Erratum: Spin-unrestricted random-phase approximation with range separation: Benchmark on atomization energies and reaction barrier heights [J. Chem. Phys. 142, 154123 (2015)]

Bastien Mussard, ${ }^{1,2,3, ~ a) ~ P e t e r ~ R e i n h a r d t, ~}{ }^{2,3}$ János G. Ángyán, ${ }^{4,5}$ and Julien Toulouse ${ }^{2,3, b)}$
${ }^{1)}$ Sorbonne Universités, UPMC Univ Paris 06, Institut du Calcul et de la Simulation, F-75005, Paris,
France
${ }^{2}$ Sorbonne Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris, France
${ }^{3)}$ CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris, France
${ }^{4)}$ CRM2, Institut Jean Barriol, Université de Lorraine, F-54506 Vandouvre-lés-Nancy,
France
${ }^{5)}$ CRM2, Institut Jean Barriol, CNRS, F-54506 Vandoevre-lés-Nancy, France

After publication of our paper, ${ }^{1}$ we realized that the expressions for the dRPA-II and RPAx-II correlation energies,
shown in equations (2) and (4) of the paper, ${ }^{1}$ should take the following forms (previously published in Ref. [2]):

$$
\begin{equation*}
E_{\mathrm{c}}^{\mathrm{dRPA}-\mathrm{II}}=\frac{1}{2} \int_{0}^{1} \mathrm{~d} \alpha \operatorname{tr}\left[\frac{1}{2} \mathbf{Q}_{\alpha}^{\mathrm{dRPA}}\left(\mathbf{A}_{1}^{\prime \mathrm{II}}+\mathbf{B}_{1}^{\mathrm{II}}\right)+\frac{1}{2}\left(\mathbf{Q}_{\alpha}^{\mathrm{dRPA}}\right)^{-1}\left(\mathbf{A}_{1}^{\prime \mathrm{II}}-\mathbf{B}_{1}^{\mathrm{II}}\right)-\mathbf{A}_{1}^{\prime \mathrm{II}}\right] \tag{1}
\end{equation*}
$$

and:

$$
\begin{equation*}
E_{\mathrm{c}}^{\mathrm{RPAx}-\mathrm{II}}=\frac{1}{4} \int_{0}^{1} \mathrm{~d} \alpha \operatorname{tr}\left[\frac{1}{2} \mathbf{Q}_{\alpha}^{\mathrm{RPAx}}\left(\mathbf{A}_{1}^{\prime \mathrm{II}}+\mathbf{B}_{1}^{\mathrm{II}}\right)+\frac{1}{2}\left(\mathbf{Q}_{\alpha}^{\mathrm{RPAx}}\right)^{-1}\left(\mathbf{A}_{1}^{\prime \mathrm{II}}-\mathbf{B}_{1}^{\mathrm{II}}\right)-\mathbf{A}_{1}^{\prime \mathrm{II}}\right] \tag{2}
\end{equation*}
$$

where the matrix \mathbf{Q}_{α} is defined as follow:

$$
\begin{equation*}
\mathbf{Q}_{\alpha}=\left(\mathbf{A}_{\alpha}-\mathbf{B}_{\alpha}\right)^{1 / 2}\left(\mathbf{M}_{\alpha}\right)^{-1 / 2}\left(\mathbf{A}_{\alpha}-\mathbf{B}_{\alpha}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

with matrices $\mathbf{A}_{\alpha}^{\mathrm{I}}$ and $\mathbf{B}_{\alpha}^{\mathrm{I}}$ used to construct $\mathbf{Q}_{\alpha}^{\mathrm{dRPA}}$ and matrices $\mathbf{A}_{\alpha}^{\mathrm{II}}$ and $\mathbf{B}_{\alpha}^{\mathrm{II}}$ used to construct $\mathbf{Q}_{\alpha}^{\mathrm{RPAx}}$. Note that the matrices $\mathbf{A}_{\alpha}^{\mathrm{I}}$, $\mathbf{A}_{\alpha}^{\mathrm{II}}, \mathbf{B}_{\alpha}^{\mathrm{I}}, \mathbf{B}_{\alpha}^{\mathrm{II}}$ as well as \mathbf{M}_{α} are defined in our paper ${ }^{1}$ but that, on the other hand, the matrix $\mathbf{A}_{1}^{\prime \mathrm{II}}$ appearing in Eqs. (1) and (2) of this erratum needs to be defined here:

$$
\begin{equation*}
\left(A_{\alpha}^{\prime I I}\right)_{i a, j b}=\alpha\langle i b \| a j\rangle \tag{4}
\end{equation*}
$$

It differs from $\mathbf{A}_{\alpha}^{\mathrm{II}}$ in that it does not contain the differences of spin-orbital energies.

All results shown in the original paper were obtained using equations (1) and (2) of this erratum and are thus correct.

Note that the matrices \mathbf{Q}_{α} are related to the matrices $\mathbf{P}_{\mathrm{c}, \alpha}$ that appear in our paper ${ }^{1}$ by $\mathbf{P}_{\mathrm{c}, \alpha}=\mathbf{Q}_{\alpha}-\mathbf{I}$ (where \mathbf{I} is the identity matrix) and that one can make the following approxi-
mations to the matrices $\left(\mathbf{Q}_{\alpha}\right)^{-1}$, as explained in Ref. [2]:

$$
\begin{equation*}
\left(\mathbf{Q}_{\alpha}^{\mathrm{dRPA}}\right)^{-1}=\left(\mathbf{I}+\mathbf{P}_{\mathrm{c}, \alpha}^{\mathrm{dRPA}}\right)^{-1} \approx \mathbf{I}-\mathbf{P}_{\mathrm{c}, \alpha}^{\mathrm{dRPA}}=2 \mathbf{I}-\mathbf{Q}_{\alpha}^{\mathrm{dRPA}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\mathbf{Q}_{\alpha}^{\mathrm{RPAx}}\right)^{-1}=\left(\mathbf{I}+\mathbf{P}_{\mathrm{c}, \alpha}^{\mathrm{RPAx}}\right)^{-1} \approx \mathbf{I}-\mathbf{P}_{\mathrm{c}, \alpha}^{\mathrm{RPAx}}=2 \mathbf{I}-\mathbf{Q}_{\alpha}^{\mathrm{RPAx}} \tag{6}
\end{equation*}
$$

which lead to the so-called "IIa" approximations to the dRPAII and RPAx-II correlation energies:

$$
\left.\begin{array}{rl}
E_{\mathrm{c}}^{\mathrm{dRPA}-\mathrm{IIa}} & =\frac{1}{2} \int_{0}^{1} \mathrm{~d} \alpha \operatorname{tr}\left[\mathbf{B}_{1}^{\mathrm{II}} \mathbf{P}_{\mathrm{c}, \alpha}^{\mathrm{dRPA}}\right], \\
E_{\mathrm{c}}^{\mathrm{RPAx}-\mathrm{IIa}} & =\frac{1}{4} \int_{0}^{1} \mathrm{~d} \alpha \operatorname{tr}\left[\mathbf{B}_{1}^{\mathrm{II}} \mathbf{P}_{\mathrm{c}, \alpha}^{\mathrm{RPAx}}\right. \tag{8}
\end{array}\right] . .
$$

These are the expressions that were erroneously shown in the original paper.
${ }^{1}$ B. Mussard, P. Reinhardt, J.G. Ángyán, J. Toulouse, J. Chem. Phys. 142, 154123 (2015).
${ }^{2}$ J. G. Ángyán, R.-F. Liu, J. Toulouse and G. Jansen, J. Chem. Theory Comput. 7, 3116 (2011).

[^0]
[^0]: ${ }^{\text {a) }}$ Electronic mail: bastien.mussard@upmc.fr
 ${ }^{\text {b) }}$ Electronic mail: julien.toulouse@upmc.fr

