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Coiling of an elastic beam inside a disk: a model for spider-capture silk

Motivated by recent experimental observations of capillary-induced spooling of bers inside droplets both in spider capture silk and in synthetic systems, we investigate the behavior of a ber packed in a drop. Using a simplied 2D model, we provide analytical predictions for the buckling threshold and the deep post-buckling asymptotic behavior. The threshold for spooling is found to be in particularly good agreement with experimental results. We further solve the Elastica equations for a ber conned in a soft potential, and track the equilibrium paths using numerical continuation techniques. A wealth of dierent paths corresponding to dierent symmetries is uncovered, and their stability is nally discussed.

Introduction

The mechanical properties of spider silk are often presented as outstanding [START_REF] Foelix | Biology of spiders[END_REF][START_REF] Omenetto | New Opportunities for an Ancient Material[END_REF]. An indeed, most silk threads outperform the best man-made bers, such a Kevlar, at least in terms of toughness [START_REF] Vollrath | Liquid crystalline spinning of spider silk[END_REF]. To a large extent, these properties rely on the molecular architecture of the silk. For example, it has been shown that the building blocks of agelliform silk involve molecular nanosprings [START_REF] Becker | Molecular nanosprings in spider capture-silk threads[END_REF]. In 1989 however, a team comprising a zoologist and a physicist reported on coiling and packing of the core lament inside a glue droplet [START_REF] Vollrath | Modulation of the mechanical properties of spider silk by coating with water[END_REF]. This windlass mechanism, as it was called, provided indirect evidence that the glue droplets may as well play a role in the mechanical response of the silk thread. These results have been a subject of debate in the community, and it is only very recently that the mechanism has been observed to be active in a real spider web, see Fig. 1-Left and [START_REF] Elettro | In-drop capillary spooling of spider capture thread inspires highly extensible bres[END_REF]. A natural question that arises in this context is the role played by the molecular structure of the silk and the glue in the observed coiling. An experimental answer to this question is provided in Fig. 1-Right, where a micron-sized articial thread bearing a silicon oil droplet also exhibits the coiling mechanism and packing behavior, therefore demonstrating that capillarity and elasticity are sucient ingredients to explain the mechanism.

Figure 1: Experiments on bers bent inside liquid drops. Left: microscopic photograph of spider capture silk. Flagelliform core laments are seen to be coiled and packed inside a (typically 300 µ wide) glue droplet. Right: same mechanism reproduced articially with a 200 µm synthetic droplet and ber (see experimental verication section in section 4). Reproduced from [START_REF] Elettro | In-drop capillary spooling of spider capture thread inspires highly extensible bres[END_REF].

Interestingly, the shape adopted by the lament inside the drop can be as dierent as a perfectly ordered closelypacked annular bundle or a completely disordered tangle. This behavior is reminiscent of the organization of packed Email address: sebastien.neukirch@upmc.fr (Sébastien Neukirch) wires in rigid [START_REF] Stoop | Packing of Elastic Wires in Spherical Cavities[END_REF] and elastic [START_REF] Vetter | Morphogenesis of laments growing in exible connements[END_REF] spherical shells, patterns of folded structures such as plant leaves or crumpled paper [START_REF] Boué | Spiral Patterns in the Packing of Flexible Structures[END_REF][START_REF] Couturier | The lling law: A general framework for leaf folding and its consequences on leaf shape diversity[END_REF], and DNA packing inside capsids [START_REF] Lamarque | Packaging Double-Helical DNA into Viral Capsids[END_REF][START_REF] Klug | Three-dimensional director-eld predictions of viral DNA packing arrangements[END_REF][START_REF] Leforestier | Structure of toroidal DNA collapsed inside the phage capsid[END_REF]. The purpose of the present paper is to explore theoretically in a simplied setting the shape and stability of strongly post-buckled states in order to lay down the basis for a deeper understanding of the windlass mechanism.

The paper is organized as follows. In section 2 we present the problem and the equilibrium equations. In section 3 we perform a linear stability analysis of the straight beam and predict the buckling threshold. Experimental results are confronted to theoretical in section 4 experiments. Finally, we describe the non-linear response of the system in terms of equilibrium solutions and their stability in section 5

Model
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An elastic beam held in tension at its extremities, and buckling under the action of compressive forces at a disk. The beam is clamped at both ends. The deformation of the beam is described by the angle θ(S) between the tangent to the beam and the x-axis, where S ∈ [0, L] is the arc-length along the beam.

We consider an elastic beam in interaction with a liquid disk and under the action of a tensile end-load. As indicated in Fig. 2, we restrict to planar deformations of the beam, X and Y denoting the horizontal and vertical directions respectively. The beam has length L and a circular cross-section of radius h. We work under the slender (L h) Euler-Bernoulli hypotheses where the beam is considered inextensible and unshearable. Congurations are thus fully described by the position and orientation of the centerline. We use the arc-length S ∈ [0, L] and note θ(S) the angle between the tangent of the beam and the horizontal. The presence of the liquid disk generates capillary forces due to the contrast of surface energy, the interaction energy of the beam with the liquid being smaller than the interaction energy of the beam with the air. Capillary forces are two-fold: (i) meniscus forces applied on the beam at the entrance and exit of the disk, and (ii) barrier forces that prevent the beam from exiting the disk elsewhere than at the meniscus points. We consider that the drop is undeformable and thus remains a disk throughout the experiments. As shown in Appendix A, meniscus forces are pointing toward the center of the disk (see Equations (A.15) and (A.18)) and their intensity is related to the angle between their direction and the tangent to the beam at the meniscus points (see Equation (A.25)). A soft-wall barrier potential [START_REF] Manning | Stability of an elastic rod buckling into a soft wall[END_REF] V

(X, Y ) = V 0 1 + ρ -(1/R) (X -X C ) 2 + (Y -Y C ) 2 (1) 
is used to retain the beam inside the disk, centered on (X C , Y C ) and of radius R. The small dimensionless parameter ρ is introduced to avoid the potential to diverge at the meniscus points A and B, where the rod enters and exits the disk. The intensity V 0 of the potential is chosen to be small, the hard-wall limit being V 0 → 0. Kinematics, relating the position (X, Y ) of the rod and the inclination θ of its tangent (cos θ, sin θ) with the horizontal, the bending constitutive relation, relating the curvature θ (S) to the moment M (S), and nally force (N x , N y ) and moment balance are detailed in Appendix A and read

X (S) = cos θ , Y (S) = sin θ (2a) EI θ (S) = M , M (S) = N x sin θ -N y cos θ (2b) N x (S) = χ ∂V ∂X + δ(S -S A ) Λ A X A -X C R + δ(S -S B ) Λ B X B -X C R (2c) N y (S) = χ ∂V ∂Y + δ(S -S A ) Λ A Y A -Y C R + δ(S -S B ) Λ B Y B -Y C R ( 2d 
)
where S is the arc-length along the rod, and () = d()/dS. We dene the coordinates of point A as 

(X A , Y A ) = (X(S A ), Y (S A )),
-γ SL = γ LV cos α Y ),
and where V A = V B = V 0 /ρ are small compared to F γ . We restrict ourself to cases where the disk is centered on the mid-point of the rod, that is we introduce Σ such that S A = L/2 -Σ and S B = L/2 + Σ. The rod has then 2 Σ of its arc-length spent inside the disk. Finally the external applied tension is noted T = N x (L).

Non-dimensionalization

We use the diameter D = 2R of the disk as unit length, and the buckling load EI/D 2 as unit force. We thus introduce the following dimensionless quantities

s = S D ; σ = Σ D ; = L D ; (x, y) = (X, Y ) D ; n = N D 2 EI ; t = T D 2 EI (3a) f γ = F γ D 2 EI ; m = M D EI ; λ A,B = Λ A,B D 2 EI ; (v, v 0 ) = (V, V 0 ) D 2 EI (3b)
and δ(s) = D δ(S). We then have v(x, y)

= v 0 1 + ρ -2 (x -x C ) 2 + (y -y C ) 2 -1 and 
x (s) = cos θ , y (s) = sin θ (4a) θ (s) = m , m (s) = n x sin θ -n y cos θ (4b) n x (s) = χ ∂v ∂x + 2δ(s -s A ) λ A (x A -x C ) + 2δ(s -s B ) λ B (x B -x C ) (4c) n y (s) = χ ∂v ∂y + 2δ(s -s A ) λ A (y A -y C ) + 2δ(s -s B ) λ B (y B -y C ) (4d) 
where () = d()/ds, and s A = /2 -σ, s B = /2 + σ.

Boundary-value problem

We consider v 0 , ρ, f γ , and as xed parameters and we look for equilibrium solutions by integrating equations ( 4) with the initial conditions

x(0) = 0 ; y(0) = 0 ; θ(0) = 0 ; m(0) = m 0 ; n x (0) = n x0 ; n y (0) = n y0 (5) 
where m 0 , n x0 , and n y0 are unknowns to be accompanied with σ, x C , y C , λ A , and λ B . We therefore have 8 unknowns which are balanced by the following 7 conditions. At the s = end of the rod, clamped boundary conditions read

y( ) = 0 ; θ( ) = 0 (6) 
The requirement that points A and B lie on the circle yields the conditions

[x A -x C ] 2 + [y A -y C ] 2 = 1/4 ; [x B -x C ] 2 + [y B -y C ] 2 = 1/4 (7) 
and the three force balances related to forces coming from the disk read

n x (s - A ) = n x (s + B ) (8a) n y (s - A ) = n y (s + B ) (8b) -2f γ + v A + v B -2λ A [(x A -x C ) cos θ(s A ) + (y A -y C ) sin θ(s A )] + 2λ B [(x B -x C ) cos θ(s B ) + (y B -y C ) sin θ(s B )] = 0 (8c)
The solution set is thus a 8 -7 = 1 dimensional manifold and we plot in Section 5 dierent solution paths for several values of the parameter f γ .

Buckling threshold

The trivial solution x(s) = s, y(s) = θ(s) = m(s) = n y (s) = 0 to Equations ( 4) with boundary conditions ( 5)-( 8), exists for any value of the load t. Nevertheless, for given values of the parameters v 0 , ρ, f γ , and , there is a threshold value of t under which the trivial solution ceases to be stable and buckling occurs. We look for the rst buckling mode which is symmetrical with respect to the axis joining the center of the disk (x C , y C ) and the beam midpoint (x( /2), y( /2)). We linearize equations (4) for small deections, |y(s)| ∼ , and small slopes, |θ(s)| ∼ , with 0 < 1, see Appendix B for a comprehensive exposition of this perturbation expansion. As in the buckling conguration the rod has virtually no packing interaction with the disk, we set v 0 = 0. The rst four equations of system (4) become x (s) = 1, y (s) = θ(s), θ (s) = m(s), and m (s) = n x (s) θ(s) -n y (s). We then have x C = /2, x A = /2 -σ, and x B = /2 + σ. At order 0 , equation ( 7) yields σ = 1/2. As symmetry imposes y A = y B and θ(s A ) = -θ(s B ), Equation ( 7) at order 2 imposes y C = y A = y B . Then (8c) at order 0 yields 2f γ = λ A + λ B and, as symmetry requires λ A = λ B , we nally obtain f γ = λ A = λ B . Following symmetry we introduce ŝ = s -/2. The three functions y(ŝ), θ(ŝ), and m(ŝ) are then respectively even, odd, and even functions of the variable ŝ. We focus on the right half of the system, ŝ

∈ [0; /2]. Equation (4c) is integrated to yield n x (ŝ) = t -f γ for ŝ ∈ [0; 1/2] and n x (ŝ) = t for ŝ ∈ [1/2; /2]. Equation (4d) shows that n y (ŝ) = const. and from m (ŝ) = n x (ŝ) θ(ŝ) -n y (ŝ)
we see that n y (ŝ) has to be odd, hence zero. We nally arrive at the reduced system

θ = -(f γ -t) θ for ŝ ∈ [0; 1/2] (9) 
θ = t θ for ŝ ∈ [1/2; /2] (10) 
and we restrict to the f γ > t ≥ 0 case. Integrating these equations and using the boundary conditions θ(ŝ = 0) = 0 = θ(ŝ = /2) and the matching conditions θ(ŝ = 1/2 -) = θ(ŝ = 1/2 + ) and m(ŝ = 1/2 -) = m(ŝ = 1/2 + ), we obtain the buckling condition

f γ -t tanh ( -1) √ t 2 + √ t tan f γ -t 2 = 0 (11) 
which is plotted in Figure 3. The two interesting asymptotic limits of the curve dened by [START_REF] Lamarque | Packaging Double-Helical DNA into Viral Capsids[END_REF] 

are (i) if t → 0 then f γ → π 2 + 8/ , and (ii) if f γ → +∞ then t → f γ -4π 2 .
Approximations to the buckling load

In the case where 1, we simplify Equation ( 11) and nd

f γ -t + √ t tan f γ -t 2 = 0 (12) 
This formula has the same large f γ limit as [START_REF] Lamarque | Packaging Double-Helical DNA into Viral Capsids[END_REF] and in fact as → +∞, the curve dened by [START_REF] Lamarque | Packaging Double-Helical DNA into Viral Capsids[END_REF] tends to the curve dened by [START_REF] Klug | Three-dimensional director-eld predictions of viral DNA packing arrangements[END_REF] everywhere but in a boundary layer around (f γ , t) = (π 2 , 0). Indeed even if is large, for small t the tanh term cannot be approximated by 1 if t ∼ 1/ 2 . It is convenient to have an explicit formula t = t(f γ ) for buckling and we introduce the approximation

t b (f γ ) = f γ -4π 2 - 108π 4 3π 4 -40π 2 + (3π 2 -28) f γ + (32π -6π 3 ) f γ ( 13 
)
This last formula has the same behavior as ( 12) at low t: we have t b (f γ = π 2 ) = 0, and t b (f γ = π 2 ) = 0. Moreover (13) also shares the large f γ limit of ( 11) and ( 12): t b = -4π 2 + f γ + . . .. We see in Figure 3 that the curves dened by ( 12) and ( 13) are in fact hard to distinguish. 
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Experimental verication

In order to verify experimentally and quantitatively the mechanics of the windlass, we place a drop on a ber and test whether the bre coils in the drop. The bre is made of BASF Thermoplastic PolyUrethan (TPU) that is melt-spinned. This process involves melting down the TPU, then applying a large extension rate to the liquid lament while it cools down rapidly in the ambient air. It results in reproducible, meter-long micronic bres (1-20 µm in radius) with portions away from the edges having small perturbations in radius (typically <5% every 1000 radii). Calipers are used to further manipulate the samples. Clamping is achieved with cured Loctite R glue. The system size is measured optically with a Leica macroscope (VZ85RC) mounted on a micro-step motor and a 3 megapixels Leica DFC-295 camera (400× magnication, 334nm/pixel picture resolution) with a Phlox 50x50 mm backlight, at 60000 lux or alternatively an optical bre with LED lamp (Moritex MHF-M1002) with circular polarizer. The bre radius is then extracted by image analysis, using imageJ (http://imagej.nih.gov/ij/). For the droplet, we select silicone oil Rhodorsil 47V1000, the gure 1000 referring to its viscosity compared to water. High viscosity was chosen in order to be able to deposit drops on the bre by brushing, and for its slow evaporation properties. Using the condition that meniscus forces have to support the weight of the droplet and be strong enough to buckle the beam, we nd that to be bendable, a TPU bre must be below 7.2 µm in radius, with E TPU = 17 ± 3 MPa, γ silicone-oil/air = 21.1mN/m, α Y, silicone-oil/TPU = 27 ± 5 degrees and ρ silicone-oil = 960 kg/m 3 the silicone oil density.

We deposit a drop on a bre with a known radius and we slowly bring the caliper forks closer to impose compression on the bre. If the drop is able to coil the bre, the macroscopic consequences are easily visible to the naked eye. If at rst try the drop does not coil, the sample is tested again with a random compression and a slight shake to overcome any possible metastability. The couple drop/ber is given an activity index of 1 if coiling is achieved and 0 otherwise (see gure 4). The experimental results show that coiling is present whenever f γ > π 2 , with a error of margin of 3%, consistent with equation (11).

Nonlinear post-buckling computations Equilibrium paths

We now analyze the post-buckling regime by numerically solving the non-linear system of equilibrium equations. We use a shooting method to solve the boundary-value problem (4)-( 8) and a pseudo-arc-length continuation algorithm to follow the solution as parameters are varied, both of these routines being implemented in Mathematica. For large f γ values, typically f γ > 15, numerical diculties arise and we thankfully switch to the AUTO package [START_REF] Doedel | Numerical Analysis And Control of Bifurcation Problems (II): Bifurcation In Innite Dimensions[END_REF]. We x 
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Figure 5: Post-buckling paths: (Left) Force-displacement curves for fγ = 20, where t is the applied tension and δ the end-shortening, and (Right) Energy Ê as function of δ. Solid lines represents both Ax congurations, where the beam shape is symmetric with respect to the axis joining the center of the disk (x C , y C ) and the beam midpoint (x( /2), y( /2)), and P t congurations, where the beam shape is symmetric with respect to the beam midpoint P t. Dashed lines correspond to L 1 and L 2 congurations. = 10, v 0 = 0.02, ρ = 0.2, and we compute force-extension bifurcation diagrams for several values of f γ . We show in Figure 5 such a diagram for f γ = 20 where the tension t is plotted as function of the end-shortening δ = -x( ). The diagram comprises four dierent equilibrium paths: (i) path Ax where congurations are symmetric with respect to the axis joining the center of the disk (x C , y C ) and the beam midpoint (x( /2), y( /2)), (ii) path P t where congurations are symmetric with respect to the beam midpoint, (iii) path L 1 where congurations are looping once inside the disk, and (iv) path L 2 where congurations are looping twice inside the disk. Few of these congurations are shown in Figure 6. In a typical experiment the system is rst completely straight, held by a large tension t. This situation corresponds to a point on the vertical axis of Figure 5, above the buckling threshold. As t is decreased the systems reaches the start of the Ax path, and the beam buckles. For f γ = 20, the numerically found value of the buckling tension t 3.66 is to be compared to t b (20) 3.76 given by ( 13), and t 3.73 given by [START_REF] Lamarque | Packaging Double-Helical DNA into Viral Capsids[END_REF]. As the system branches on the Ax path, tension goes up again we have a subcritical bifurcation. The slope of the Ax path is calculated analytically in Appendix B and is plotted in Figure B.8 for comparison. As the beam enters deeper in the postbuckling regime, bending localizes inside the disk and the tails remain approximatively straight. The path eventually reaches a plateau, see formula [START_REF] Manning | Stability of an elastic rod buckling into a soft wall[END_REF], where the beam coils in a circular way inside the disk and the bending energy in the beam can then be approximated by (1/2) EI/R 2 [L -X(L)]. We also plot the t > 0 part of the path P t. This path also reaches the same plateau as the beam coils in the same circular way inside the disk. In addition we plot Figure 6: Post-buckling congurations. Top row shows Ax congurations, symmetric with respect to the axis joining the center of the disk (x C , y C ) and the beam midpoint (x( /2), y( /2)). Middle row shows P t congurations, symmetric with respect to the beam midpoint P t. Bottom row represents L 1 and L 2 congurations. The circles have center (x C , y C ) and radius

(1 + ρ)/2.
paths along which the beam adopts congurations with one (path L 1 ) or two (path L 2 ) loops. The relevance of these paths could be questioned for two reasons: (i) conguration on path L 1 do not have the same topology as far as twist is considered: a full turn of twist would be necessary to connect congurations on path Ax or P t with congurations on path L 1 , see [START_REF] Van Der Heijden | Instability and self-contact phenomena in the writhing of clamped rods[END_REF][START_REF] Goss | Experiments on Snap Buckling, Hysteresis and Loop Formation in Twisted Rods[END_REF], and (ii) these paths are not connected to the vertical axis δ = 0. We plot in Figure 5-Right the energy Ê = E κ + E w + E γ -P γ SV L + F γ (∆ + D) as a function of the end-shortening δ and we see that, for some range of the end-shortening δ, congurations on paths L 1 or L 2 have a lower energy than congurations on paths Ax or P t. These remarks call for a stability analysis of the equilibrium congurations, as well as a study of congurations deformed in 3D, where twist, link, and writhe would be computed [START_REF] Elettro | Equilibrium and stability of a twisted rod conned in a liquid drop[END_REF].

Approximate analytical model for the plateau regime

As explained in [START_REF] Elettro | In-drop capillary spooling of spider capture thread inspires highly extensible bres[END_REF], in the regime where the end-shortening δ = -x( ) is large, that is when several coils of the beam are present in the disk, the external tension t reaches a plateau and no longer varies as more coils are added. The plateau value of the tension is calculated by a balance of energy as a beam length ∆S enters the disk. The work done by the tension T is -T ∆S, the work done by the meniscus force F γ is +F γ ∆S, and the energy spent to bend the beam in coils is -(1/2) (EI/R 2 ) ∆S. The sum of these energies is zero on the plateau, which yields

t = f γ -2 (14) 
in dimensionless quantities. In Figure 7 we plot Ax and P t equilibrium paths for f γ = 10, 20, . . . , 50 with the vertical axis rescaled according to [START_REF] Manning | Stability of an elastic rod buckling into a soft wall[END_REF]. The collapse of the curves for δ 4 conrms relation [START_REF] Manning | Stability of an elastic rod buckling into a soft wall[END_REF].

Conclusion

This paper presents a rst venture into the complex equilibria adopted by a ber buckled, coiled, and packed by a droplet. Using a simple 2D model and numerical continuation techniques, we have uncovered several equilibrium paths characterized by dierent symmetries (point-symmetric, axis-symmetric, single or double-looped) and provided clues for the bifurcations between these dierent states. Analytical predictions for the buckling threshold, as well as the asymptotic behavior (plateau regime) for the deep post-buckling regime have been derived. The agreement between experiments and theory for the windlass activation threshold is certainly promising, and calls for an extension of the present model to 3D (including twist and writhe), and a deeper comparison between the experimentally observed ordered and disordered packing modes and the theoretical prediction. Finally the deformation of the drop on its own, considered rigid throughout this study, and its interplay with the shape adopted by the ber also deserves a dedicated investigation. Equation (A.4a) imposes that the capturing disk is centered on the mid-point of the rod. We introduce Σ such that S A = L/2 -Σ and S B = L/2 + Σ. The rod has then 2 Σ of its arc-length spent in the disk. As the variables X(S), Y (S), κ(S) and θ(S) all appear in the formulation, we have to consider the continuous constraints relating them: X (S) = cos θ(S), Y (S) = sin θ(S), θ (S) = κ(S) (A.5)

We consequently write the Lagrangian:

L(X,Y, θ, κ 1 , κ 2 , κ 3 , X C , Y C , Σ) = -T X(L)+ L/2-Σ 0 EI 2 κ 2 1 + P γ SV + ν 1 (S) [X -cos θ] + µ 1 (S) [Y -sin θ] + η 1 (S) [θ -κ 1 ] dS+ L/2+Σ L/2-Σ EI 2 κ 2 2 + P γ SL + ν 2 (S) [X -cos θ] + µ 2 (S) [Y -sin θ] + η 2 (S) [θ -κ 2 ] + V (X, Y, X C , Y C ) dS+ L L/2+Σ EI 2 κ 2 3 + P γ SV + ν 3 (S) [X -cos θ] + µ 3 (S) [Y -sin θ] + η 3 (S) [θ -κ 3 ] dS+ Λ A 2R [X (L/2 -Σ) -X C ] 2 + [Y (L/2 -Σ) -Y C ] 2 -R 2 + Λ B 2R [X (L/2 + Σ) -X C ] 2 + [Y (L/2 + Σ) -Y C ] 2 -R 2 (A.6a)
The rod is clamped as both extremities, boundary conditions reads:

X(0) = 0, Y (0) = 0, θ(0) = 0, Y (L) = 0, θ(L) = 0 (A.7)
First variation

We note U = (X, Y, θ, κ 1 , κ 2 , κ 3 , X C , Y C , Σ) and we consider the conditions for the state U e to minimize the energy E. Calculus of variations shows that a necessary condition is

L (U e ) Ū = d d L(U e + Ū ) =0 = 0 (A.8)
where Ū = ( X, Ȳ , θ, κ1 , κ2 , κ3 , XC , ȲC , Σ). The bar ¯sign represents a small perturbation of the variable. Moreover boundary conditions (A.7) imply that X(0) = 0, Ȳ (0) = 0, θ(0) = 0, Ȳ (L) = 0, θ(L) = 0 (A.9)

Noting that

A+ Ā 0 f (x)dx = A 0 f (x)dx + Āf (A) + O( 2 )
we evaluate the rst variation (A.8)

L (U e )( Ū ) = -T X(L) -2F γ Σ + V A Σ + V B Σ+ L/2-Σ 0 EI κ1 κ 1 + ν 1 (S) X + θ sin θ + µ 1 (S) Ȳ -θ cos θ + η 1 (S) θ -κ1 dS+ L/2+Σ L/2-Σ EI κ2 κ 2 + ν 2 (S) X + θ sin θ + µ 2 (S) Ȳ -θ cos θ + η 2 (S) θ -κ2 + V dS L L/2+Σ EI κ3 κ 3 + ν 3 (S) X + θ sin θ + µ 3 (S) Ȳ -θ cos θ + η 3 (S) θ -κ3 dS+ Λ A R [X (L/2 -Σ) -X C ] X (L/2 -Σ) -Σ X (L/2 -Σ) -XC + Λ A R [Y (L/2 -Σ) -Y C ] Ȳ (L/2 -Σ) -Σ Y (L/2 -Σ) -ȲC + Λ B R [X (L/2 + Σ) -X C ] X (L/2 + Σ) + Σ X (L/2 + Σ) -XC + Λ B R [Y (L/2 + Σ) -Y C ] Ȳ (L/2 + Σ) + Σ Y (L/2 + Σ) -ȲC (A.10a)
The variable n y (ŝ), an odd function of ŝ, has also to verify (A.24), which reads n y (ŝ = -σ) = n y (ŝ = σ). Consequently n y (±σ) = 0 and, as n y (ŝ) is constant for |ŝ| > σ, we have that n y (ŝ) ≡ 0, ∀|ŝ| > σ. Moreover, in the limit where the barrier potential tends to zero, v 0 → 01 , n y (ŝ) ≡ 0 inside the disk. Being an odd function, n y (ŝ) is then such that

n y (ŝ) ≡ 0 ∀ŝ (B.2)
The consequence is that the force jumps (A.18) for n y (ŝ) at the entry ŝ = -σ and exit ŝ = +σ of the disk are zero:

λ A [y A -y C ] = 0 = λ B [y B -y C ].
We discard the cases λ A = 0 and λ B = 0 for which there would not be any meniscus force at all, and conclude

y A = y C = y B (B.3)
Conditions (A.4b) and (A.4c) now read (x A -x C ) 2 = 1/4 and (x B -x C ) 2 = 1/4 which yields

x A = x C -1/2 and x B = x C + 1/2 (B.4) As n x (-ŝ) = n x (ŝ), the force jumps (A.15) imply that λ A [x A -x C ] + λ B [x B -x C ] = 0. Using (B.4), we conclude that λ A = λ B (B.5)
Finally, using the global force balance (A.25), (B.3), (B.4), and (B.5), and still in the limit v 0 → 0, we obtain

f γ = λ B cos θ B (B.6)
Taking advantage of the symmetries (B.1), we now rewrite the boundary-value problem (4), ( 5), ( 6) for the interval ŝ ∈ [0, /2]. Using the external tension t, we write the x-component of the force as n x (ŝ) ≡ t, ∀ŝ ∈ [σ, /2] and using the jumps at ŝ = σ we obtain n x (ŝ) ≡ t -λ < 0, ∀ŝ ∈ (0, σ) where we note λ = λ A = λ B . We therefore have to solve

dx in /dŝ = cos θ in , dθ in /dŝ = m in , dm in /dŝ = -(λ -t) sin θ in for ŝ ∈ [0, σ] (B.7a) dx out /dŝ = cos θ out , dθ out /dŝ = m out , dm out /dŝ = -(λ -t) sin θ out for ŝ ∈ [σ, /2] (B.7b)
These are 6 dierential equations with 2 unknowns parameters λ and σ. Boundary conditions are

x in (0) = x C , θ in (0) = 0 , x in (σ) = x C + 1/2 , f γ = λ cos θ in (σ) , θ out ( /2) = 0 (B.8)
and matching conditions are

x out (σ) = x in (σ) , θ out (σ) = θ in (σ) , m out (σ) = m in (σ) (B.9)
Hence, for each given value of t, f γ , , the 8 boundary and matching conditions dene a well-posed problem for equations (B.7). For simplicity reasons, we replace the last condition in (B.8) by θ out (+∞) = 0, that is we work in the large limit. We look for a small amplitude solution to this boundary-value problem, that is we develop each variable in power of , where is a small parameter. As buckling happens through a pitchfork bifurcation, two symmetric ( > 0, where the beam is buckled upward, and < 0, where the beam is buckled downward) branches emerge from the = 0 buckling point. Taking advantage of this symmetry we introduce the following series and that t 0 is solution to the equation

f -t 0 cos √ f -t 0 2 + √ t 0 sin √ f -t 0 2 = 0 (B.18)
which is [START_REF] Klug | Three-dimensional director-eld predictions of viral DNA packing arrangements[END_REF]. At order 2 , we nd

λ 2 = 1 2 f γ sin 2 √ f -t 0 2 (B.19) σ 2 = √ f -t 0 -sin √ f -t 0 8 √ f 0 (B.20) x in 2 (ŝ) = sin 2ŝ √ f -t 0 -2 ŝ √ f -t 0 8 √ f -t 0 (B.21) x out 2 (ŝ) = sin √ f -t 0 8 √ f -t 0 - 1 8 + sin 2 √ f -t0 2 e (1-2ŝ) √ t0 -1 4 √ t 0 (B.22)
At order 3 , we nd θ in 3 (ŝ), m in 3 (ŝ), θ out (ŝ), and m out (ŝ) and from their matching conditions (B.9), we obtain 

t 2 = f 2 γ (4 + 5 √ t 0 ) -f γ t 0 (2 + 3 √ t 0 ) + 2t 2 0 -2f γ f γ ( √ t 0 -2) + 4t 0 cos( √ f -t 0 ) 8f γ (2 + √ t 0 ) (B.

Figure 3 :

 3 Figure 3: Buckling curve for = 5. (Left) Curves dened by Equations (11) (12) (13). At this scale the three curves are almost indistinguishable. The asymptote t = fγ -4π 2 is shown dashed. (Right) Zoom corresponding to the rectangle shown on the Left. The approximations (12) (13) are still hard to distinguish, but are seen to deviate from the exact curve[START_REF] Lamarque | Packaging Double-Helical DNA into Viral Capsids[END_REF], shown continuous and black.

2 Figure 4 :

 24 Figure 4: Experimental verication of the windlass activation as function of the parameter fγ . The windlass mechanism is active as soon as the meniscus force fγ is greater than π 2 .

2 Figure 7 :

 27 Figure 7: Equilibrium paths for fγ = 10, 20, . . . , 50 with the vertical axis rescaled according to Equation (14). (Left) Axis-symmetric (Ax) congurations and (Right) Point-symmetric (P t) congurations. Direction of increasing fγ is indicated with the arrows.

x 1 (ŝ) + 3 θ in,out 3 ( 1 (ŝ) + 3 m in,out 3 (Figure B. 8 :

 13138 Figure B.8: Paths Ax for fγ = 20, 30, 40 and 50 with their slope at the origin given by (B.25)

  )

t = t 0 + 2 t 2 = t 0 + t 2 δ 2 δ

 22 23) We now compute the end-shortening δ = -x(s = ) = -2 [x out (ŝ = /2) -x C ], still in the limit where → +∞. Using (B.10) and (B.22) we nd δ = 2 δ 2 with (B.25) We plot in Figure B.8 paths Ax for f γ = 20, 30, 40 and 50 and the straight lines given by (B.25).

  same for point B. Note that the potential V has the dimension of an energy per unit of arc-length of the beam. For S ∈ [S A ; S B ] the rod lies inside the disk and we have χ = 1, otherwise χ = 0. The Dirac distribution δ(S) localizes meniscus forces at points A and B. The rod material has Young's modulus E and the second moment of area I = π h 4 /4. The intensities Λ A and Λ B of the meniscus forces are unknown but related to surface tension γ LV through Equation (A.25), where F γ = 2πh γ LV cos α Y with α Y being the Young-Dupré wetting angle (γ SV

the repulsion from the disk is only important for congurations in the deep post-buckling regime
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Appendix A. Variational derivation of the equilibrium equations

To prevent the beam from exiting the disk elsewhere than at the meniscus points, we use a (soft wall) barrier potential [START_REF] Manning | Stability of an elastic rod buckling into a soft wall[END_REF] V (X, Y ) = V 0

where the disk has center (X C , Y C ) and radius R. The small dimensionless parameter ρ is introduced to avoid the potential to diverge at the meniscus points A and B, where the rod enters and exits the disk. The internal energy of the system comprises the bending energy E b of the rod, the barrier energy E w of the circle, and surface energy E γ :

where P = 2π h is the perimeter of the cross-section of the rod, and V 0 has the dimension of an energy per unit length. The curvatures κ i (S) are dened in each region of the rod. We add the work done by the external load T e x and obtain the potential energy of the system:

We minimize this energy under the following constraints

where

)), and V = (∂V /∂X) X + (∂V /∂Y ) Ȳ + (∂V /∂X C ) XC +(∂V /∂Y C ) ȲC . Note also that we have used (A.5) at S = L/2±Σ to eliminate several terms. Requiring (A.10) to vanish for all κi , i = 1, 2, 3, we obtain

and hence identify the Lagrange multipliers η i (S) with the bending moment M (S) in the beam. Requiring (A.10) to vanish for all θ yields, after integration by parts:

Due to the boundary conditions (A.9), part of the boundary terms vanish. Nevertheless, arbitrariness of

: the bending moment is continuous at the entry and the exit of the disk. Moreover, from the requirement that (A.12) vanishes for all θ(S), we obtain the equations for the equilibrium of the bending moment

Requiring (A.10) to vanish for all X yields, after integration by parts:

Boundary conditions (A.9) cancel part of the boundary terms, but arbitrariness of X at S = L/2 ± Σ implies

Equation (A.16) enable us to identify ν 3 and therefore ν 1 and ν 2 with the x-component, N x , of the resultant force in the beam. By extension the µ i are identied to the y-component, N y , of this force. Equations (A.15) are then seen as jumps in the x-component of the internal force due to the external force coming from the disk. Moreover, from the requirement that (A.14) vanishes for all X(S), we obtain the equilibrium equations for the x-component of the resultant force in the beam

The same procedure for the variable Y yields Equations (A.18) are then seen as jumps in the y-component of the internal force due to the external force coming from the disk, and equations (A.19) are the equilibrium equations for the y-component of the resultant force in the beam. Requiring (A.10) to vanish for all XC yields

We use the identity ∂V ∂X C = -∂V ∂X and (A.17) to obtain

The same procedure for the variable Y C yields

Considering (A.21), (A.22), (A.15), and (A.18) together yields

which means that the internal force in the beam at the entrance of the disk is equal to the internal force at the exit of the disk. We therefore have that the total external force applied on the beam by the disk is zero. Finally requiring that (A.10) vanishes for all Σ yields

In summary the equilibrium of the beam is governed by the system 

Appendix B. Incipient post-buckling regime

We here focus on congurations on path Ax. With regard to the shifted arc-length variable ŝ = s -/2, introduced in Section 3, the variables have the following symmetries: