 

strong physical and geochemical gradients), microorganisms are increasingly recognized as 

ecosystem engineers. 

In the future, more studies are required in order to understand how EPS composition and 

diversity modify sediment properties. Particularly, little is known about stabilisation in mats 

of anoxygenic phototrophic bacteria. Yet abundance of purple sulphur bacteria may correlate 

with erosion threshold of sediment, and these bacteria appear to produce far more EPS than 

diatoms (Grant and Gust, 1987). Thus the erosion of sediment is lower when purple 

phototrophic mats are present (Van Gemerden et al., 1989a).  Recent measurements of 

sediment adhesion in Roscoff Aber Bay showed that sediment cohesion was enhanced and 

that sediment was stabilised by purple phototrophic bacteria, particularly under high bacterial 

abundance (Fig 4). Further investigations are now required to link stabilisation with the 

quantity or quality of the EPS produced by purple sulphur bacteria.  

 

4.2. Production and respiration of microbial mats organic matter and its fate into the 

coastal food web 

 

Microbial mats are very productive ecosystems (e.g. about 200 gC.m-2.y-1 in the Ebro Delta, 

Urmeneta et al., 1998). The Winkler titration method (Winkler, 1888), the incorporation of 
14C labeled bicarbonate, the fast-responding CO2 microelectrodes (de Beer et al., 1997) or the 

measurements of total DIC fluxes (e.g. Wieland et al., 2005) have been used extensively to 

measure primary production, but most of the estimates in benthic photosynthetic mats were 

performed to date with oxygen microelectrodes (Oren, 2009), by measuring rates of oxygen 

depletion at different depths during light–dark shifts (Revsbech and Jørgensen, 1983). This 

method allows accurate estimation of gross primary production rates across the mat-water 
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interface from the profiles providing that irradiance, temperature as well as porosity of the 

substrates are known (Wieland and Kühl, 2000). Oxygen measurements can provide 

information about both gross primary production and respiration of the microbial mats at 

millimetre scale. They revealed that microorganisms thrive in such a closeness that they 

mutually influence each other (Van Gemerden, 1993). Biological processes usually 

metabolically incompatible are found to occur simultaneously within the mats, which imply a 

tight coupling between them. The different members of the community are thus mutually 

dependent so that the entire ecosystem is often considered as self-sustaining (Des Marais, 

2003). The development of electrochemical and optical microprobes has attracted many 

microbiologists during the past decades probably because their resolution is particularly 

suitable for the study of microbial environments. But, ironically, whilst we have to date a 

good understanding of the chemical and physical conditions that microorganisms experience 

at millimeter scales in microbial mats, we still do not know precisely which role microbes 

play in biogeochemical cycles at larger scales.  

In addition, microbial mats can represent a significant source of fixed carbon and nitrogen to 

the surroundings and they may serve as an important food source to higher trophic levels 

(Joye and Lee, 2004). Recently, it has been shown that anoxygenic microbial mats may 

support the diet of inhabiting mud snails (Riera, 2010). In addition, microbial mats of the 

intertidal area which are dominated by diatoms generally serve as a f ood source for many 

invertebrates of the macrofauna and meiofauna (e.g.Hagerthey et al., 2002, Riera and Hubas, 

2003), including many commercial species such as penaeid shrimp postlarvae (Al-Maslamani 

et al., 2009) or the oyster Crassostrea gigas (Riera and Richard, 1996). But despite the 

marked role they play into the coastal food web, the fate of microbial mats organic matter has 

seldom been addressed. Bacterial production has been proved to be a significant food source 

to benthic grazers and a sink of organic carbon in the food web of intertidal sediments (van 

Oevelen et al., 2006) but further studies are still needed particularly concerning anoxygenic 

microbial mats. 

Indeed, mass bloom of anoxygenic phototrophic bacteria can develop at the sediment surface 

if the organic matter input is strong enough (Herbert and Welsh, 1994) forming purple 

microbial mats which are characterised by the absence of oxygenic photosynthesis. The 

accumulation of organic matter at the sediment surface stimulates respiration and, below 2 to 

3 mm depth, sediment becomes totally anoxic and characterised by very high sulfate-reducing 

rates (Bolam et al., 2000, Nedergaad et al., 2002), allowing the exclusive growth of 

anoxygenic purple bacteria. Primary production and respiration rates measurements are still 



 12 

scarce on these types of mats. Recently, the high contribution of Chloroflexus-like anoxygenic 

phototrophs (green non-sulphur bacteria) to the gross primary production and community 

respiration of a microbial mat was found to be strongly dependent upon the light availability 

in the near infrared region (Polerecky et al., 2007). This highlights the fact that understanding 

the contribution of anoxygenic phototrophs to total primary production and respiration is 

more complex than previously thought and that more studies on anoxygenic microbial mats 

are required. 

Microbial mats are a remarkable example of the various forms of respiration that co-exist in 

aquatic habitats. Anaerobic respiration as well as aerobic respiration and re-oxydation 

processes have been relatively well studied in these systems. From the surface to the depth, 

the redox potential decreases, which influence the distribution of the different respiration 

pathways. Along the sediment depth, the chemical reactions involve different terminal 

electron acceptors and display apparent free energy yields which decrease with increasing 

depth (Hoehler, 2004). Carbon fluxes across the mat-water interface are generally deduced 

from oxygen measurements by applying known respiratory quotients (RQ). However, most of 

the RQ apply to conventional aerobic respiration and have no useful meaning in case total 

respiration mainly occurs via anaerobic pathways (Williams and Del Giorgio, 2005). Total 

DIC fluxes in benthic chamber enclosures or chambers equipped with a CO2 infra-red gas 

analysers (Migné et al., 2002) are an efficient way to measure C fluxes across the mat-water 

or mat-air interface. They have been used extensively on emersed diatom biofilms to estimate 

their annual carbon budgets (Hubas and Davoult, 2006, Migné et al., 2004, Spilmont et al., 

2006) but rarely on other microbial mats to our knowledge. 

 

5. Conclusions and future directions 

The current knowledge of ecology, ecophysiology and role of anoxygenic purple microbial 

mats is far less documented than those dominated by cyanobacteria and / or diatoms. 

Molecular approaches have provided fresh insight into the diversity of microbial mats but the 

role of microbial species diversity in sustaining ecosystem processes like primary production 

has seldom been addressed (but see Forster et al., 2006). As revealed by spectral reflectance 

measurements, the distribution of phototrophic microorganisms in coastal ecosystems is 

highly variable. Remote sensing methods are probably an efficient way to perform a real 

integration of these systems at larger scales. Indeed, coastal habitats are amongst the most 
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productive ecosystems on earth and the contribution of anoxygenic bacteria to the coastal C 

and N cycles and their role in sustaining local food webs are probably underestimated. 

Techniques such as HS imaging combined with state of the art optical sensors (e.g. optodes, 

Imaging PAM) will surely help to elucidate the distribution, trophic, geochemical roles of 

anoxygenic phototrophic biofilms as well as investigate in depth their photobiology in intact 

samples. In addition, new generations of ion microprobes based on m ass spectrometry of 

secondary ions (SIMS) are now available and particularly appropriate to the study of 

microbial mats. They allow the analysis of any isotopic composition of a given sample surface 

and the distribution of labelled molecules (e.g. H13CO3
-) at a sub-cellular scales. It is thus now 

possible to determine the rate of carbon and nitrogen fixation at the cellular level (Musat et 

al., 2008) which would give valuable information about the functioning of the microbial mats 

in the future. 
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Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: pictures of purple phototrophic mats, underwater (top panel) and emerged (bottom 
panel), in Roscoff Aber Bay.  
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Figure 2: left panel: pictures of sites with low (A), medium (B) and high (C) biomass of 
purple sulfur bacteria, in Roscoff Aber Bay. Right panel : spectral reflectance of the sediment, 
in sites with low (dashed line), medium (solid line) and high (dotted line) biomass of these 
bacteria. The arrows point the bacteriochlorophyll a absorption peaks.  
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Figure 3: biotic and abiotic parameters influencing sediment stability. Arrow with black solid 
line: stimulates. Arrow with gray solid line: inhibits. Arrow with dashed line: has an influence 
on.  
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Figure 4: sediment cohesion (mTa; mean ± SD) in sites with low, medium and high biomass 
of purple sulfur bacteria, in Roscoff Aber Bay (see fig 2). Measurements were performed 
using a Magnetic Particle Inducer (MagPI),  a d evice recently developed by Larson et al. 
(2009). 
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Table 1: in vivo pigment spectral “signatures” collected from available references. Numbers between brackets refer to the absorption features of each pigment. 
Emphasis was given to references where bacteriochlorophyll samples were found.  Alo- alloxanthin, BChl-  bacteriochlorophyll, ß-car- ß-carotene, BChla –
bacteriochlorophyll a, BChlc –bacteriochlorophyll c, BChld –bacteriochlorophyll d, BChle –bacteriochlorophyll e, Car- carotenoides, Chla- chlorophyll a, 
Chlb- chlorophyll b, Chlc- chlorophyll c, Chld- chlorophyll d, DD- diadinoxanthin, Fuco- fucoxanthin, Lut- lutein, Myxo- myxoxantophyll, Oke - Okenone, 
PC- phycocianin, PB- phycobilin pigments, PE- phycoerythrin, Per- peridinin, Spi – Spirilloxanthin, Zea- zeaxanthin 

Pigments and in vivo spectral signatures Type of measurement Type of microbial community Reference 
 

BChla (800-810, 860-880), BChlc (750), Car (450-

550), PC (620) 

Reflectance Microcoleus chthonoplastes, Chromatium sp., 

Thiocapsa sp., Chloroflexus 

Kühl & Jørgensen (1992) 

BChld & BChle (720), BChla (835), Chla (680), 

PE (560, 570), PC (625, 630) 

Absorbance Chromatium, Thiopedia, Chloronema Steenbergen & Korthals (1982) 

Bchla (370, 830), Oke (520) Absorbance  Thiocapsa roseopersicina Massé et al. (2002) 

Bchla (805,860, 880), Spi (480,520,550) Absorbance and reflectance  Thiocapsa roseopersicina Gitelson et al. (1999) 

BChl (800, 801, 804, 806, 808, 835, 837, 862, 865, 

867, 868, 870, 879) 

Absorbance Review  about aerobic anoxygenic phototrophic 
bacteria 

Yurkov & Csotonyi (2009) 

 

BChla (800, 850, 890), PB (620), Reflectance ----------- Wiggli et al. (1999) 

BChla (790-810,865, 830-880), Chla (675), Chlc 

(630-635), PC (620), PB (560-620), 

Reflectance Sediment biofilm, Cyanobacteria, diatoms and 

purple sulfur bacteria 

Kühl et al. (1994) 

Chla (675), Chlc (623), DD (500), Fuco (550) Reflectance Diatom biofilms Méléder et al. (2003) 

BChla (807,845), BChlc (745-750), Chla (440, 

675), PC (625) 

Absorbance Sediment cyanobacterial mat, purple and green 

photosynthetic bacteria 

Kühl & Fenchel (2000) 

Chla (422, 659, 680), Car (422,448, 478), Myxo 

(508), PB (534, 570, 594, 628) 

Reflectance Sediment biofilm (cyanobacterial mat) Andréfouet et al. (2003) 

Alo (649), Chla (412, 441, 623, 682), Chlb (466), 

Fuco (525, 540-548,) PE (574) 

Reflectance Rocky shore biofilm, diatoms with 
cyanobacteria 

Murphy et al. (2005) 

 

Chla (422, 444, 676), Chlb & Chlc (468), Fuco & 

Per (672), PE (572), PC (620), Zea, lut, ß-car & 

DD (492) 

Reflectance, Sediment biofilm Stephens et al. (2003) 

 

Bchlc (732), Chla (440, 680), Chlb (650-655), 

Chld (710-712), PE (576), PC (626), 

Hyperspectral imaging Bacterial mat under didemnid ascidian Kühl & Polerecky (2008) 
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