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Abstract

Background: An important problem in computational biology is the automatic detection of protein families (groups
of homologous sequences). Clustering sequences into families is at the heart of most comparative studies dealing
with protein evolution, structure, and function. Many methods have been developed for this task, and they perform
reasonably well (over 0.88 of F-measure) when grouping proteins with high sequence identity. However, for highly
diverged proteins the performance of these methods can be much lower, mainly because a common evolutionary
origin is not deduced directly from sequence similarity. To the best of our knowledge, a systematic evaluation of
clustering methods over distant homologous proteins is still lacking.

Results: We performed a comparative assessment of four clustering algorithms: Markov Clustering (MCL), Transitive
Clustering (TransClust), Spectral Clustering of Protein Sequences (SCPS), and High-Fidelity clustering of protein
sequences (HiFix), considering several datasets with different levels of sequence similarity. Two types of similarity
measures, required by the clustering sequence methods, were used to evaluate the performance of the algorithms:
the standard measure obtained from sequence–sequence comparisons, and a novel measure based on profile-profile
comparisons, used here for the first time.

Conclusions: The results reveal low clustering performance for the highly divergent datasets when the standard
measure was used. However, the novel measure based on profile-profile comparisons substantially improved the
performance of the four methods, especially when very low sequence identity datasets were evaluated. We also
performed a parameter optimization step to determine the best configuration for each clustering method. We found
that TransClust clearly outperformed the other methods for most datasets. This work also provides guidelines for the
practical application of clustering sequence methods aimed at detecting accurately groups of related protein
sequences.

Keywords: Sequence analysis, Clustering sequence algorithms, Remote homology detection

Background
Protein family detection is of fundamental importance
in structural and functional genomics. Well-characterized
protein families can contribute significantly to the delin-
eation of functional diversity of homologous proteins,
providing valuable evolutionary insights. In general, a
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protein family comprises a group of proteins that pos-
sess similar or identical functions, indicating that they
were derived from a common ancestor and probably share
important properties such as tertiary structure, functional
sites, and interaction patterns. A protein family can be
detected automatically by clustering methods that group
together related proteins. These approaches partition data
into groups, such that proteins in the same group are sim-
ilar and proteins in different groups are dissimilar to each
other. To detect protein families, clustering algorithms
should take into account all similarity relationships in a
given set of sequences. For this purpose, it is usual to carry
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out an all-against-all sequence–sequence similarity search
using the BLAST program [1] to construct a similarity
matrix that is then used by the clustering method to form
protein groups.
A number of clustering methods have been proposed to

detect protein families, but to the best of our knowledge,
the performance of most of them have been evaluated
only on datasets containing homologous sequences with
high identity. For instance, the GOLD dataset [2], which
contains enzymes that were assigned manually to pro-
tein families, is often used to evaluate the performance
of clustering methods. We argue that this benchmark
is a relatively less complex case for clustering methods
because, in general, members of the same protein fam-
ily or super-family (groups of related families) are closer
to each other than to any other family/super-family, as
showed in Figure 1a. Conversely, when we used the SCOP
dataset [3], a reference database that is used to study dis-
tantly related homologous proteins, we found that it was
much more difficult to group the homologous proteins
with very low sequence identity, as shown in Figure 1b

where the curves are inverted compared with the curves
in Figure 1a. This finding shows that members of the same
family are so distant that members of different families
seem to be closer to each other. Thus, the existing clus-
tering methods yield adequate results for close homologs,
but they are likely to fail in identifying distant evolutionary
relatedness.
Here, we performed an extensive evaluation of clus-

tering methods on distantly related homologous proteins
to determine whether sequence-clustering algorithms can
effectively detect remote homologous protein families.
We evaluate four state-of-the-art methods: Markov Clus-
tering (MCL) [4], Transitive Clustering (TransClust) [5],
Spectral Clustering of Protein Sequences (SCPS) [6] and
High-Fidelity clustering of sequences (HiFix) [7]. These
four methods were assessed on various datasets with dif-
ferent level of difficulty (i.e., the datasets represent differ-
ent sequence identity percentages) and on two clustering
scenarios (i.e., family and super-family). The parameters
were varied for each algorithm to find the best results
of the clustering methods. We also determined whether

(a)

(b)

Figure 1 Distribution of minimum BLAST e-values for GOLD and ASTRAL A-10 datasets. The GOLD dataset (a) is a collection of enzymes that
were manually assigned to protein families/super-families. A-10 (b) is an ASTRAL subset of the SCOP database that contains only sequences with
identities less than 10%. For each protein in both datasets, we considered the e-value to the nearest neighbor from its own family/superfamily (intra
curves) and the e-value to the nearest neighbor from any other family/superfamily (inter curves).
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the performance of sequence clustering methods could be
improved using a profile-profile search instead of the tra-
ditional pairwise sequence search. We used HHblits [8] to
build a profile for each sequence in the datasets, and we
compared pairs of profiles instead of pairs of sequences to
provide a similarity measure for each protein pair.
Our results show that the traditional similarity mea-

sure based on sequence–sequence comparisons, which is
often used to feed sequence-clustering methods, is not
suitable for detecting remote homologous protein families
and super-families. We found that the clustering perfor-
mance can be improved considerably by replacing the
BLAST similarity measure with a novel measure based on
profile-profile comparisons.We highlight that profiles can
properly represent conserved evolutionary properties and
they can be used to produce an insightful distance mesure
for clustering methods. This novel measure increased the
clustering performance of all methods across all datasets
tested.

Results and discussion
We assessed the performance of four clustering meth-
ods on eight different datasets by considering two clus-
tering scenarios (family and super-family). Two types
of similarity matrices were used to evaluate the perfor-
mance of the algorithms. The first matrix was based on
sequence-sequence comparisons obtained from BLAST
(Section ‘Sequence–sequence comparisons’).
The second matrix was based on profile-profile com-

parisons (performed by HHblits and HHsearch), which
was developed and used here for the first time (Section
‘Profile-profile comparisons’). To obtain the best possible
results for each method, we performed a parameter opti-
mization step to obtain the ideal set of parameters for
each clustering algorithm (Section ‘Parameter optimiza-
tion’). Finally, we discuss how the methodology proposed
here could be employed to improve the results in practical
applications (Section ‘Practical usage’).

Sequence–sequence comparisons
We constructed a similarity matrix by extracting e-values
from BLAST, named Sequence Sequence Comparisons
(SSCs), see Section ‘Sequence–sequence comparisons’.
Based on this matrix, we used the clustering methods to
identify groups of homologous proteins that belonged to
the same family or super-family.
Table 1 (top) shows the weighted F-measure, preci-

sion, recall and number of clusters (defined in Section
‘Comparing the performance of the four sequence cluster-
ing methods’) obtained using the TransClust, HiFix, and
MCL algorithms for protein family detection. The results
obtained using SCPC were omitted because this method
is more suitable for grouping super-family members. We
observed that the performance of the other three methods

degraded as the sequence similarity decreased. Indeed,
all three methods produced the poorest performances on
dataset A-10 (the most difficult case). The A-20 and A-30
datasets were also poorly clustered and none of the meth-
ods achieved a F-measure greater than 0.7. In general,
TransClust, HiFix, and MCL did not produce perfor-
mances over 0.77 on the ASTRAL datasets that contained
many remote homologous proteins. On the other hand,
the threemethods efficiently and accurately clustered pro-
teins in the GOLD dataset, which contains sequences with
very high identity. TransClust outperformed the other
three algorithms in terms of their general performance
over all the datasets tested.
Table 1 (bottom) shows the performance of the four

clustering methods for super-family detection. Overall,
poorer F-measures were obtained for super-family detec-
tion compared with the values obtained for family detec-
tion. It is more difficult to group super-family members
because, compared with a family, for a super-family group
a common evolutionary origin cannot be deduced directly
from sequence similarity. Therefore, clustering methods
that use sequence-sequence similarity to form groups will
not be able to detect distantly related proteins. As a con-
sequence, the four methods produced poor performances
over all the ASTRAL subsets; indeed, the F-measures were
all less than 0.66 with TransClust producing the high-
est value. On the other hand, all four clustering methods
achieved performances over 0.82 with the GOLD dataset,
with HiFix producing the best performance.

Profile-profile comparisons
To try to improve the performance of the clustering meth-
ods on remote homologous datasets, we construct a sim-
ilarity matrix by extracting e-values from Profile-Profile
Comparisons (PPCs), see Section ‘Profile-profile compar-
isons’. Using this new similarity measure, we found that
the performance of all four clustering methods improved
substantially across all the datasets for both family and
super-family detection, see Table 2 and Figure 2a. The
biggest improvement was obtained for the less similar
dataset (A-10). A remarkable improvement was obtained
in the clustering of super-family members (Figure 2b),
showing that super-family detection can be improved
using profile–profile comparisons. These results show
that family and super-family detection depends crucially
on the accuracy of the sequence searches and that search
tools that embed evolutionary conserved properties pro-
duce better results than tools based on SSCs alone. It is
interesting that the performance of the clustering meth-
ods with the GOLD dataset also improved for family
and super-family detection. For super-family detection,
all four methods properly clustered almost all members
in the datasets, achieving F-measures of at least 0.97.
Thus, even on datasets with very high sequence identity,
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Table 1 Sequence-sequence comparison F-measure for clustered sequences

Family

TransClust HiFix MCL SCPS

Dataset F-measure Clusters Precision Recall F-measure Clusters Precision Recall F-measure Clusters Precision Recall F-measure Clusters Precision Recall

A-10 0.494 1757 0.834 0.409 0.467 2780 0.463 0.692 0.352 2310 0.923 0.389 -

A-20 0.573 2013 0.885 0.494 0.491 3270 0.556 0.732 0.398 4125 0.999 0.278 -

A-30 0.675 2561 0.912 0.628 0.583 3749 0.561 0.885 0.415 1827 0.351 0.773 -

A-50 0.721 3221 0.903 0.709 0.608 4861 0.562 0.945 0.457 1912 0.702 0.445 -

A-70 0.739 3486 0.904 0.733 0.630 4921 0.616 0.873 0.474 2323 0.752 0.482 -

A-90 0.758 3630 0.913 0.753 0.653 4973 0.625 0.895 0.511 2824 0.815 0.512 -

A-95 0.766 3715 0.916 0.765 0.654 4992 0.629 0.907 0.527 2873 0.527 0.813 -

GOLD 0.914 96 0.905 0.968 0.902 99 0.960 0.895 0.880 56 0.808 0.942 -

Super-family

A-10 0.377 1757 0.917 0.281 0.337 2780 0.993 0.274 0.270 3270 0.997 0.180 0.297 658 0.387 0.221

A-20 0.450 2013 0.954 0.347 0.362 3270 0.993 0.293 0.282 4024 0.999 0.191 0.352 701 0.400 0.323

A-30 0.551 2561 0.551 0.440 0.473 3749 0.994 0.414 0.333 3745 0.998 0.235 0.473 792 0.494 0.364

A-50 0.609 3221 0.995 0.499 0.507 4861 0.992 0.457 0.351 3048 0.847 0.310 0.557 753 0.618 0.546

A-70 0.631 3486 0.997 0.519 0.539 4921 0.990 0.495 0.377 2086 0.875 0.335 0.581 493 0.649 0.518

A-90 0.654 3630 0.996 0.544 0.560 4973 0.989 0.528 0.426 2549 0.922 0.364 0.607 633 0.680 0.531

A-95 0.659 3715 0.996 0.552 0.563 4986 0.990 0.542 0.435 2616 0.912 0.378 0.615 940 0.686 0.542

GOLD 0.865 23 1 0.765 0.915 13 0.998 0.852 0.827 24 1 0.712 0.904 4 0.864 0.983

Number of clusters found, and weighted mean precision and recall values for each clustering algorithm are shown. Best values are shown in bold.
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Table 2 Profile-profile comparison F-measure for clustered sequences

Family

TransClust HiFix MCL SCPS

Dataset F-measure Clusters Precision Recall F-measure Clusters Precision Recall F-measure Clusters Precision Recall F-measure Clusters Precision Recall

A-10 0.741 1608 0.924 0.732 0.652 2590 0.648 0.916 0.693 783 0.730 0.653 -

A-20 0.749 1773 0.912 0.760 0.685 3022 0.672 0.840 0.703 922 0.736 0.703 -

A-30 0.750 2098 0.868 0.814 0.695 3147 0.678 0.899 0.707 1257 0.731 0.706 -

A-50 0.751 2951 0.860 0.804 0.702 4534 0.702 0.900 0.709 1653 0.724 0.702 -

A-70 0.753 3153 0.858 0.818 0.713 4673 0.709 0.909 0.712 1817 0.727 0.706 -

A-90 0.767 2714 0.833 0.870 0.717 4708 0.889 0.710 0.715 1945 0.743 0.708 -

A-95 0.769 2800 0.766 0.840 0.725 4725 0.709 0.907 0.743 2078 0.768 0.709 -

GOLD 0.959 94 0.950 0.978 0.921 98 0.906 0.918 0.925 81 0.961 0.922 -

Super-family

A-10 0.722 1455 0.997 0.623 0.699 1182 0.963 0.636 0.752 714 0.908 0.726 0.750 186 0.742 0.763

A-20 0.783 1402 0.990 0.720 0.701 1319 0.964 0.644 0.754 848 0.916 0.738 0.759 253 0.934 0.654

A-30 0.809 1676 0.988 0.757 0.705 1500 0.942 0.686 0.778 1062 0.920 0.774 0.777 453 0.914 0.618

A-50 0.827 1995 0.987 0.778 0.710 2375 0.964 0.702 0.781 1642 0.968 0.723 0.789 665 0.958 0.693

A-70 0.833 2120 0.988 0.783 0.711 2476 0.960 0.707 0.788 1585 0.936 0.782 0.792 758 0.983 0.703

A-90 0.835 2213 0.988 0.779 0.715 2524 0.950 0.701 0.805 1799 0.965 0.755 0.805 931 0.993 0.700

A-95 0.837 2293 0.989 0.777 0.716 2582 0.960 0.708 0.807 1806 0.948 0.795 0.805 1023 0.995 0.703

GOLD 0.999 6 1 0.999 0.974 7 1 0.953 1.000 5 1 1 1.000 5 1 1

Number of clusters found, and weighted mean precision and recall values for each clustering algorithm are shown. Best values are shown in bold.
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(a)

(b)

Figure 2 F-measure improvement when using profile-profile comparisons. Ratio between profile-profile comparison and sequence-sequence
comparison F-measures for families (a) and super-families (b).

PPCs provide a more accurate similarity measure than
SSCs resulting in better family detection. These improve-
ments were expected, once similarity measures based on
PPC can better separate members of a given protein
family/super-family (intra distances) from members of
other families/super-families (inter distances), as visual-
ized in Figures 3 (families) and 4 (super-families). Clearly,
the areas between the PPC curves are larger than the
areas between the SSC curves for most of the datasets in
Figure 3 and for all datasets in Figure 4. We noted that
the differences between the PPC and SSC areas were big-
ger for super-family than family detection. This finding
reflects the larger improvements in super-family detection
shown in Figure 2b.
Comparing algorithms, TransClust produced the best

performance with the PPC similarity measure, while the
performance of MCL improved the most with the PPC
measure.

Parameter optimization
We tested 18371 proteins divided into eight datasets
with the four clustering algorithms and two different
clustering scenarios (family and super-family) by exten-
sive experimentation and parameter variation. A total of

5776 experiments were performed. The parameters used
in each clustering algorithm are given in parenthesis in
Tables 3 and 4 and the range of parameters used is given
in Table 5. Although there was a set of parameters for each
clustering algorithm, most of time only one of the param-
eters drastically affected the results and this parameter
was essentially related to the number of clusters obtained.
For some of the algorithms, this special parameter was
the initial threshold for sequence similarity that was used
to group two proteins into the same cluster. Other algo-
rithms such as MCL require information related to the
density or the granularity expected in the clusters. For
some algorithms, the maximum possible number of clus-
ters has to be set like spectral clustering algorithms.
TransClust uses a similarity threshold to group pro-

teins in the same cluster. We varied the similarity thresh-
old T from 0.01 to 100 (tmin and tmax parameters). T
directly affects the number of clusters reported because it
is related to the similarity between members of the same
cluster (i.e., lower values of T may lead to a small number
of clusters).
To vary this parameter, a simple approach is to find the

biggest gap or the most abrupt decrease in the frequency
distribution of the e-values and set tmin and tmax to
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3 Distribution of minimum e-values intra and inter families across all datasets. Curves for Astral subsets A-10, A-20, A-30, A-50, A-70,
A-90 and A-95 are showed in panels a, b, c, d, e, f and g respectively, and curves for Gold database is showed in panel h. E-values associated with
sequence-sequence comparisons (SSCs) were computed by BLAST, while e-values related to profile-profile comparisons (PPCs) were obtained by
combining HHBlits and HHsearch. For each protein in the datasets, we considered the e-value to the nearest neighbor from its own family (intra
curves) and the e-value to the nearest neighbor from any other family (inter curves). Solid lines indicate BLAST e-values and dashed lines indicate
HHsearch e-values.

encompass this gap. The gap interval e-values have to be
normalized by TransClust to obtain the proper tmin and
tmax values. Another important parameter in TransClust
is the step size (sz parameter), which is the value used to
increase T from tmin to tmax. We set sz = 0.5 because

we found that values smaller than 0.5 produced the same
results, and larger values are not advisable because the
optimal T may be missed. Gradual variation of T will
always yield the best results, although it increases the
computation time.
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(b)

(d)

(f)

(h)

(a)

(c)

(e)

(g)

Figure 4 Distribution of minimum e-values intra and inter super-families across all datasets. Curves for Astral subsets A-10, A-20, A-30, A-50,
A-70, A-90 and A-95 are showed in panels a, b, c, d, e, f and g respectively, and curves for Gold database is showed in panel h. E-values associated
with sequence-sequence comparisons (SSCs) were computed by BLAST, while e-values related to profile-profile comparisons (PPCs) were obtained
by combining HHBlits and HHsearch. For each protein in the datasets, we considered the e-value to the nearest neighbor from its own super-family
(intra curves) and the e-value to the nearest neighbor from any other super-family (inter curves). Solid lines indicate BLAST e-values and dashed lines
indicate HHsearch e-values.

For the MCL experiments, we varied the inflation
(I parameter) from 0.1 to 6.0 in increments of 0.1,
which is the maximum interval suggested in the pro-
gram’s help file. I affects the granularity of the clusters
that are produced; that is, I is related to the number

of clusters obtained and cannot be determined directly
by the frequency distribution of the e-values as was
done for TransClust. To overcome this problem, a com-
mon approach is to use a validation subset (a dataset
for which the correct family/super-family clusters are
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Table 3 Sequence-sequence comparison F-measures for
clustered sequences

Family

Dataset TransClust (T) HiFix (s,c) MCL (I) SCPS (c)

A-10 0.494 (1) 0.467 (0.10,0.7) 0.352 (18) -

A-20 0.573 (1) 0.491 (0.15,0.7) 0.398 (17) -

A-30 0.675 (1) 0.583 (0.20,0.7) 0.415 (51) -

A-50 0.721 (1) 0.608 (0.25,0.7) 0.457 (40) -

A-70 0.739 (1) 0.630 (0.25,0.7) 0.474 (30) -

A-90 0.758 (1) 0.653 (0.25,0.7) 0.511 (29) -

A-95 0.766 (1) 0.654 (0.25,0.7) 0.527 (22) -

GOLD 0.914 (25) 0.902 (0.30,0.6) 0.880 (12) -

Super-family

A-10 0.377 (1) 0.337 (0.10,0.7) 0.270 (18) 0.297 (648)

A-20 0.450 (1) 0.362 (0.10,0.7) 0.282 (18) 0.352 (753)

A-30 0.551 (1) 0.473 (0.10,0.7) 0.333 (57) 0.473 (955)

A-50 0.609 (1) 0.507 (0.25,0.7) 0.351 (59) 0.557 (1188)

A-70 0.631 (1) 0.539 (0.25,0.7) 0.377 (43) 0.581 (1279)

A-90 0.654 (1) 0.560 (0.25,0.7) 0.426 (43) 0.607 (1345)

A-95 0.659 (1) 0.563 (0.25,0.7) 0.435 (28) 0.615 (1401)

GOLD 0.865 (1) 0.915 (0.05,0.3) 0.827 (36) 0.904 (6)

The optimized set of parameters determined for each clustering algorithm are
shown in parenthesis, see Section ‘Parameter optimization’. Best values are
shown in bold.

Table 4 Profile-profile comparison F-measures for
clustered sequences

Family

Dataset TransClust (T) HiFix (s,c) MCL (I) SCPS (c)

A-10 0.741 (15) 0.652 (0.10,0.7) 0.693 (26) -

A-20 0.749 (15) 0.685 (0.15,0.7) 0.703 (24) -

A-30 0.750 (15) 0.695 (0.15,0.7) 0.707 (24) -

A-50 0.751 (20) 0.702 (0.20,0.7) 0.709 (18) -

A-70 0.753 (20) 0.713 (0.20,0.6) 0.712 (17) -

A-90 0.767 (15) 0.717 (0.20,0.6) 0.715 (17) -

A-95 0.769 (15) 0.725 (0.20,0.7) 0.743 (17) -

GOLD 0.959 (50) 0.921 (0.30,0.6) 0.925 (15) -

Super-family

A-10 0.722 (1) 0.699 (0.10,0.6) 0.752 (59) 0.750 (648)

A-20 0.783 (5) 0.701 (0.10,0.7) 0.754 (59) 0.759 (753)

A-30 0.809 (5) 0.705 (0.10,0.7) 0.778 (59) 0.777 (955)

A-50 0.827 (5) 0.710 (0.15,0.7) 0.781 (58) 0.789 (1188)

A-70 0.833 (5) 0.711 (0.15,0.7) 0.788 (60) 0.792 (1279)

A-90 0.835 (5) 0.715 (0.15,0.7) 0.805 (59) 0.805 (1345)

A-95 0.837 (5) 0.716 (0.15,0.7) 0.807 (60) 0.805 (1401)

GOLD 0.999 (1) 0.974 (0.05,0.5) 1.000 (60) 1.000 (6)

The optimized set of parameters determined for each clustering algorithm are
shown in parenthesis, see Section ‘Parameter optimization’. Best values are
shown in bold.

Table 5 Variation range used to optimize the cluster
parameters

TransClust HiFix MCL SCPS

tmin tmax sz s and c I c

0.01 100 0.5 0.01, 0.05, 0.1,. . . , 0.9 0.1, 0.2,. . . , 6.0 90%, 95%,. . . , 120%

known) and to determine the I that produces the best
performance.
For SCPS, the maximum number of clusters (c parame-

ter) were varied from 90% to 120% (in increments of 5%)
of the real number of families/super-families in the tested
datasets.
A natural choice for c would be the size of the dataset

(number of proteins), but this would be time-consuming
and may result in one protein per cluster, which is rarely a
realistic clustering solution. Therefore, we used only the c
values described above. Moreover, we found that for c >

110% the performance of SCPS showed no improvement.
For HiFix, the sequence identity (s parameter) and the

coverage (c parameter) were varied from 0.01 to 0.9 in
increments of 0.05. These parameters are used to connect
two proteins in the similarity network if their sequence
identity is greater than s and alignment coverage greater
than c. These parameters are the same as the those used in
the BLAST program. HiFix use s and c as filter constraints
to select BLAST hits. Therefore, the same criteria used to
set the sequence identity and the alignment coverage in
BLAST can also be used to set s and c. Although s and c are
used only to initiate the similarity network, often the qual-
ity of HiFix clusters is related to these parameters; that is,
lower values will produce fewer clusters and higher values
can result in singleton clusters (one protein per cluster).

Practical usage
Here, we provide guidelines for the practical application
of clustering sequence methods and discuss how our find-
ings can help to detect homology relationships more accu-
rately. We have focused the discussion on three applica-
tions: protein function prediction, comparative genomics,
and construction of protein family databases. For each
application, we discuss how clustering methods could be
employed and how the methods can be improved using
profile–profile comparisons.

Protein function prediction
Understanding protein functions is essential for compre-
hending the complex cellular machinery of living organ-
isms. Functional characterization of newly discovered
proteins is often performed by scanning databases for
proteins that share sequence similarities with the new
protein. Sequence similarity may suggest a common evo-
lutionary origin between known function proteins and
newly discovered ones. Thus, the new protein is annotated
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by transferring the annotation from closely related pro-
teins. Clustering methods have also been used for protein
function prediction, because proteins in the same clus-
ter are likely to share the same function [9,10]. As input,
clustering methods require a list of possible homologous
sequences that can be obtained by comparing the target
sequence to a database of annotated proteins, as described
above. Next, a profile can be built for each sequence (tar-
get and annotated proteins) to allow the construction of
a distance matrix based on profile-profile comparisons.
This matrix can then be used as input for clustering meth-
ods that find groups of related proteins. The new protein
can then be annotated by transferring the annotations of
its nearest-neighbors.

Comparative genomics
Comparative genomics is a powerful tool for studying evo-
lutionary changes among different species. The main goal
is to identify genes/proteins that are conserved or com-
mon among different species, as well as those that are
organism-specific. Indeed, comparative genomics studies
have shown that every major taxonomic lineage con-
tains a fraction of genes/proteins that lack recognizable
homologs [11]. However, it is crucial to know whether
a gene/protein is truly specific to a given genome or
whether this absence is caused by technical limitations
of the approach used to detect it. BLAST is frequently
used to detect homologies in comparative genomics anal-
ysis; however, it is possible that some genes/proteins have
diverged beyond the point at which they can be detected
by the BLAST algorithms. Thus clustering methods that
use profile–profile comparisons could be used to try to
estimate the real number of organism-specific proteins in
a given genome. Those methods could then identify con-
nections between protein families that otherwise would
have been missed by simple sequence comparisons.

Construction of protein family databases
Protein family databases are repositories of protein
sequences organized according to one of the following
criteria: their evolutionary relationships, their structural
properties (e.g., structural classes, folds, 3D-motifs, and
topology), or their sequence patterns (functional domains
and motifs). Most protein family databases employ auto-
matic clustering algorithms to group homologous proteins
into families that are then analyzed manually by cura-
tors. The PPC methodology proposed here could be used
to improve the quality of clusters detected automatically,
thereby reducing the laborious work of experts.

Conclusion
We measured the performance of four graph-based algo-
rithms in clustering homologous protein sequences. In
our analysis, we used several datasets with different
degrees of sequence similarity to evaluate the capability

of clustering methods in detecting remote homologous
proteins, where homology relationshipsmay not be appar-
ent from sequence similarities alone. To group proteins,
clustering methods need to establish a similarity measure
to evaluate the closeness of a protein pair. This measure
is directly related to quality and to the number of clus-
ters produced by each algorithm. Generally, the similarity
measure is derived from pairwise sequence alignments
obtained from an all-against-all comparison with BLAST.
However, pairwise sequence alignments do not produce
an appropriate similaritymeasure for related proteins with
very low sequence identity, as showed in Table 1. To
circumvent these limitations, we have proposed a new
similarity measure based on PPCs using HHblits and
HHsearch (see Section ‘Profile–profile comparisons’).
We carried out extensive experiments using the stan-

dard SSC and the new PPC measures to evaluate the
performance of clustering methods. Our experimental
results show that the PPCs outperform the SSCs in mea-
suring the similarity of highly divergent proteins. The new
PPC measure improved the performance of all four clus-
tering methods over all the datasets tested, as reported
in Table 2. The improvements shown in Figure 2 were
expected because it is well known that profiles capture
evolutionary conserved properties in a set of related pro-
teins that cannot be easily detected by pairwise sequence
alignments. For large datasets, profile construction can be
a time-consuming task; however, this task can be run in
parallel executions.
Clustering algorithms have parameters that can be

tuned to produce better results. We performed a parame-
ter optimization step to determine the best configuration
for each clustering method. We observed that the choice
of these parameters is often completely empirical and
the default parameters (sometimes suggested by the soft-
ware packages) do not always produce the best results.
As discussed above, these parameters can be determined
by intrinsic information in the dataset (when it can be
computed) or by a cross validation approach [12].
This work provides guidelines for the practical applica-

tion of clustering sequence methods aimed at detecting
homology relationships accurately. The resulting clusters
constitute a useful information source for predicting the
function and evolution of proteins.
We also envisage a number of new applications for the

novel PPC similarity measure. For instance, the measure
can be used to improve the clustering of protein complexes,
accurately detecting protein-protein interactions [13].

Methods
Datasets
Two distinct datasets were used in this study. One dataset
was based on subsets from SCOP (Structural Classifi-
cation of Proteins) [3], and was used to measure the
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performance of sequence clustering algorithms on dis-
tantly related homologous proteins.
SCOP classifies all protein domains of known structure

into a hierarchy with four levels: class, fold, super-family,
and family. In this work, we used version 1.75 and con-
sidered the family and super-family levels. A SCOP family
groups proteins with a clear evolutionary relationship,
while a super-family groups families for which a com-
mon evolutionary origin was not obvious from sequence
identity but are deemed probable based on an analysis of
structure and from functional features. Because the SCOP
dataset contains many redundant domains, we used the
ASTRAL repository [14] to select non-redundant subsets.
We extracted seven subsets of proteins from ASTRAL
over a range of sequence identity thresholds and named
them Astral-95 (A-95), Astral-90 (A-90), Astral-70 (A-
70), Astral-50 (A-50), Astral-30 (A-30), Astral-20 (A-20),
and Astral-10 (A-10), where A-x indicates that any pair of
sequences in that subset shared at most x% sequence iden-
tity. We removed all singleton family/super-family from
each subset so that there are no families or super-families
with only one protein sequence. This step was necessary
because singletons constitute an important percentage of
the original ASTRAL dataset and may have subverted the
results. For instance, 75% of families in A-10 were single-
tons; thus, if a clustering method created one cluster for
each protein in A-10, it would have correctly group 75%
of the dataset. Our aim was to evaluate the performance
of clustering algorithms in grouping at least two remote
homologous proteins into the same cluster.
The other dataset, GOLD [2], is a standard collection

of homologous proteins and has been widely used to
evaluate the performance of sequence clustering meth-
ods. The GOLD dataset contains 866 enzymes that were
assigned manually to 91 protein families and five super-
families. We included this dataset to show that sequence-
clustering methods perform over 0.88 of F-measure when
the homologous proteins in the dataset have high iden-
tity. Table 6 lists the number of sequences, families, and
super-families in the ASTRAL subsets and GOLD dataset.
Note that we did not remove singletons from the GOLD
dataset because we wished to reproduce experiments that
have been reported previously [5,7,15].

Similarity measures
A crucial step in the application of clustering algorithms
is how to measure the similarity between a pair of pro-
teins. This measure is used by clustering algorithms to
form clusters of homologous proteins. Most methods
perform an all-against-all BLAST comparison of a given
dataset and then use e-values or percentage of sequence
identity as a distance measure between two sequences.
However, more sensitive sequence comparison methods
that uses multiple sequence alignments represented as

Table 6 Number of sequences, families, and super-families
in the datasets

Dataset Sequences Families Super-families

A-10 3461 (55%) 970 (25%) 589 (30%)

A-20 4260 (60%) 1144 (28%) 684 (34%)

A-30 6532 (72%) 1572 (38%) 868 (44%)

A-50 10816 (84%) 2109 (49%) 1080 (55%)

A-70 13391 (87%) 2306 (54%) 1162 (59%)

A-90 15861 (90%) 2420 (56%) 1222 (62%)

A-95 17505 (91%) 2521 (59%) 1273 (64%)

GOLD 866 (100%) 91 (100%) 5 (100%)

Numbers in parenthesis indicate the percentage of
sequences/families/super-families that remained after removing singletons.

Hidden Markov Models or sequence profiles have been
proposed [16]. In this study, we investigated whether sim-
ilarity measures based on PPCs yielded better results than
the standard SSC similarity measure.

Sequence–sequence comparisons
BLAST is a program that is widely used to compare pro-
tein sequences. It performs pairwise sequence alignments
using a heuristic approach that locates short matches
between a pair of sequences rather than comparing whole
sequences. The heuristic algorithm makes BLAST much
faster than other methods that calculate optimal align-
ments. For this reason, it is commonly used in clustering
sequence methods to provide sequence similarities.
Most of the currently available sequence clustering

methods use e-values as the similarity measure rather
than sequence identities. BLAST outputs can display sev-
eral hits for a pair of sequences and their e-values can
differ. Clustering algorithms that use e-values make some
assumptions: 1) uniqueness (only one similarity value for
a given protein pair), and 2) symmetry (the similarity
between two proteins i and j is equal to the similarity
between j and i). Thus, e-values must be pre-processed
before being used as similarity measures. Typically, the
highest, lowest, or average value of hits for an aligned
protein pair are used [5].
For each dataset, we conducted an all-against-all BLAST

search with a permissive e-value threshold of 100 and with
all other parameters as default values [17]. The BLAST
output was then used as input for each clustering algo-
rithm that transformed e-values into unique and symmet-
ric similarity measures before using them to form groups.
Details about e-values transformation can be found in the
original papers (see Section ‘Clustering approaches’).

Profile–profile comparisons
Instead of comparing individual protein sequences, PPC
tools [16] compare evolutionary patterns encoded in a
profile Hidden Markov Model (pHMM) [18]. A pHMM
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is a probabilistic model built from a set of related aligned
sequences. The model describes common physicochem-
ical and evolutionary properties shared by a group of
proteins. Clearly, a profile can incorporate more informa-
tion about the conservation and evolution of individual
positions or segments within a protein than the amino
acid sequence alone. Because this information (dictated by
structure and function) is often better captured in a pro-
file than in a single sequence, profiles can help to detect
similarities between homologous proteins that are very
diverged. Consequently, PPCs represent a more sensi-
tive strategy than SSCs for detecting distant evolutionary
relationships among proteins [19].
Here, we investigated whether similarity measures

based on PPCs could yield better protein clusters than the
standard SSCs.We used two tools from the HHsuite pack-
age [20]: HHblits [8] and HHsearch [16]. HHblits is an
iterative method that builds a profile for a query sequence
from a special profile database (built from the UniProt
and NCBI nr databases and provided in the HHsuite pack-
age), and HHsearch compares profiles (it takes a profile
and searches for similar ones in a profile library). First, we
usedHHblits (with default parameters) to construct a pro-
file for each sequence in our datasets. Then, we conducted
an all-against-all profile–profile search using HHsearch
(with default parameters), which provided e-values similar
to what BLAST does. Because most sequence clustering
algorithms cannot interpret HHsearch outputs, we con-
verted them to match the output format used by BLAST.
The script that we used for this transformation is available
for download (see Section “Availability”).

Clustering approaches
The four algorithms that we assessed are based on graph-
structure clustering methods that use a graph to rep-
resent the protein space, where proteins are modeled
as vertices and the weight of an edge connecting two
proteins corresponds to their similarity, which is nor-
mally extracted from SSCs (see Section ‘Sequence–se-
quence comparisons’). or alternatively from PPC (see
Section ‘Profile–profile comparisons’). Although the algo-
rithms themselves are not the focus of this paper, we
describe them briefly below.

Transitivity clustering
TransClust [5] (short for transitivity clustering) uses an
approach that is based on graph modifications. It is gen-
erally defined as the weighted transitive graph projection
problem (WTGPP) [21], which consists of transforming a
given intransitive graph into a transitive one by adding or
removing edges. A transitive graph is a set of sub-graphs
completely connected, where different sub-graphs are not

connected by an edge (a disjoint union of cliques). The
clusterization process begins by connecting two proteins
i and j by an edge (ij) if their similarity (s(ij) ≥ 0) exceeds
a user-given threshold (T ≥ 0). Otherwise, if s(ij) ≤ T , i
and j are not connected by an edge. Next, TransClust iter-
atively adds and removes edges from the obtained graph,
transforming it into a disjoint union of cliques. Each edge
addition or removal has a cost, and the sum of all costs
(which is the objective function to be minimized) can-
not exceed an upper bound C. For instance, edge ij has
deletion cost s(ij) if proteins i and j were joined by an
edge or addition cost s(ij) otherwise. In other words, the
cost function penalizes the removal of edges with a very
high sequence identity and the addition of edges with low
identity.
An optimal solution forWTGPP is NP-hard [22], mean-

ing it cannot be found in a polynomial-time. There-
fore, TransClust adopts a combination of heuristic and
exact methods to find a close to optimal solution in
reasonable time. First, it utilizes CAST (Cluster Affinity
Search Technique) [23], a greedy heuristic, to estimate an
upper bound of the emerging cost C to solve the WTGP
problem. Depending on the estimated CAST cost, Tran-
sClust uses an exact fixed-parameter algorithm [21] or
an improved version of the heuristic called FORCE [24].
Finally, the clustering solution with the lowest costs is
reported.
Spectral clustering of protein sequences
Spectral clustering methods [17] exploit the eigenval-
ues and eigenvectors obtained from a similarity matrix
(henceforth called S) to partition objects into disjoint
clusters. Several spectral clustering implementations have
been reported in the literature. Here, we evaluated one
such method, Spectral Clustering of Protein Sequences
(SCPS), proposed in [6].
SCPS first finds small clusters containing less than five

proteins by carrying out a connected component analysis
and eliminates rows and columns of the refereed proteins
from S. This is done because it is unlikely that these pro-
teins will be separated further during the next steps. Sec-
ond, SCPS normalizes S producing S′ and then calculates
a matrix L = D−1/2S′D−1/2, where dii = ∑

j

(
s′ij

)
is an

element of the diagonal matrix D and s′ij is the normalized
similarity between proteins i and j. In L, the dissimilari-
ties are generally greater than in S. Third, the columns of
a matrix called U are obtained from the eigenvectors of
L corresponding to the K largest eigenvalues of L. U is
normalized such that each row sums to no more than one.
Finally, the rows in U are handled as points in the R

K

dimensional space and the K-means algorithm [25] is used
to group these points intoK clusters. Note that in this new
space each row in U represents a protein, and the number
clusters K can be derived from the eigenvalues of S [17].
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Markov clustering algorithm
The MCL (Markov cluster) algorithm [4] is based on the
idea of random walks on graphs. A random walk is a path
obtained by a succession of random steps through ver-
tices of a weighted graph G. It can be used as a clustering
strategy, because it is more probable that a random travel
initiated at a vertex i of a cluster C leads to a vertex j in the
same cluster than to a vertex outside C.
The MCL algorithm proceeds in the following manner.

First, it obtains the weights of G edges by the transfor-
mation of similarities measures into probabilities. Next,
it simulates a random walk in G and updates the prob-
abilities of the obtained path. Thereby, MCL generally
boosts the probabilities associated to edges within clus-
ters and weakens those from different clusters. To per-
form the updates, MCL applies two operators: inflation
and expansion. The inflation operator is responsible for
increasing the probabilities of intra-clusters edges and
decreasing those from inter-cluster edges during random
walks. Accordingly, the expansion operator attenuates the
probability of higher length paths. These two operators
may be interpreted as opposite forces, because longer
paths are expected within clusters rather than outside.
Until an equilibrium is reached, MCL alternates between
inflation and expansion and gradually updates some edge
probabilities to zero, which has the same effect as elim-
inating these edges. Therefore, MCL will split G into a
disjoint set of vertices or clusters.

HiFix
HiFix (High-Fidelity clustering of sequences) [7] exploits
the topology of a similarity network (represented by a
weight graph) and multiple sequence alignments to find
groups of related proteins. HiFix uses SiLiX [15], an ultra
fast clustering algorithm, to obtain pre-families that are
later split into real families. SiLiX is an iteratively algo-
rithm that performs a connected component analysis on
a graph that represents the protein space. First, edges are
examined to find trees containing both vertices as roots
and then the resulting trees aremerged to form a new tree.
This step is repeated until all the trees are transformed
into star trees for which the root is the most representa-
tive member of the family. These star trees constitute the
clusters found by the SiLiX.
HiFix uses a pipeline divided into three steps. First,

SiLiX is performed with low-stringency criteria to pro-
duce a few sets of large pre-families. These sets probably
will have few false negatives, but possibly many false pos-
itives. Second, each pre-family set is decomposed into
more homogeneous protein clusters using Lovain [26], an
algorithm that can analyze the topology of a graph to find
communities (clusters). Because homologous sequences
belonging to the same protein family can be present in
different communities, a third step is required to merge

the communities predicted by Louvain. For that, HiFix
evaluates each community on the basis of multiple align-
ment likelihood using its pHMM. For a set of sequences
P = {p1, . . . , pn} distributed into Q communities, HiFix
performed Q multiple alignments to obtain the corre-
sponding pHMMs that are used to compute the com-
pleted log-likelihood, which is used to evaluate the quality
(homogeneity) of each cluster in Q. To merge communi-
ties, HiFix uses the connectivity measure πql computed by
Louvain, where πql is the probability that vertices of dif-
ferent communities q and l are connected. Finally, HiFix
progressively merges the two clusters with highest πql and
computes the Integrate Classification Likelihood (ICL)
[27] to measure the quality of all resulting clusters. This
step is repeated until a single cluster is achieved, HiFix
returns the set of clusters with the highest ICL.

Comparing the performance of the four sequence
clustering methods
Various quality measures have been proposed to evalu-
ate the quality of a given clustering method. To the best
of our knowledge, no quality measure optimally captures
the notion of a natural cluster; i.e., a cluster that reflects
a real group of common elements. Moreover, it is a well
known that for each quality measure there is an example
where it fails as a measure [28]. Also, no polynomial-
time algorithm for the optimization of these measures is
currently available. However, each quality measure cap-
tures at least one aspect of a natural cluster; therefore,
these measures can be used as criteria for distinguish-
ing efficient clustering methods from others that are less
efficient.
Here, we used the F-measure to evaluate the perfor-

mance of sequence clustering methods on the GOLD and
ASTRAL datasets. The F-measure integrates both pre-
cision and recall and has been used widely to measure
the correctness of clustering algorithms [6,7,21]. We first
define precision and recall and then we describe how the
F-measure is computed.
Let n be the total number of proteins in a given dataset,

nf the number of proteins within the f th family or super-
family, ng the number of proteins placed in the gth clus-
ter, and nfg the number of proteins shared by both the
f th family/super-family and the gth cluster. The preci-
sion of cluster g with respect to f th family/super-family
is then defined as pfg = nfg/ng . Precision measures the
fraction of proteins in cluster g that are present in the
f th family/super-family. In addition, the recall measures
the fraction of proteins of the f th family/super-family
detected by the gth cluster. Recall is given by rfg =
nfg/nf . F-measure is a weighted harmonic mean between
precision and recall given by 1

n
∑
f
nf · max

g
2·pfg ·rfg
pfg+rfg , where

n is the total number of proteins in the dataset. Note
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that the weighted mean precision and recall are given by
1
n

∑
f
nf · max

g
· pfg and 1

n
∑
f
nf · max

g
· rfg , respectively.
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