
HAL Id: hal-01143776
https://hal.sorbonne-universite.fr/hal-01143776

Preprint submitted on 20 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A two-fluid finite-volume solver based on OpenCL
Jonathan Jung

To cite this version:

Jonathan Jung. A two-fluid finite-volume solver based on OpenCL. 2015. �hal-01143776�

https://hal.sorbonne-universite.fr/hal-01143776
https://hal.archives-ouvertes.fr


A two-fluid finite-volume solver based on OpenCL

Jonathan Jung∗

April 20, 2015

Abstract

In this paper, we propose a new very simple numerical method for solving liquid-gas compressible flows
on two dimensional cartesian meshes. For achieving high performance, the scheme is tested on recent multi-
core processors and Graphics Processing Units (GPU), using the OpenCL environment. We describe how
to install and to run the code for computing a shock-bubble interaction on your GPU.

1 Mathematical model and numerical strategy

1.1 Model
We are studying the numerical resolution of a two-fluid compressible fluid flow. The model is the Euler equations
with an additional transport equation of a color function ϕ. The function ϕ is equal to 1 in the gas and 0 in
the liquid. It allows to locate the two-fluid interface. We consider the system

∂tW + ∂xF (W ) + ∂yG(W ) = 0, (1.1)

where

W = (ρ, ρu, ρv, ρE, ρϕ)T ,

F (W ) = (ρu, ρu2 + p, ρuv, (ρE + p)u, ρuϕ)T ,

G(W ) = (ρu, ρuv, ρv2 + p, (ρE + p)v, ρvϕ)T .

The pressure law p is a stiffened gas pressure law

p(ρ, e, ϕ) = (γ (ϕ)− 1) ρe− γ (ϕ) p∞ (ϕ) , (1.2)

where e = E − u2+v2

2 , and

(γ, p∞)(ϕ) =

{
(γgas, p∞,gas), if ϕ = 1,

(γliq, p∞,liq), if ϕ = 0.
(1.3)

1.2 Mesh
We want solve (1.1) on the study domain [a; b] × [c; d] between time t = 0 and time t = T > 0. We consider
regular subdivisions (xi− 1

2
)0≤i≤Nx+1 of [a; b] and (yj− 1

2
)0≤j≤Ny+1 of [c; d]

xi− 1
2

= a+ ihx, i = 0 · · ·Nx + 1,

yj− 1
2

= c+ ihy, j = 0 · · ·Ny + 1,

where hx = b−a
N+1 and hy = d−c

M+1 are space steps in the x and y direction. The cell Ci,j is the volume

Ci,j =
]
xi− 1

2
;xi+ 1

2

[
×

]
yj− 1

2
; yj+ 1

2

[
,

∗EFREI, 30-32 avenue de la République, 94800 Villejuif, France and Université Pierre et Marie Curie, LRC Manon and LJLL,
4 place Jussieu, 75252 Paris, cedex 05, France, jonathan.jung@ljll.math.upmc.fr

1



Gas

Liquid

pre-shock
Left liquid

state

Futur 

shock

Y1

Y2

Y3

y

x

Quantities Y1 Y2 Y3

ρ(kg.m−3) 1030.9 1000 1

u(m.s−1) 300 0 0

v(m.s−1) 0 0 0
p(Pa) 3.0e9 1.0e5 1.0e5
ϕ 0 0 1
γ 4.4 4.4 1.4

p∞(Pa) 6.8e8 6.8e8 0

Figure 1.1: Shock bubble interaction. Description of the initial conditions on the left and initial data on the
right.

centrer on (xi, yj) with

xi =
xi− 1

2
+ xi+ 1

2

2
, i = 1 · · ·Nx,

yj =
yj− 1

2
+ yj+ 1

2

2
, j = 1 · · ·Ny.

The cell Ci,j for i = 0, i = Nx, j = 0 and j = Ny are used to apply the boundary conditions.
We consider also a sequence of times tn, n ∈ N such that the time step ∆tn := tn+1 − tn > 0.

1.3 Numerical strategy
We solve the two dimensional equations (1.1) on cartesian meshes with a dimensional splitting. Each step of
the splitting is solved with a finite volume scheme. We use a Arbitrary-Lagrangian-Eulerian (ALE) method
coupled with a remap step. It allows us to schwith between a Lagrangian approach at the liquid-gas interface
and an Eulerian approach in the pure phases. The ALE step used a relaxation solver described in [7] and the
remap step is done randomly. For more details, we refer to [1, 7, 8].

1.4 Initial conditions
We present a two-dimensional test that consists in simulating the interaction of a shock wave propagating in a
liquid and interacting with a gas cylinder (bubble). It is a difficult problem, both numerically and physically.
The initial conditions are depicted in Figure 1.1: the bubble of gas is surrounded by liquid at rest in atmospheric
conditions. The computational domain is 2 meters long and 1 meter high. The gas is inside a disk (bubble)
whose center is is located at (0.5, 0.5). The initial radius of the bubble is 0.4 m. A piston hits the left side at
the velocity of 300 m.s−1 yielding a shock pressure of about 3 × 109 Pa. The initial data of this problem are
given in the table of the Figure 1.1.

1.5 Boundary conditions
Top and bottom boundary conditions are set to solid walls while we use constant state boundary conditions for
the left and right boundaries.

2 The code CLBubble
For performance reasons, we decided to implement the 2D scheme on recent multicore processor architectures,
such as a Graphic Processing Unit (GPU).

2.1 What is a GPU?
A modern GPU is made of a global memory (≈ 1 GB) and compute units (≈ 28). Each compute unit is made
of processing elements (≈ 10) and a local memory (≈64 kB). The same program (a kernel) can be executed on
all the processing elements at the same time. There are some rules to respect. All the processing elements have
access to the global memory but have only access to the local memory of their compute unit. The access to the

2



global memory is slow while the access to the local memory is fast. The access to global memory is much faster
if two neighboring processing elements read (or write) into two neighboring memory locations, in this case we
speak about "coalescent memory access".

2.2 OpenCL and GPU implementation
The OpenCL [6] implementation is described in [8, 7]. We recall only the main lines.

• We compute the time step ∆tn.We compute a local time step (∆tn)i,j on each cell and we use a reduction
algorithm (see [2]) to compute ∆tn = min

i,j
(∆tn)i,j .

• We perform the ALE-projection update in x-direction. We compute the fluxes balance in the x-direction
for each cell of each row of the grid: a row or a part of a row is associated to one compute unit and one
cell to one virtual processor. As of October 2012, the OpenCL implementations generally imposes a limit
(typically 1024) for the number of work-items inside a work-group [6]. This forces us to split the rows
for some large computations. The values in the cells are then loaded into the local cache memory of the
compute unit. It is then possible to perform the ALE-projection algorithm with all the data into the cache
memory in order to achieve the highest performance. The memory access are coalescent for reading and
writing.

• We transpose the data matrix (exchange x and y) with an optimized memory transfer algorithm [9]. The
optimized algorithm includes four steps:

– the data matrix are splitted into smaller tables of size 32 × 32. Each sub-table is associated to a
compute unit,

– each sub-table is copying line by line from the global memory to the local memory of the compute unit.
Memory access are coalescents because two successive processors read in two neighboring memory
locations,

– we transpose each sub-table 32× 32 in the local memory,

– each sub-table is copying line by line from the local memory to the global one. The memory access
are coalescent for writing.

• We perform the ALE-projection update in y-direction. The memory access are coalescent because of the
transposition,

• We transpose again the data matrix for the next time step.

The repartition of the computational time on each kernel is the following: the ALE-projection update represents
80%, the transposition 11% and the time step computation 9% of the global time computation.
We observe high speedups (see [8, 7]) with the GPU implementation. The efficiency is explained by two
important points. We used an optimized transposition algorithm to have coalescent access in x and y directions
and we also used a relaxation solver. With this solver, fluxes have a simpler expression than the exact Godunov’s
flux.

2.3 Documentation
We perform a documentation of the code with Doxygen [4]. To obtain an HTML and a LATEX documentation,
go in the folder Doxygen.

cd Doxygen/

and run:

doxygen Doxy f i l e

The HTML documentation is build in html/index.html and the LATEX documentation is in latex/refman.tex

3



3 Run the shock bubble interaction on GPU
In this section, we explain how to install the code. We choose CMake [3] to build the executable file. Then, you
need CMake on your computer.

3.1 Environnement and GPU
The code was tested on different hardware. It works on LINUX and MACOS environnement. There are two
important points for the code, the first one is OpenCL and the second one is the drivers for your GPU. The
code can be execute on Graphics Processing Units from different brand (Nvidia, AMD, Intel).

3.2 How to compile and run the code?
The code run on LINUX or MACOS, the way to compile it is the same. There are two steps. The first one is
to detect all OpenCL devices and the second one is the run the code on the chosen OpenCL device.

3.2.1 Choose the OpenCL device

To found all OpenCL devices, go in the folder
“Found_OpenCL_Devices”

cd Found_OpenCL_Devices/Make/

and you run:

cmake .

It look if OpenCL is install and construct all the link for the OpenCL libraries. After that, run

make

It construct an executable file “cldevices” to list all OpenCL devices. You can show the list with

. / . . / Binary/ c l d e v i c e s

The answer is something like this

CL_PLATFORM_NAME = Apple
CL_PLATFORM_VERSION = OpenCL 1 .2 ( Jun 3 2014 12 : 4 3 : 4 1 )
2 dev i c e s found
Device #0 name = I n t e l (R) Core (TM) i5 −4250U CPU @ 1.30GHz

Driver v e r s i on = 1 .1
Global Memory (MB) : 8192
Global Memory Cache (MB) : 0
Local Memory (KB) : 32
Max c l o ck (MHz) : 1300
Max Work Group S i z e : 1024
Number o f p a r a l l e l compute co r e s : 4

Device #1 name = HD Graphics 5000
Driver v e r s i on = 1 . 2 ( Jun 9 2014 13 : 2 4 : 1 9 )
Global Memory (MB) : 1536
Global Memory Cache (MB) : 0
Local Memory (KB) : 64
Max c l o ck (MHz) : 1200
Max Work Group S i z e : 512
Number o f p a r a l l e l compute co r e s : 280

In this example, the GPU device is the number 1. Then, to run the code on the GPU, you choose DEVICEID = 1.

4



3.2.2 Run the code on the chosen device

To compile the code, go in the folder “Make”

cd . . / . . / Make/

and run:

cmake . −DDEVICEID: INT=1

where 1 is the number of the chosen OpenCL device. If the number of your GPU device is 0, replace 1 by 0.
After that, you can compile the code with

make

You can run the code on the device number “DEVICEID” with

. / . . / Binary/ c lbubb le

3.3 How to run the code with an interactive visualisation (OPENGL)?
As the computation is done on the GPU, it is also possible to visualize the data during the computation. For
an interactive visualization, OpenGL, GLEW and GLUT have to be installed in your computer. Moreover, you
should also have at least the version 2.8.10 of cmake to found the GLEW libraries. To compile the code, go in
the folder “Make” and run:

cmake . −DOPENGL:BOOL=TRUE −DDEVICEID: INT=1

where 1 is the number of the chosen OpenCL device.

Remark 1. It is possible that Cmake returns an error. Sometimes, it does not found the direction for the header
(for example GLEW_INCLUDE_DIRS) or a library (for example GLEW_LIBRARIES). In this case, go in
the file CMakeCache.txt and put the good link at the right place. You could found the good link with a “locate”.
When the CMakeCache.txt is completed, run again “cmake” to be sur that everything is good.

After that, you compile the code with

make

You can run the code on the device number “DEVICEID” with

. / . . / Binary/ c lbubb le

To stop the computation and build an output file, press “Escape”.

3.4 Output
The code construct a Gmsh [5] file in the folder “Output”. The file contains the value of ρ, u, v, p and ϕ on the
domain at the final time.

3.5 How to modify the mesh?
You can increase or decrease the number of cell of the computation in each direction. To increase (resp.
decrease) the number of cell in the x direction, increase (resp. decrease) the variable _NBLOCKSX at line
41 of file “CLFunctions.hpp”. For the y direction, we can modify the variable _NBLOCKSY at line 47 of file
“CLFunctions.hpp”. You could also increase the number of cells in the x (resp. y) direction by increasing the
number of work-item _NBWORKSX (resp. _NBWORKSY). If you modify this number, you have to be careful
because there is a maximal size that is different for each GPU. The maximal size is given in the information at
the beginning of the execution. It is the number referenced after

Nb Works Max=

The code should be more efficient if you put this maximal value in _NBWORKSX (resp. _NBWORKSY).

5



3.6 How to modify the initial condition?
You can change the initial condition by modifying the density ρ (_RHO), the x-velocity u (_U), the y-velocity
v (_V), the pressure p (_P) and the gas mass fraction ϕ (_PHI) in the file “CLFunctions.hpp”. The initial
configuration is the following

Gas

Liquid

pre-shock
Left liquid

state

Futur 

shock

Y1

Y2

Y3

y

x

The parameters γgas, γliq, p∞,gaz and p∞,liq of the stiffened gas pressure law (1.2)-(1.3) in each phase are
fixed by _GAMGAZ, _GAMLIQ, _PINFGAZ and _PINFLIQ. The variable ϕ (_PHI) allows to fix the phase
(liquid or gas) of each states at the initial time. ϕ is equal to 1 in the gas and to 0 in the liquid phase.

3.7 How to change the pressure law?
It is possible to change the pressure law. You have to change three functions. The first one is the functions
W2Y where we use the expression of the pressure p as a function of the density ρ, the internal energy e and the
gas mass fraction ϕ. The second one is Y2W where we use the expression of the internal energy e as a function
of the density ρ, the pressure p and the gas mass fraction ϕ. The third one is the expression of the sound_speed
where we describe the sound speed c as a function of the density ρ, the internal energy e and gas mass fraction
ϕ.

4 Conclusion
In this paper, we describe how you can install and run on your GPU the code CLBUBBLE to compute liquid-gas
compressible flows on a two dimensional cartesian meshe.

Acknowledgements
The author wish to thank Philippe Helluy for many fruitful discussions.

References
[1] M. Bachmann, P. Helluy, J. Jung, H. Mathis, and S. Müller. Random sampling remap for compressible

two-phase flows. Computers and Fluids, 86:275–283, 2013.

[2] G.E. Blelloch. Scans as primitive parallel operations. IEEE Transactions on Computers, 38(11):1526–1538,
1989.

[3] CMake. Cmake online documentation. http://www.cmake.org.

[4] Doxygen. Doxygen online documentation. www.doxygen.org.

[5] Gmsh. Gmsh online documentation. http://www.geuz.org/gmsh.

[6] Khronos Group. Opencl online documentation. http://www.khronos.org/opencl/.

[7] P. Helluy and J. Jung. Opencl simulations of two-fluid compressible flows with a random choice method.
IJFV International Journal On Finite Volumes, 10:1–38, 2013.

6



[8] J. Jung. Schémas numériques adaptés aux accélérateurs multicoeurs pour les écoulements bifluides. PhD
thesis, University of Strasbourg, 2013.

[9] G. Ruetsch and P. Micikevicius. Optimizing matrix transpose in cuda. NVIDIA GPU Computing SDK,
pages 1–24, 2009.

7


