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Uncertainty propagation;

intrusive kinetic formulations of scalar conservation laws

Bruno Després∗† Benôıt Perthame∗†‡

April 27, 2015

Abstract

We study two intrusive methods for uncertainty propagation in scalar conservation laws based
on their kinetic formulations. The first one is based on expansions on an orthogonal family of
polynomials.

The first method uses convolutions based on Jackson kernels and we prove that it satisfies BV
bounds and converges to the entropy solution but with a spurious damping phenomenon. Therefore
we introduce a second method, which is based on projection on layered Maxellians, and which arises
as a minimization of entropy. Our construction of layered Maxwellians relies on the Bojavic-Devore
theorem about best L1 polynomial approximation. This new method, denoted below as a kinetic
polynomial method, satisfies the maximum principle by construction as well as partial entropy
inequalities and thus provides an alternative to the standard method of moments which, in general,
does not satisfy the maximum principle.

Simple numerical simulations for the Burgers equation illustrate these theoretical results.

Key words Uncertainty propagation, kinetic formulation of conservation laws, maximum principle,
entropy dissipation, chaos polynomial.
Mathematics Subject Classification (2010) 35L65; 35R60; 35A35

1 Introduction

We address the question of constructing intrusive kinetic methods for scalar conservation laws in view
of uncertainty quantification (UQ) and propagation. The starting point is a scalar conservation law
in dimension d

∂tu+∇ · F (u) = 0, (1)

where u is the unknown, x ∈ Rd is the space variable, t ≥ 0 is the time variable and F : R→ Rd is the
flux (we use at some places that its second derivatives is locally bounded). We assume the solution u
is a function of an additional variable ω, called the uncertainty variable. For simplicity of notations,
we take in this work ω ∈ I ⊂ R, a bounded interval. It can be generalized to ω ∈ Ip ⊂ Rp, p > 1 by
tensorisation.
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The unknown u is therefore a function of (x, ω, t), meaning that we would like to solve an infinite
series of conservation laws (1), where the dependency on ω stems from the initial data. Throughout all
this paper, we assume it is nonnegative, upper bounded by some UM > 0 and belongs to L1(dxdµ(ω))

0 ≤ u(x, ω, 0) = uinit(x, ω) ≤ UM ,
∫
uinit(x, ω)dxdµ(ω) <∞. (2)

A central hypothesis is that the uncertainty obeys a certain given statistic, with probability density
dµ(ω), that is

∫
dµ(ω) = 1. This information is used to derive reduced models. For this task, one

determines the so-called chaos polynomials pi(ω), with dopi = i, which are orthonormal for the measure
dµ(ω) ∫

pi(ω)pj(ω)dµ(ω) = δij .

The terminology chaos polynomials has been coined in the seminal work of Wiener [22]. Such methods
are widely used in engineering, see for example [15, 3] and references therein. Since the polynomials
determine a Hilbert basis of L2

µ, and using the vector space PNω of polynomials of degree less or equal
to N , any function v ∈ L2

µ is expanded and approximated as

v =
∞∑
i=0

vipi, vi =

∫
v(ω)pi(ω)dµ(ω), v(N) =

N∑
i=0

vipi ∈ PNω . (3)

The approximation v(N) has optimal spectral accuracy properties which have been proved in [7, 1].
We use the notation with parenthesis to distinguish it from other polynomial approximations to be
introduced later.

In order to construct a closed system for the evolution of the moments for solutions of (1), one can
use the so-called method of moments, and consider the model system of conservation laws,

∂tu
N
i +∇ ·

∫
F (uN )pi(ω)dµ(ω) = 0, 0 ≤ i ≤ N. (4)

Following [8] and the references therein, such a method can be also rewritten as
∂tu

N +∇ · F (N)(uN ) = 0, F (N)(uN ) =
N∑
i=0

(∫
F (uN (ω′))pi(ω

′)dµ(ω′)

)
pi(ω),

uN (x, ω, t) =
N∑
i=0

uNi (x, t)pi(ω).

(5)

In particular, in [8], the authors show how to model uncertainty in the coefficients F of the equations
(1)–(2), using an additional variable. Even if the theory of existence, uniqueness and the theory of
numerical approximation is well established for scalar conservation laws like (1), there is no such
theory for systems of partial differential equations like (4) or for the convergence of the solutions of
(4) towards solutions of (1) parametrized by the parameter ω, see [8]. Some results may be found
nevertheless in [10] for the advection equation, in [8] where spectral convergence is proved with a weak-
strong method but before any shock, and in [20] for Monte-Carlo methods applied to conservation
laws. Note also the convergence proof in the recent work [4], for the method of moments in the
framework of kinetic equations. We also refer to [13] for conservation laws with random right hand
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sides and to [12] for an asymptotic-preserving extension to transport equations with random inputs.
One of the reason of these mathematical difficulties lies in the divorce between the standard L1-based
theory for conservation laws, and the L2-based theory of spectral approximation. Similar concerns
may be found in a PDE context in [5, 14], or in [11] for l1 minimization algorithmic issues related to
the use of polynomial chaos expansions.

To circumvent these difficulties, we propose to consider the kinetic formulation of conservation laws
which has the advantage of reconciliating L1 and L2 theories. It writes as a Boltzmann equation for
t ≥ 0, x ∈ Rd and ξ ≥ 0, in a BGK (relaxation) form,

∂tfε + a(ξ).∇fε + 1
εfε = 1

εM(uε; ξ), a = ∇F,

uε(x, t) =

∫
fε(x, ξ, t)dξ,

fε(t = 0) = M
(
uinit; ξ

)
,

(6)

still assuming (2) for uinit, and
M(u; ξ) = 1I{0<ξ<u} (7)

is called a Maxwellian in the rest of this work. Notice that the non negativity u ≥ 0 is needed for this
definition to make sense. That is why we assume the initial data is non negative uinit ≥ 0 throughout
this work. This assumption simplifies some non essential technicalities and allows us to disregard the
negative part of M ; the reader can find in [19, 16, 18] the adaptation for general sign of the initial
data as well as convergence proofs of (6) to (1). We recall, for later use, that M(u; ξ) is a universal
minimizer for a family of entropy functionals [5, 19, 16, 18]; for all convex functionals S(ξ),

M(u; ·) = argmin
u=

∫
gdξ, 0≤g≤1

∫
S′(ξ)gdξ. (8)

The idea pursued in this work is firstly to write (6) for all ω, and secondly to modify it in a
polynomial manner so as to consider the equation (we call it the intrusive kinetic formulation)

∂tf
N
ε + a(ξ).∇fNε + 1

εf
N
ε = 1

εM
N
(
uNε ; ξ, ω

)
,

uNε (x, ω, t) =

∫
fNε (x, ξ, ω, t)dξ,

fNε (t = 0) = MN
(
uinit; ξ, ω

)
,

(9)

where 0 ≤MN (uNε ; ξ, ω) ≤ 1 is a suitable polynomial modification of the Maxwellian M . Notice that∫
fNε (t = 0)dξdω =

∫
uinitdω but the initial data needs not be at ‘equilibrium’ since uinit usually does

not belong to PNω .
The function fNε is naturally a polynomial in ω of degree less or equal to N and we will show the

intrusive kinetic formulation (9) of conservation laws is endowed with some convenient mathematical
properties such as, for all t ≥ 0,

0 ≤ fNε ≤ 1,

∥∥∥∥∫ fNε (x, ξ, ω, t)dξ

∥∥∥∥
L∞xω

≤
∥∥∥∥∫ fNε (x, ξ, ω, 0)dξ

∥∥∥∥
L∞xω

.

Notice that the solutions of (9) depend now on two parameters ε and N . We describe two families of
methods to build the kinetic polynomial MN .
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The first construction is based on convolution kernels such as Fejer or Jackson kernels and reads
MN (uNε ; ξ, ω) = GN ∗ω M(uNε ; ξ) for some apropriate kernel G. Since this approach has natural
comparison inequalities, it is possible to pass for all time t to the limit ε → 0, but with N → ∞.
However εN2 → ∞ is needed for the limit to satisfy the correct equation (1) for all ω, in the weak
sense. Nevertheless, this result is a strong improvement with respect to [8] where the convergence is
proved by means of a weak-strong method but only before the time of shock (for example if there is
a discontinuity in the initial data, the result [8] simply does not apply). As shown below, a similar
property holds for strong convergence, which is a corollary of Proposition 2.10.

Theorem 1.1 (Convolved Maxwellian) Consider the Jackson kernel. Assume the initial data is
BV in all variables. One has convergence in L1

loc of fNε towards f with a rate of strong convergence
O
(

1
εN

)
, and a rate of weak convergence O

(
1

εN2

)
.

This unfortunate consequence -the limit ε→ 0 independently of N is not possible- will be confirmed
by considering the formal moment models which will be shown to be non consistent. Consequently
this first family of results is probably of minor practical interest for numerical approximation even if
endowed with rigorous approximation results.

The second family of construction intends to be less sensitive to N , so that it is possible to pass to
the limit ε → 0 keeping N fixed. This will be performed with an original polynomial approximation
of M , that we call a kinetic polynomial MN . It is described thanks to an algorithm based on sharp
polynomial properties. The structure of MN is layered in ξ, MN (uN ; ξ, ω) =

L∑
l=0

hNl (ω)1I{ξl<ξ<ξl+1}, 0 = ξ0 < ξ1 < · · · < ξL < ξL+1 = u+ = max
I
uN (ω),

hNl ∈ PNω ,
(10)

and is a natural option in the context of kinetic formulations. It defines an original approximation
method which has the following form in dimension one for scalar conservation law

∂tu
N + ∂xF

N [uN ] = 0, FN [uN ] =

∫
a(ξ)MN (uN ; ξ, ω)dξ =

∑
l≥0

hNl (ω) (F (ξl+1)− F (ξl)) . (11)

An interesting asset of this kinetic polynomial method is the exact formula for FN [uN ], in this sense
no quadrature rule is needed in opposition to the method of moments which requires to evaluate
the flux

∫
F (uN )pi(ω)dµ(ω) in (4). Even if the theory of approximation is less advanced than for

the convolution case, it seems to be much more adapted for the numerical approximation since this
new method (11) is endowed with a natural maximum principle which is not the case for the general
moment approximation (4). This property can be considered as one the main results of this work, see

Theorem 4.1. For the Burgers flux f(u) = u2

2 simple numerical results which satisfy the maximum
principle illustrate the potential interest of this second family of methods.

The organization of this work is as follows. Section 2 is devoted to the convolution approach and the
proof of Theorem 1.1. Section 2.3 deals with the design of the layered kinetic polynomial Maxwellian
(10) and the proof of Theorem 3.10 about the completion of the algorithm that constructs the layered
Maxwellian. Theorem 4.1 about the stability in the maximum norm of the scheme (11) is proved in
the last section 4. We complete this work with simple numerical illustrations of the new method (10)
for the case N = 2.
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2 Convolution kernels

A simple idea to construct a polynomial approximation MN of M , is to use a convolution method
under the form

MN (uNε ; ξ, ω) = GN ∗ω M(uNε ; ξ) :=

∫
GN (ω, ω′)M

(
uNε (ω′); ξ

)
dµ(ω′)

where the convolution kernel GN can be decomposed, using the orthonormal basis defined by (3), as

GN (ω, ω′) =
N∑
i=0

cipi(ω)pi(ω
′), (12)

where ci are appropriate coefficients, and where GN satisfies

GN ≥ 0,

∫
GN (ω, ω′)dµ(ω′) = c0 = 1 =

∫
GN (ω, ω′)dµ(ω). (13)

The theory of polynomial kernel approximation [9, 21] asserts that convolution kernels exist which
satisfy the requirements (12)–(13).

For example, considering the measure dµ(ω) = dω
π
√
1−ω2

, on the interval ω ∈ I = (−1, 1), they are

built on the Tchebycheff orthonormal polynomials

Ti(ω) = cos (i arcos ω) , −1 ≤ ω ≤ 1.

According to formula (3), a function v can be represented as the infinite series

v(ω) = µ0 + 2
∞∑
i=1

µiTi(ω), µi =

∫
I
v(ω′)Ti(ω

′)dµ(ω′).

The following kernels are suitable modifications of the truncated Dirichlet series

vND (ω) = µ0 + 2

N∑
i=1

µiTi(ω) = G ∗ω v

for the choice ci ≡ 1, which generates oscillations [21] and thus, is not convenient for our purposes
since (13) is not satisfied.

Exemple 2.1 (Fejer Kernel) The Fejer kernel GNF is defined by the coefficients

c0 = 1 and ci = 2
N + 1− i
N + 1

, 1 ≤ i ≤ N.

The truncated Fejer series vNF (ω) = c0µ0 + 2
N∑
i=1

ciµiTi(ω) is such that v ≥ 0 =⇒ vFN ≥ 0. It comes

from the integral representation [9]

vNF (ω) =

∫ 2π

0
v(cos(t− u))KN

F (u)du =

∫ 2π

0
v(cosu)KN

F (t− u)du, ω = cos t, (14)

with the kernel KN
F (u) = 1

2π(N+1)

(
sin(N+1)u

2
sin u

2

)2
. This representation formula shows the property (13).

Assuming v ∈ L∞(I), which is relevant in our context, one deduces from [9][Corollary 2.5 page 7] the
following approximation property: limN→∞ v

N
F (ω) = v(ω) almost everywhere.
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Exemple 2.2 (Jackson Kernel) The Jackson integral representation writes

vNJ (ω) =

∫ 2π

0
v(cos(t− u))KN

J (u)du =

∫ 2π

0
v(cosu)KN

J (t− u)du, ω = cos t. (15)

The Jackson kernel KN
J (u) = λNJ

(
sin(N+1)u

2
sin u

2

)4
is a convenient renormalization of the square of the

Fejer kernel [9], where the normalization coefficient λNJ is defined by
∫ 2π
0 KN

J (u)du = 1. By definition
vNF is a polynomial of degree ≤ 2N in the variable ω. One has better approximation properties for
the Jackson kernel than for the Fejer kernel, cf. [9][Theorem 2.2 page 205], since one can prove an
optimal error estimate ∥∥v − vNJ ∥∥L1

µ(I)
≤ Cmod2(v,

1

N
) (16)

with

mod2(v, α) :=

∫ π

0
|v(cos(t+ α))− 2v(cos(t)) + v(cos(t− α))| dt. (17)

Notice that mod2(f, α) is an integral with respect to the trigonometric variable t ∈ (0, π), while the
error is an integral with respect to the original variable ω = cos t. This is the reason of the weighted
L1
µ norm used for (16). One deduces that it also holds:

∥∥v − vNJ ∥∥L1
µ(I)
≤ Cmod1(v,

1

N
) (18)

with

mod1(v, α) =

∫ 2π

0
|v(cos(t+ α)− v(cos t)| dt for α > 0. (19)

Exemple 2.3 (The modified Jackson Kernel) This kernel can be found in [17] and is studied for
modern physical calculations in [21]. The polynomial is defined by

vN = c0µ0 + 2
N∑
i=1

ciµiTi(ω), ci =
(N + 2− i) cos πi

N+2 + sin πi
N+2 cot π

N+2

N + 2
. (20)

This is also a positive kernel [21] and it admits a convolution representation like (15). The approxi-
mation properties in L1

µ are similar to those of the Jackson kernel due to the estimates (61)-(69) in
[21]. For practical computations, this kernel has two major interests. The coefficients cn are known
by a simple analytical formula, and its degree is arbitrary, unlike the Jackson kernel which has even
order. The corresponding kernel is denoted as KN

mod,J .

2.1 Entropy and a priori bounds

We review some a priori bounds and properties satisfied by the equation (9) recalling that we use
well-prepared initial data

MN (uinit; ξ, ω) = GN ∗ω M(uinit; ξ, ω). (21)

The stability estimates are the same for any of the three kernels mentioned above. However, we detail
the approximation estimates only for the Jackson kernel, for which the theory of approximation is well
established. The generalization to the modified Jackson kernel is left to the reader together with the
study of the non optimal approximation properties of the Fejer kernel.
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Proposition 2.4 For any of the three kernels, there is a unique solution of (9) and we have the prop-
erties
1. 0 ≤ fNε ≤ 1.
2. 0 ≤ uNε ≤ UM := supx,ω u

init(x, ω), fNε (x, ξ, ω, t) ≡ 0 for ξ ≥ UM .
3. For all smooth convex functions S(·), we have

∂t

∫
S′(ξ)fNε (x, ξ, ω, t)dξdµ(ω) + div

∫
a(ξ)S′(ξ)fNε (x, ξ, ω, t)dξdµ(ω) ≤ 0.

4. (Contraction principle) Consider two solutions fNε and gNε of (9), then∫ ∣∣fNε (t)− gNε (t)
∣∣ dxdξdµ(ω) ≤

∫ ∣∣fNε (0)− gNε (0)
∣∣ dxdξdµ(ω).

5. (Comparison principle) Also, if fNε (0) ≤ gNε (0),then fNε (t) ≤ gNε (t) for all t ≥ 0.
6. Finally, the BV bounds in space are propagated, for all t ≥ 0,∫

|∇xfNε |dxdξdµ(ω) ≤ C init,

∫
|∇xuNε |dxdµ(ω) ≤ C init. (22)

Proof. 1. Indeed, from (13) we have GN ∗ω M(uNε ; ξ) ≥ 0 and thus fNε ≥ 0.

2. Also, we have GN ∗ω M(uNε ; ξ) ≤
∫
GN (ω, ω′)dµ(ω′) = 1 and thus fNε ≤ 1.

3. Similarly, for ξ ≥ UM , we have M(uinit; ξ) ≡ 0 and thus fNε (t = 0) = 0. This property is
propagated by the equation because f(ξ) = 0 for ξ ≥ UM implies u =

∫
fdξ ≤ UM , which itself

implies M = 0 for ξ ≥ UM and thus G ∗ω M = 0 for ξ ≥ UM .

4. To prove the entropy inequality, we can always assume S(0) = 0. Then, after multiplying the
equation by S′(ξ), integrating in ξ and ω, we notice that the right hand side is 1

ε times∫
S′(ξ)GN ∗ω M(uNε ; ξ)dξdµ((ω)−

∫
S′(ξ)fNε (x, ξ, ω, t)dξdµ(ω)

=

∫
GN ∗ω S(uNε )dµ(ω)−

∫
S′(ξ)fNε (x, ξ, ω, t)dξdµ(ω)

=

∫
S(uNε )dµ(ω)−

∫
S′(ξ)fNε (x, ξ, ω, t)dξdµ(ω) ≤ 0

because this is true ω by ω, thanks to the universal entropy minimisation principle (8). Here we have
also used

∫
GN (ω, ω′)dµ(ω) = 1.

5. One has

∂t|fNε − gNε |+ a(ξ).∇x|fNε − gNε |+ 1
ε |f

N
ε − gNε | = sgn(fNε − gNε ) G ∗ω

(
M(uNε ; ξ)−M(vNε ; ξ)

)
≤ G ∗ω

∣∣M(uNε ; ξ)−M(vNε ; ξ)
∣∣ .

So

d

dt

∫
|fNε − gNε |dxdξdµ(ω) +

1

ε

∫
|fNε − gNε |dxdξdµ(ω) ≤ 1

ε

∫
G ∗ω

∣∣M(uNε ; ξ)−M(vNε ; ξ)
∣∣ dxdξdµ(ω)
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≤ 1

ε

∫ ∣∣M(uNε ; ξ)−M(vNε ; ξ)
∣∣ dxdξdµ(ω) =

1

ε

∫ ∣∣uNε − vNε ∣∣ dxdµ(ω) =
1

ε

∫
|fNε − gNε |dxdξdµ(ω).

6. The comparison principle is a simple variant using (...)+ in place of the absolute value.
7. The BV bound, is an immediate consequence of the contraction principle combined with transla-
tional invariance.

The proof is complete.

The entropy inequality of Proposition 2.4 is integrated over ω. It is possible to get a sharper estimate
by using a test function ϕ ≥ 0 for the ω variable. The price is to work with weak topology.

Proposition 2.5 (Estimates in weak norms in ω) Consider solutions of (9) with the Jackson
kernel. For all smooth convex functions ξ 7→ S(ξ) and all non negative function ω 7→ ϕ(ω), there
exists a constant CS,UM such that

∂t

∫
ϕ(ω)S′(ξ)fNε (x, ξ, ω, t)dξdµ(ω) + div

∫
ϕ(ω)a(ξ)S′(ξ)fNε (x, ξ, ω, t)dξdµ(ω) ≤ CS,UM

mod2(ϕ,
1
N )

ε
.

Proof. We only have to evaluate the right hand side, that is 1/ε times A with

A =

∫
ϕ(ω)S′(ξ)GN ∗ω M(uNε ; ξ)dξdµ(ω)−

∫
ϕ(ω)S′(ξ)fNε (x, ξ, ω, t)dξdµ(ω).

The kernel being symmetric one has (normalizing S with S(0) = 0)∫
ϕ(ω)S′(ξ)GN ∗ω M(uNε ; ξ)dξdµ(ω) =

∫
S′(ξ)M(uNε ; ξ)

(
GN ∗ω ϕ(ω)

)
dξdµ(ω)

≤
∫
S′(ξ)M(uNε ; ξ)ϕ(ω)dξdµ(ω) +

∫
S′(ξ)M(uNε ; ξ)rN (ω)dξdµ(ω)

where the convolution error rN = GN ∗ω ϕ− ϕ is controled as, recalling (16)–(17),∥∥rN (ω)
∥∥
L1
µ
≤ mod2(ϕ,

1

N
).

Therefore, using the L∞ bounds of Proposition 2.4, the last term is bounded as∣∣∣∣∫ S′(ξ)M(uNε ; ξ)rN (ω)dξdµ(ω)

∣∣∣∣ ≤ sup
ω
|S(uNε )|

∥∥rN (ω)
∥∥
L1
µ
≤ max

0≤ξ≤UM
‖S(ξ)‖ mod2(ϕ,

1

N
).

Finally, using the universal entropy minimisation principle (8), A ≤ CS,UM mod2(ϕ,
1
N ) which ends

the proof.

Next question is to obtain a BV bound with respect to ω. In view of the comparison principle of
Proposition 2.4, it is appealing to rely on transformations which commute with the operators of the
system. Fortunately, the kernels based on Tchebycheff polynomials are endowed with such a natural
transformation. This is immediately visible in (15) which is written as convolutions. This is also true
for the modified Jackson kernel (20) which can also be written as a convolution [21].
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For any f and 0 < α, we define the linear operator (which mimicks translations)

g = Qαf ⇐⇒ g(ω) =
f(cos(t+ α))− f(cos(t))

α
, ω = cos t ∈ [−1, 1]. (23)

The aforementioned convolution formulas have the consequence that the operators commute

QαG
N∗ω = GN ∗ω Qα. (24)

Proposition 2.6 (BV bound in ω) Consider solutions of (9) with any of the three kernels. As a
consequence of the commutation property (24), one has that∫ ∣∣QαfNε (t)

∣∣ dxdξdµ(ω) ≤
∫ ∣∣QαfNε (0)

∣∣ dxdξdµ(ω). (25)

Proof. The proof is a slight modification of the comparison principle in Proposition 2.4. We set
gNεα = Qαf

N
ε which satisfies

∂tg
N
εα + a(ξ).∇gNεα +

1

ε
gNεα =

1

ε
QαG

N ∗ω M(uNε ; ξ) =
1

ε
GN ∗ω QαM(uNε ; ξ).

Therefore
∂t|gNεα|+ a(ξ).∇x|gNεα|+ 1

ε |g
N
εα| = sgn(gNεα) G ∗ω QαM(uNε ; ξ)

≤ G ∗ω
∣∣QαM(uNε ; ξ)

∣∣
and

d
dt

∫
|gNεα| dxdξdµ(ω) + 1

ε

∫
|gNεα|dxdξdµ(ω) ≤ 1

ε

∫
G ∗ω

∣∣QαM(uNε ; ξ)
∣∣ dxdξdµ(ω)

≤ 1
ε

∫ ∣∣QαM(uNε ; ξ)
∣∣ dxdξdµ(ω) ≤ 1

ε

∫ ∣∣QαuNε ∣∣ dxdµ(ω)

≤ 1
ε

∫ ∣∣QαfNε ∣∣ dxdξdµ(ω) = 1
ε

∫ ∣∣gNεα∣∣ dxdξdµ(ω).

So that we conclude d
dt

∫
|gNεα|dxdξdµ(ω) ≤ 0, and thus

∫
|gNεα(t)|dxdξdµ(ω) ≤

∫
|gNεα(0)|dxdξdµ(ω).

which is the announced result.

Proposition 2.7 (BV bound in time) Consider solutions of (9) with any of the three kernels. The
time derivative is bounded as follows:∫ ∣∣∂tfNε (t)

∣∣ dxdξdµ(ω) ≤
∫ ∣∣∂tfNε (0)

∣∣ dxdξdµ(ω) ≤ CUM
∫
|∇xuinit|dxdµ(ω).

Proof. This is once again a consequence of the comparison principle. Set gNε (t) = fNε (t + α), with
α > 0. The comparison principle of Proposition 2.4 yields that∫ ∣∣∣∣fNε (t+ α)− fNε (t)

α

∣∣∣∣ dxdξdµ(ω) ≤
∫ ∣∣∣∣fNε (α)− fNε (0)

α

∣∣∣∣ dxdξdµ(ω).

We can pass to the limit α = 0+ using that ∂tf
N
ε (0) = −a(ξ) · ∇xfNε (0) for the well-prepared data

under considerations. Because we have∫
|∇xMN

(
uinit; ξ, ω

)
|dxdξdµ(ω) ≤

∫
|∇xM

(
uinit; ξ

)
|dxdξdµ(ω) ≤

∫
|∇xuinit|dxdµ(ω),

9



the proof is complete.

For our next statement, we use truncation functions in x with the properties (with R a parameter
allowing localization on sets as large as we wish)

χ ∈ C2(Rd), χ ∈ L1(Rd), χ > 0, χ = 1 in BR, |∇χ| ≤ χ. (26)

In other words we choose truncation functions which decay as e−|x| at infinity.

Proposition 2.8 (Estimate of derivative in ξ) Consider any of the three kernels and assume uinit ∈
BVx and consider a nonnegative truncation function satisfying (26). Then, solutions of (9) have
bounded ξ derivatives∫

χ(x)
∣∣∂ξfNε (t)

∣∣ dxdξdµ(ω) ≤ e−
t
ε

∫
χ(x)

∣∣∂ξfNε (0)
∣∣ dxdξdµ(ω) + CR

where CR depends on the radius in (26) and on the x−BV estimates (22).

Proof. Indeed one can differentiate the equation with respect to ξ

∂t∂ξf
N
ε + a(ξ).∇∂ξfNε +

1

ε
∂ξf

N
ε =

1

ε
GN ∗ω ∂ξM(uNε ; ξ)− a′(ξ).∇fNε

where ∂ξM(uNε ; ξ) = δ(ξ − uNε ) is a measure. It yields

∂t
∣∣∂ξfNε ∣∣+ a(ξ).∇

∣∣∂ξfNε ∣∣+
1

ε

∣∣∂ξfNε ∣∣ =
1

ε

∣∣GN ∗ω ∂ξM(uNε ; ξ)
∣∣+
∣∣a′(ξ).∇fNε ∣∣ ,

Here the right hand side can be bounded. Firstly one has that∫ ∣∣GN ∗ω ∂ξM(uNε ; ξ)
∣∣ dξdµ(ω) ≤

∫ ∣∣∂ξM(uNε ; ξ)
∣∣ dξdµ(ω) =

∫
dµ(ω) = C1,

Consequently, we find

∂tχ(x)
∫ ∣∣∂ξfNε ∣∣ dξdµ(ω) +

∫
a(ξ).∇[χ(x)

∣∣∂ξfNε ]
∣∣ dξdµ(ω) +

∫
χ(x)1ε

∣∣∂ξfNε ∣∣ dξdµ(ω)

≤ χ(x)C1
ε +

∫
χ(x)

∣∣a′(ξ).∇fNε ∣∣ dξdµ(ω) +
∫ ∣∣∂ξfNε ∣∣ a(ξ).∇χ(x)dξdµ(ω)

Secondly one has ∫ ∣∣a′(ξ).∇fNε ∣∣ dxdξdµ(ω) ≤ C2

∫ ∣∣∇fNε ∣∣ dxdξdµ(ω) ≤ C3

where we used Proposition 2.4, and |a′| ≤ C3 because ξ ≤ UM in these integrals. Therefore, using the
truncation properties of (26),

d

dt

∫
χ(x)

∣∣∂ξfNε ∣∣ dxdξdµ(ω)+
1

ε

∫
χ(x)

∣∣∂ξfNε ∣∣ dxdξdµ(ω) ≤ C1

ε
+C3

∫
χdx+C4

∫
χ(x)

∣∣∂ξfNε ∣∣ dxdξdµ(ω).

This yields the result using Gronwall’s lemma.
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2.2 Convergence

We establish some conditions for the convergence of fNε towards a correct limit f as N → ∞ and
ε→ 0. To begin with, we notice that the solutions are BV in the domain

(x, ξ, ω, t) ∈ Dα = Rd × [0, UM ]× [1− α, 1 + α]× [0, T ], 0 < α < 1,

due to the previous propositions.
The restriction in direction ω comes from the transformation (23), since we recognize the standard

BV criterion for the variable t but mapping it back to the variable ω, we loose the BV bound because
of the degeneracy at the end points due to the vanishing derivative of the cosine function. This is why
the BV property (in particular for the measure with respect to ω which writes dω

π
√
1−ω2

) is obtained

readily only in Dα for α > 0. Nevertheless the functions fNε also belong to L∞. Therefore,
1. as N →∞, ε→ 0, from any sequence fNε ∈ L∞ ∩ Dα for all 0 < α, one can extract a subsequence
that converges strongly in L1,loc

xξµ(ω)(D0) to a limit f which satisfies 0 ≤ f ≤ 1 and
∫
fdxdξdµ(ω) ≤∫

uinit(x, ω)dxdµ(ω).

2. for the same subsequence, uNε =
∫
fNε dξ converges strongly in L1,loc

xµ(ω)(D0) to the limit u =
∫
fdξ,

3. and M(uNε ; ξ) converges strongly in L1,loc
xξµ(ω)(D0) to the limit M(u; ξ),

4. For the Jackson kernel, MN (uNε ; ξ, ω) converges strongly in L1,loc
xξµ(ω)(D0) to M(u; ξ). This is because

MN (uNε ; ξ, ω)−M(uNε ; ξ) = (GN − I) ∗ω [M(uNε ; ξ)−M(u; ξ)] + (GN − I) ∗ω M(u; ξ).

The first term converges to 0 thanks to (13) and 3., while the second term converges to 0 because∫
|(GN − I) ∗ω M(u; ξ)|dxdξdµ(ω) ≤ C

∫
mod1

(
M(u; ξ),

1

N

)
≤ C

∫
mod1

(
M(uinit; ξ),

1

N

)
where we use the standard L1

x contraction inequality for solutions of the scalar conservation law (1).
A BV bound of the initial data with respect to the variable ω shows the convergence to zero of this
term (with the same argument as before for the degeneracy at the endpoints),
5. and, still for the Jackson kernel, f = M(u; ξ, ω) because the equation (9) gives

MN (uNε ; ξ, ω)− fNε = ε[∂tf
N
ε + a(ξ).∇fNε ]→ 0 in D′.

Consequently, the questions of interest are to establish some conditions which imply that f = M(u; ξ)
and u satisfy the correct limit equations and to obtain error estimates.

Proposition 2.9 (The limit is a weak solution) Consider the Jackson kernel. Assume that N2ε→
∞. Then, the full sequence fNε (see the construction before) converges to f = M(u; ξ) and it is a weak
solution of

∂tf + a(ξ).∇f = ∂ξm, f(t = 0) = M(uinit; ξ), (27)

where m is a non negative measure, and thus u =
∫
fdξ is the unique entropy solution of (1), that is

for a.e. ω.

Proof. The theory in [19, 16, 18] immediately shows that u is the entropy solution of the conservation
law, a.e. with respect to ω, and thus uniqueness as soon as (27) is established (we recall the L1 ∩L∞
assumption for uinit following (2)).
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To prove that (27), holds, we write

∂tf
N
ε + a(ξ).∇fNε =

1

ε

(
M(uNε ; ξ)− fNε

)
+

1

ε

(
GN ∗ω −Iω

)
M(uNε ; ξ). (28)

The first three terms pass to the limit from the observations above. It remains to prove that
1
ε

(
GN ∗ω −Iω

)
M(uNε ; ξ) tends to zero in the weak sense. For this purpose, it is sufficient to use

a smooth test function ϕ(x, ξ, ω, t) with compact support C, and observe that

1
ε

∫
C
ϕ(x, ξ, ω, t)

(
(GN ∗ω −Iω)M(uNε ; ξ)

)
dxdξdµ(ω)dt

= 1
ε

∫
C

(
(GN ∗ω −Iω)ϕ

)
M(uNε ; ξ)dxdξdµ(ω)dt.

To conclude the proof, we use the same argument as in Proposition 2.5, and notice that for the test
function we can assume it has compact support in ω ∈ (−1, 1)

‖(GN ∗ω −Iω)ϕ‖L1(dµ) ≤ Cmod2(ϕ,
1

N
) ≤ C

N2

and the equation is established.

Our next result quantifies strong convergence, based on the previous comparison estimates. The
compatibility relation between ε and N is nevertheless more stringent than for weak convergence since
we need Nε→ 0. This is the lowest rate for N that we can use to handle the right hand side of (29).

Proposition 2.10 (Strong error bounds) Consider the Jackson kernel. One has the inequalities∫ ∣∣fNε (t)−GN ∗ω fε(t)
∣∣ dxdξdµ(ω) ≤ C t

ε

∫
mod1(u

init,
1

N
)dxdξ, (29)

∫ ∣∣fNε (t)− fε(t)
∣∣ dxdξdµ(ω) ≤ C(1 +

t

ε
)

∫
mod1(u

init,
1

N
)dxdξ, (30)∫ ∣∣fNε (t)−M(u; ξ)

∣∣ dxdξdµ(ω) ≤ c
√
ε+ C(1 +

t

ε
)

∫
mod1(u

init,
1

N
)dxdξ. (31)

Proof. 1. The convolution of (6) yields the identity

∂tg
N
ε + a(ξ).∇gNε +

1

ε
gNε =

1

ε
GN ∗ω M(uε; ξ), gNε = GN ∗ω fε.

Set vNε =
∫
gNε dξ = GN ∗ω uε and rNε = GN ∗ω

(
M(uε; ξ)−M(vNε ; ξ)

)
so that

∂tg
N
ε + a(ξ).∇gNε +

1

ε
gNε =

1

ε
GN ∗ω M(vNε ; ξ) +

1

ε
rNε .

By definition, see (21), the initial conditions are the same for fNε and gNε :

fNε (0) = gNε (0) = GN ∗ω M(uinit; ξ) = MN (uinit; ξ, ω).
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Since by definition ∂tf
N
ε + a(ξ).∇fNε + 1

εf
N
ε = 1

εG
N ∗ω M(uNε ; ξ), one more use of the comparison

principle between fNε and gNε yields∫ ∣∣fNε (t)− gNε (t)
∣∣ dxdξdµ(ω) ≤ 1

ε

∫ t

0

(∫ ∣∣rNε (s)
∣∣ dxdξdµ(ω)

)
ds.

Using the definition of rNε and the property (13), one has∫ ∣∣rNε (x, ξ, ω, s)
∣∣ dxdξdµ(ω) ≤

∫ ∣∣M(uε; ξ)−M(vNε ; ξ)
∣∣ dxdξdµ(ω)

≤
∫ ∣∣uε(x, ω, s)− vNε (x, ω, s)

∣∣ dxdξdµ(ω)

≤
∫ ∣∣uε(x, ω, s)−GN ∗ω uε(x, ω, s)∣∣ dxdµ(ω)

≤ C
∫

mod1(uε(s),
1
N )dx.

The last inequality comes from the approximation property (16) in the L1
µ norm of the Jackson kernel.

It remains to use the standard L1
xξ contraction estimate for solutions of the kinetic equation (6). One

gets ∫
mod1(uε(s),

1
N )dx =

∫ 2π
0

(∫ ∣∣uε (x, cos(τ + 1
N ), s)

)
− uε(x, cos τ, s)

∣∣ dx) dτ
≤
∫ 2π
0

(∫ ∣∣uε (x, cos(τ + 1
N ), 0

)
− uε(x, cos τ, 0)

∣∣ dx) dτ
=
∫

mod1(uε(0), 1
N )dx.

Since the initial data is independent of ε, that is uε(0) = uinit, it ends the proof of the first estimate.

2. We have, using the contraction principle for the BGK equation, cf [19, 16, 18],∫ ∣∣GN ∗ω fε(t)− fε(t)∣∣ dxdξdµ(ω) ≤
∫

mod1(fε(t),
1
N )dxdξ

≤
∫ ∫ 2π

0 |fε(x, ξ, ω + 1
N , t)− fε(x, ξ, ω, t)|dxdξdω

≤
∫ ∫ 2π

0 |fε(x, ξ, ω + 1
N , 0)− fε(x, ξ, ω, 0)|dxdξdω

=
∫

mod1(u
init, 1

N )dx,

which proves the second inequality

3. The third estimate is just the consequence of the second and of the standard convergence rate
from the BGK model to the scalar conservation law, cf [19, 16, 18].

Remark 2.11 The estimate (29) can be slightly enhanced under the form∫ ∣∣fε(t)−GN ∗ω fε(t)∣∣ dxdξdµ(ω) ≤ C

ε

∫
mod2(fε(t),

1

N
)dxdξ.

However, propagation bounds hold true for mod1(fε,
1
N ), but not for mod2(fε,

1
N ).
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2.3 Moment equations

Even if the weak or strong convergence estimates do not allow to pass to the limit ε independently of
N , it is instructive in view of practical numerical computations to write the formal limit in the regime
εN = O(1). The unknown of the resulting moment system are the quantities

uNε,i(x, t) =

∫
fNε,i(x, ω, t)dξ, fNε,i(x, ω, t) =

∫
fNε (x, ξ, ω, t)Ti(ω)dµ(ω).

We now explain why an artificial damping phenomenon arises.

For convenience we set N + 1 = 1
ε . The projected equation for the modified Jackson kernel are

∂tu
N
ε,i + div

∫
a(ξ)fNε,idξ =

1

ε

[
cmodJi uNε,i − uNε,i

]

= (N + 1)

(
(N + 1− i) cos πi

N+1 + sin πi
N+1 cot π

N+1

N + 1
− 1

)
uNε,i

=

(
(N + 1− i) cos

πi

N + 1
+ sin

πi

N + 1
cot

π

N + 1
−N − 1

)
uNε,i = −hN (i)uNε,i.

Elementary calculations show that hN (0) = 0, and that hN (x) > 0 for 0 < x < N with hN (x)→ 0 for
all x as N → 0. One also has that 0 < hN (i) < i for 0 < i ≤ N . It implies after integration in x

∂t

∫
uNε,idx = −hN (i)

∫
uNε,idx =⇒

∫
uNε,idx(t) = e−hN (i)t

∫
uNε,idx(0) =⇒ lim

t→∞

∫
uNε,idx(t) = 0.

This damping phenomenon of the moments i 6= 0 also shows up if one uses the Jackson kernel,
and is even stronger starting from the Fejer kernel. This is the price to pay for the good theoretical
properties. However, with this regard this formulation is less satisfactory than moment methods like
(4) which do not damp.

This spurious damping is not satisfactory for practical purposes and motivates the intrinsic method
studied in the next section.

3 Kinetic polynomials

In order to define another polynomial system without damping, we introduce directly a different poly-
nomial approximation of the Maxwellian M(u; ξ) = 1I{0<ξ<u}, which we call ‘Kinetic Polynomials’.
We use a minimization procedure instead of the convolution in ω according to a construction depicted
in Figures 1 and 2.

We first present the minimization principles underlying the construction of kinetic polynomials.
Then, we present a layered algorithm that allow to build practically and efficiently these polynomials.
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M=1

ω

ξ

M(ξ,ω)M=0

Figure 1: Plot of the upper limit of the support of M(ω, ξ) in the (ω, ξ) plane, identical to the graph
of the function ω 7→ u(ω). The convolution method is based on some averages on horizontal lines,
and does not preserve the integral on the vertical lines which is preserved, by construction, for the
minimization method of section 3.1.

3.1 Minimization principle for kinetic polynomials

The purpose in this section is to generalize the universal entropy principle (8) and to construct, for
any N ≥ 0, an equilibrium MN (uN ; ξ, ω), independent of S, which satisfies

MN (uN ) = argmin
gN∈KN (uN )

∫
S′(ξ)gNdξdµ(ω), for all admissible functions S, (32)

where KN (uN ) is the set of states defined by

KN (uN ) =

{
gN (·, ·) ∈ PNω , uN (ω) =

∫
gN (ξ, ω)dξ, 0 ≤ gN ≤ 1

}
, for uN (·) ∈ PNω .

In order to reformulate this problem, we remark that

S′(ξ) =

∫ ∞
0

S′′(s)as(ξ)ds, as(ξ) = 1I{0<s<ξ} (33)

meaning that any function S′ such that S′′ ≥ 0 and S′(0) = 0 is a non-negative integral of functions
as(ξ) which also satisfy a′s ≥ 0 and as(0) = 0. So we replace (32) with a family of similar problems

MN (uN ) = argmin
gN∈KN (uN )

∫ ∞
ξ

gNdsdµ(ω), ∀ξ. (34)
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Since the mass must be preserved, that is
∫
gN (s, ω)dsdµ(ω) =

∫
uN (ω)dsdµ(ω), this problem can be

rewritten with the alternative formulation

MN (uN ) = argmax
gN∈KN (uN )

∫ ξ

0
gNdsdµ(ω), ∀ξ. (35)

Remark 3.1 Even if the formulation (35) is simpler than (32), it is still involved. Indeed MN is
required to be the single maximizer of an infinite number of maximization problem, i.e. for all ξ.
Considering the theory of polynomial approximation, it is possible to imagine that a clever use of
(35) combined with the polynomial structure could generate one single maximization problem that
encompasses all the properties of MN . But it is still an open problem to find this unique maximization
formulation.

In the case N = 0, the formulation is simply (8). As shown in the literature [5, 19, 16], the
degeneracy question is untied by using a strictly convex entropy S′′ > 0, and noticing that the unique
minimum is the same for all strictly convex entropy S′′ > 0. But in our general case N > 0, the
formulations (32), (34) and (35) are definitely linearly degenerate in the variable ω. This is the
reason of the difficulties encountered for the moment with these maximization formulations.

This is why we try less to analyze the abstract properties of this problem in terms of existence and
uniqueness of the solutions, but more to reformulate it in a way adapted to design a constructive algo-
rithm. Hence we will be able to define another formulation, denoted below as the second maximization
problem, which reveals to be constructive and is the one that we use in the sequel.

Let u+ = maxω∈I u
N (ω) and u− = minω∈I u

N (ω). We notice that KN (uN ) is non empty since

ĝN = 1I{0<ξ<u−} +
uN (ω)− u−
u+ − u−

1I{u−<ξ<u+} ∈ K
N (uN ).

This function vanishes for u+ < ξ and is identically equal to 1 for 0 < ξ < u−. Considering (34) and
(35), we deduce that if MN (uN ) exists, it also vanishes identically for u+ < ξ and must be identically
equal to 1 for ξ < u−.

Therefore we introduce these constraints in the set of possible solutions

SN (uN ) =
{
gN ∈ KN (uN ) : gN = 1 for 0 < ξ < u− and gN = 0 for u+ < ξ

}
where uN (·) ∈ PNω and 0 ≤ uN . Since ĝN ∈ SN (uN ), one has SN (uN ) 6= ∅. We obtain the constraint
maximization problem.

Problem 3.2 (First maximization problem) Find a unique Maxwellian polynomial MN (uN ) ∈
SN (uN ) such that ∫ ξ

0
MNdsdµ(ω) ≥

∫ ξ

0
ĝNdsdµ(ω), ∀ξ, ∀ĝN ∈ SN (uN ).

This is a family of maximization problems of a linear functional, over a convex set SN (uN ).
An interpretation is that if a solution exists for (34) or (35), then the mass at each level ξ 7→∫
MN (uN ; ξ, ω)dµ(ω) is maximized for smaller ξ: it is already a property of the solution of the

initial problem (8). The whole problem is to construct the maximizer (if it exists) for values of ξ
between u− and u+. As stressed in remark 3.1 the existence and uniqueness of a solution to this
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problem is nevertheless an open problem. We will build on the idea that the problem must be an-
alyzed level after level (i.e. layer after layer) to construct layered feasible solutions under the form:

MN (uN ; ξ, ω) =
L∑
l=0

hNl (ω)1I{ξl<ξ<ξl+1} with 0 = ξ0 < · · · < ξL+1 = u+ and hNl ∈ PNω polynomial

inside each layer. See Figure 2.

In what follows, we assume that the problem 3.2 admits a unique solution, and detail some immediate
consequences which explains the interest of this problem.

Proposition 3.3 Under the assumption that a solution exists to the maximization problem 3.2, then
it is a minimizer of (32) (that is for any S convex).

Proof. This is a consequence of the identity (33).

Proposition 3.4 Cconsider a nonnegative polynomial approximation of the initial data uinit,N ≥ 0.
Under the assumption that a solution exists to the maximization problem 3.2, then the solution of the
kinetic equation 

∂tf
N
ε + a(ξ).∇fNε + 1

εf
N
ε = 1

εM
N (uNε ; ξ, ω),

uNε (x, ω, t) =

∫
fNε (x, ξ, ω, t)dξ,

fNε (t = 0) = MN (uinit,N; ξ),

(36)

satisfies the maximum principle. For all smooth convex functions S(·), we have the entropy inequality

∂t

∫
S′(ξ)fNε (x, ξ, ω, t)dξdµ(ω) + div

∫
a(ξ)S′(ξ)fNε (x, ξ, ω, t)dξdµ(ω) ≤ 0.

Proof. Immediate. Notice the assumption on the non negativity of the initial data can easily be
realized by using the previous method with convolution kernels: uinit,N = GN ∗ω uinit.

Proposition 3.5 (Derivation of the polynomial system) Under the assumption that a solution
exists to the maximization problem 3.2, and if uNε converges strongly to some uN , then we can pass to
the limit ε→ 0 in (36) and obtain the system of conservation laws

∂tu
N
i + div FNi [uN ] = 0, 0 ≤ i ≤ N, FNi [uN ] :=

∫
a(ξ)MN (uN ; ξ, ω)Ti(ω)dξdµ(ω), (37)

with the entropy inequalities, for all smooth convex function S(·),

∂tSN [uN ] + div GN [uN ] ≤ 0,

where the entropy and entropy fluxes are defined by

SN [uN ] :=

∫
S′(ξ)MN (uN ; ξ, ω)dξdµ(ω), GN [uN ] :=

∫
S′(ξ)a(ξ)MN (uN ; ξ, ω)dξdµ(ω).
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Proof. Because of the bounds 0 ≤ fNε (x, ξ, ω, t) ≤ 1, we may extract subsequences such that fNε ⇀
fN ∈ PNω in L∞−w∗. Because, uNε converges strongly, MN (uNε ) also converges strongly to MN (uN ).
From the equation (36) (once multiplied by ε), we conclude that fN = MN (uN ). To find the system
of conservation laws, it remains to integrate in ξ the equation (36) and pass to the limit. Similarly,
we pass to the limit in the entropy inequality.

This system, which is equivalent to (11) once projected on the orthonormal basis, has a much better
structure than those in section 2.3 because they do not contain relaxation terms in the right hand
side. Also, the family of entropy inequalities explains that it satisfies the maximum principle.

The rest of this work is devoted to construct a reasonable, or feasible, solution to the maximization
problem. It is possible to prove the following results. For N = 0, the solution of the first maximization
problem 3.2 exists, is unique and is of course equal to M(u) (single layer). For N = 1 the solution of
the first maximization problem 3.2 exists, is simple to construct in two layers and is also unique. This
is explained in section 3.2.

ForN > 1, we reformulate the problem. The idea is that if one determines the functionMN (uN ; ξ, ω)
under a certain threshold ξ < ξ∗, then the maximization formulation 3.2 implies that∫ ξ∗+α

0
MN (uN ; ξ, ω)dξdµ(ω) ≥

∫ ξ∗

0
MN (uN ; ξ, ω)dξdµ(ω) +

∫ ξ∗+α

ξ∗

ĝN (ξ, ω)dξdµ(ω), α > 0,

that is ∫ ξ∗+α

xi∗

MN (uN ; ξ, ω)dξdµ(ω) ≥
∫ ξ∗+α

ξ∗

ĝN (ξ, ω)dξdµ(ω), α > 0.

The limit α→ 0+ gives another characterization as a maximization problem one layer after the other:

Problem 3.6 (Second maximization problem) Assume MN (uN ) ∈ SN (uN ) is a solution of the
first maximization problem 3.2. Then it is solution of another maximization problem

lim
α→0+

1

α

∫ ξ+α

ξ
MN (ξ, ω)dξdµ(ω) ≥ lim

α→0+

1

α

∫ ξ+α

ξ
g̃N (ξ, ω)dµ(ω), ∀ξ (38)

and for all g̃N such that ĝN (ξ′, ω) = MN (ξ′, ω)1I{0<ξ′<ξ} + g̃N (ξ′, ω)1I{ξ<ξ′<ξ+α} ∈ SN (uN ).

Remark 3.7 Like the first maximization problem, this is an infinite family (that is for all ξ) of
maximization problems of a linear functional, over a convex set SN (uN ). But the difference if that it
is now ordered, in the sense that we can try to maximize for small ξ, and after that to maximize on a
small layer ξ + ε, and so on.

We will use this principle to construct the unique solution of the second maximization problem 3.6
with a layered technique: that is we will construct MN (uN ) step by step (layer by layer).

A natural interpretation is that MN (uN ) is a function that tries to have as much mass as possible
for small ξ. If we see ξ = 0 as where a ground state MN (0, ω) = 1 is, and the function MN (uN ) as
some generalized ”particles” distribution like in statistical physics, then the algorithm just tries to pill
up ”particles” above the ground state.
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3.2 N = 1

A preliminary result is the following, which is the consequence that polynomials of degree 1 can be
characterized by their values at the two end points.

Proposition 3.8 Consider the case N = 1 and I = [−1, 1]. Denote the constraint as u1(ω) =
αω+ β ≥ 0 and assume for instance that α ≥ 0. Then, the solution of the first maximization problem
3.2 exists, is unique with the the layered form

M1(u1; ξ, ω) = 1I{0<ξ<min(u(−1),(u(1))} +
1 + ω

2
1I{u(−1)<ξ<u(1)} +

1− ω
2

1I{u(1)<ξ<u(−1)}

where one of the two last terms vanishes.

Proof. For a first order polynomial in ω, g1(ξ, ω), we set c(ξ) = g1(ξ,−1) and d(ξ) = g1(ξ, 1), so that g1(ξ, ω) = c(ξ)1−ω2 + d(ξ)1+ω2 ,

g1 ∈ S1(u1)⇐⇒
∫
c(ξ)dξ = u(−1),

∫
d(ξ)dξ = u(1), 0 ≤ c(ξ) ≤ 1 and 0 ≤ d(ξ) ≤ 1.

The bounds 0 ≤ c, d ≤ 1 guarantee that the linear polynomial is in bounds 0 ≤ g1 ≤ 1. We define the
positive coefficients γ =

∫
1−ω
2 dµ(ω) and δ =

∫
1+ω
2 dµ(ω), with∫

S′(ξ)g1(ξ, ω)dω = γ

∫
S′(ξ)c(ξ)dξ + δ

∫
S′(ξ)d(ξ)dξ.

Therefore the maximization problem N = 1 is equivalent to two separate maximization problems
N = 0 like (8). The unknowns are c and d with the constraints 0 ≤ c, d ≤ 1. The solution is given by
c(ξ) = 1I{0<ξ<u(−1)} and d(ξ) = 1I{0<ξ<u(1)} which ends the proof.

3.3 The general case N > 1

We design the solution of the second maximization problem 3.6 hereafter by a constructive method
(an algorithm) under the form

MN (uN ; ξ, ω) =
∑
l≥0

hNl (ω)1I{ξl<ξ<ξl+1}, 0 = ξ0 < ξ1 < · · · < ξL < ξL+1 = u+ = max
I
uN (ω). (39)

The construction shows the uniqueness of the solution. The layer structure of this function is illustrated
in Figure2. The integral identity

∫ u+
0 MN (uN ; ξ, ω)dξ = uN (ω) writes∑

l≥0
(ξl+1 − ξl)hNl (ω) = uN (ω), ω ∈ I. (40)

This function is constructed step by step departing from the bottom, the first step being trivial. The
second step is the critical one where all the ideas of the method are carefully explained, in particular
the role of the Bojavic-Devore theorem for one sided approximation. The other steps are designed
with the same method, and Theorem 3.10 guarantees the completion of the algorithm.
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Figure 2: Layered structure of the kinetic polynomial MN , a polynomial of degree less or equal to N
in ω which is constant in each layer (ξi, ξi+1). The vertical line indicates that the integral on the line
is equal to the integral on the same line in Figure 1.

3.3.1 Construction of hN0 in the lower layer

The solution in the lower layer is by definition of SN

hN0 (ω) = 1 ∀ω, (41)

with the layer size

ξ1 = u−. (42)

After this stage, it remains to construct the next layers. The integral relation (40) written for the
next layers l = 1, 2, . . . becomes∑

l≥1
(ξl+1 − ξl)hNl (ω) = vN (ω) := uN (ω)− u−, ω ∈ I. (43)

By construction vN reaches its minimum 0 at some points denoted as ωi, 1 ≤ i ≤ p. It also reaches
its maximum D = u+ − ξ1 at some points denoted as µj , 1 ≤ j ≤ q, and one has that

0 ≤ 1

D
vN ≤ 1. (44)

In the sequel the points ωi and µj are called points of contact, as illustrated in Figure 3. We
naturally define an integer referred to as the local order of the contact. It is an even number if ωj
(resp. µi) is inside the interval I. It can be any non zero natural number if ωj = ±1 (resp. µi = ±1)
is on the extremities. The local order of contact at ωi (rest. µj) will be denoted as ri + 1 (resp.
sj + 1). The total order of contact of the polynomial 1

Dv
N is defined by

∑
i(ri + 1) +

∑
j(sj + 1).

These notions play critical role in the construction of hN1 which is detailed below.
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ωµωω
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v

Figure 3: Example of contact points. Here ω1 has order 1, ω2 has order 2 and µ1 has order 2. The
total order is 5 = 1 + 2 + 2. Also is represented at ω2 a function which has locally a contact order
greater or equal to the one of the main function.

3.3.2 Construction of hN1 in the first layer

The two unknowns that will be defined at the end of this section are the polynomial hN1 (ω) and ξ2
which gives the length ξ2− ξ1 of the layer. Due to the points of contact, this construction, detailed in
6 steps, is largely constrained.
Step 1-Expression of the constraints: Let us examine the function

gN (ξ, ω) =
∑
l≥1

hNl (ω)1I{ξl<ξ<ξl+1}.

Since we desire to impose∫ D

ξ1

gN (ξ, ω)dξ =
∑
l≥1

(ξl+1 − ξl)hNl (ω) = vN (ω) for all ω ∈ I, and 0 ≤ hNl ≤ 1 for all l, (45)

it means that at all points of contact and for all l ≥ 1

hNl (ξ, ωi) = 0 for 1 ≤ i ≤ p, and hNl (ξ, µj) = 1 for 1 ≤ j ≤ q. (46)

The ωj and µi, defined at the end of the previous step, are the points of contact of the graph of 1
Dv

N

at values 0 and 1. In particular the points of contact of 1
Dv

N are also points of contact for hN1 .
Actually it can be proved that the local contact orders for hN1 are greater or equal to the contact

orders for 1
Dv

N . The example depicted in figure 3 illustrates that property: Let us assume that
ω2 ∈ (−1, 1) is a contact order r1 = 4 for vN , and the contact order of hN1 is less than 4, let us
take 2. In this case we can write hN1 (ω) = c(ω − ω2)

2 + O(ω − ω2)
3, c > 0. On the other hand

vN (ω) = ĉ(ω − ω2)
4 +O(ω − ω2)

5, ĉ > 0. In this case it is sure that

∀τ > 0, ∃ ω close to ω2 with vN (ω) < τhN1 (ω).
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So it will not be possible to enforce (45). This is a contradiction. It means the local expansion of hN1
at the point of contact ω2 is of the form

hN1 (ω) = c̃(ω − ω2)
2p +O(ω − ω2)

2p+1, c̃ > 0, p ≥ 2.

This situation, when the contact order of hN1 is greater or equal to the one of vN , is represented in
dashed in the figure 3. This example is easily generalized to all other points of contact: we obtain
that all points of contact of vN are also points of contact for hN1 with a contact order greater or equal
to ri (resp. sj).

Let us now consider the polynomial H = 1
Dv

N . By construction one has that

(hN1 −H)(r)(ωi) = 0 0 ≤ r ≤ ri 1 ≤ i ≤ q, and (hN1 −H)(s)(µj) = 0 0 ≤ s ≤ sj 1 ≤ j ≤ q.

It implies that hN1 can be decomposed as

hN1 (ω) = H(ω) +W (ω)r(ω) (47)

where W is a polynomial which can be written as

W (ω) = Πp
1|ω − ωi|

riΠq
1|ω − µj |

sj , deg(W ) ≤ N. (48)

W is indeed a polynomial over I due since ri and sj are even for interior points of contact.
Step 2-Maximization under constraints: We define the admissible set

S1 =
{
r ∈ PN−deg(W ), 0 ≤ H +Wr ≤ 1

}
.

Since 0 ≤ H (see 44), one has that 0 ∈ S1 which is non empty. Therefore the maximization problem

r = argmaxr∈S1

∫
(H(ω) +W (ω)r(ω)) dµ(ω) (49)

makes sense. It can be recast also as

r = argmaxr∈S1

∫
W (ω)r(ω)dµ(ω). (50)

Step 3-Design of hN1 : The integral (49) defines a linear functional. The set S1 is non empty,
compact and convex. So there exists at least one solution to the maximization problem (49). The
Bojavic-Devore theorem [2][Theorem 3] yields the uniqueness of the solution. Actually the original
Bojavic-Devore theorem considers only one bound, but it is immediate to extend1 the technical part
[2][Lemma 3] of its proof to the case with two bounds, a lower bound and an upper bound, as in
g ≤ P ≤ f assuming g < 0 < f .

1A sketch of the proof is as follows, using the notation of the seminal Bojavic-Devore paper. The key part concerns
the polynomial P + ηQε defined bottom of page 146, where by definition g ≤ P ≤ f . To take into account the lower
bound which is needed in our formulation, it is needed to check that g ≤ P + ηQε for all x. The verification goes as
follows. Case a) If x ∈ [a, b]/I, then Qε(x) ≥ 0 by construction. So g ≤ P (x)+ηQε(x). Case b). If x ∈ I, then Qε(x) ≤ 0
by construction so it is the dangerous case. But at the same time P (xν) = f(xν) where xν the point of contacts of P on
f . Since f ≥ α > 0 and for all x ∈ I, there exists xν ∈ I such that |x− xν | ≤ ε, it is sufficient to take ε > 0 as small as
needed to guarantee that P (x) ≥ β > g for all x ∈ I. Taking η > 0 small enough ends the proof of the technical Lemma
3. The same method works for the Lemma 4. The rest of the proof is the same.
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Theorem 3.9 (Bojavic-Devore [2]) Let w be a non negative Lebesgue integrable weight function:∫
w(ω)dω > 0. Let g < 0 < f be two functions both differentiable on (a, b), except possibly at

a finite number of points τc (c = 1, . . . , C) where f(τc) = +∞ or g(τc) = −∞. Let n ≥ 0 and
Qn(z) = {rn ∈ Pn, 0 ≤ rn ≤ f}.
Then, there exists a unique maximizer rn = argmaxsn∈Qn(z)

∫ b
a w(ω)sn(ω)dω.

Considering the maximization problem (50) with the definition (48) of W , we can apply the Bojanic-

Devore theorem with the weight w(ω) = W (ω)dµ(ω)dω , the function f = 1−H
W > 0, the function g =

−H
W < 0 and the degree is n = N −degW . Notice that since W has all the points of contact of H with

orders, then g < 0 < f . The value of the function f is infinite at a root of W which is not a root of
1−H (with multiplicity). Similarly the function −g is infinite at a root of W which is not a root of
−H (with multiplicity). So that all the assumptions of the theorem are fulfilled.

It defines a unique r solution of (49)-(50) and we set hN1 = H + Wr. By definition, the solution
satisfies the comparison inequality∫

hN1 (ω)dµ(ω) ≥
∫
H(ω)dµ(ω), H =

1

D
vN (ω). (51)

Step 4-Design of ξ2: Now that hN1 has been determined, it remains to decide of a value for ξ2 such
that

gN (ξ, ω) = hN1 (ω) for ξ1 < ξ < ξ2.

Whatever the value of ξ2, we will have to design the next layers so that∑
l≥2

(ξl+1 − ξl)hNl (ω) = vN (ω)− (ξ2 − ξ1)hN1 (ω), ω ∈ I. (52)

This problem has the same structure than the original problem over a smaller length D̃ = D−(ξ2−ξ1)
and for a function ṽN = vN (ω)−(ξ2−ξ1)hN1 (ω). It can be solved with the method we used to construct
hN1 if

0 ≤ 1

D̃
ṽN ≤ 1. (53)

Indeed this inequality is the same as (44) which is at the starting point of the construction of the
solution in the this layer. So if we manage to guarantee (53) it will be able to continue the construction.
Therefore we define ξ2 as the largest value so that (53) is true. It writes

0 ≤ vN − (ξ2 − ξ1)hN1
D − (ξ2 − ξ1)

≤ 1⇐⇒
{

(ξ2 − ξ1)hN1 ≤ vN ,
(ξ2 − ξ1)(1− hN1 ) ≤ D − vN . (54)

By construction the polynomial hN1 divides the polynomial vN , and has the same points of contact
(with equal of greater order of multiplicity) of vN . We define two rational fractions

wN =
vN (ω)

hN1 (ω)
≥ α > 0 and zN =

1− vN (ω)

1− hN1 (ω)
≥ β > 0. (55)

In general, wN and zN are polynomials, but they may be rational fractions if the contact order of hN1
at a given point is strictly greater than the contact order of vN at the same point. We take the largest
as possible ξ2 which satisfies (54), that is

ξ1 < min

(
ξ1 + min

ω∈I

(
wN (ω), zN (ω)

)
, u+

)
= ξ2 ≤ u+. (56)
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Step 5-Proof that ξ2 ≤ u+: It stems directly from (56). Indeed (54) yields

(ξ2 − ξ1)−D + vN ≤ (ξ2 − ξ1)hN1 ≤ vN =⇒ ξ2 ≤ D + ξ1 = u+.

In other words if ξ = u+ the algorithm just completed and there is nothing more to say. In the other
case ξ2 < ξ1 +D = u+. It also means that one can forget the u+ in the definition (56) of ξ2.
Step 6-Increase of the contact order. We want to show that the total contact order of ṽN is
strictly greater than the total contact order of vN . Since ṽN = vN − (ξ2 − ξ1)hN1 and hN1 has all the
points of contact of vN (with greater or equal multiplicity order), then the total contact order cannot
decrease. It remains to show that is increases strictly.

We analyze this property for the case ξ2 < D, that is

either min
ω∈I

wN (ω) < D or min
ω∈I

zN (ω) < D.

So let us assume minω∈I w
N (ω) ≤ minω∈I z

N (ω) and that minω∈I w
N (ω) < D. The other case is

symmetric. Set d = ξ2 − ξ1 < D so that 0 ≤ vN (ω)− dhN1 (ω) ∀ω ∈ I. One also has

for all sufficiently small ε > 0, ∃ωε ∈ I, vN (ωε)− (d+ ε)hN1 (ωε) < 0. (57)

Notice that ωε 6= ωi, if not it is in contradiction with (57) since both polynomials vanish at ωi.
Passing to the limit after extraction of a subsequence in I which is a closed bounded interval, there
exists ω∗ ∈ I such that

ωε → ω∗ and vN (ω∗)− dhN1 (ω∗) = 0. (58)

The discussion considers two cases.
• If ω∗ 6= ωi for all i, where ωi is a point of contact of vN , then it adds one more point of contact

in the list of the ωi’s. In this case the property is proved.
• The other case when ω∗ = ωi for a given i needs a little more work. Assume the local expansion

of vN can be written

vN (ω) = c(ω − ωi)ri+2 +O(ω − ωi)ri+3, 0 < c, 0 < ri,

where −1 < ωi < 1 for the simplicity of notations, so that ri is necessarily even. The local expansion
of hN1 can be written under a similar form

hN1 (ω) = c̃(ω − ωi)r̃i+2 +O(ω − ωi)r̃i+3, 0̃ < c̃, 0 < ri ≤ r̃i.

But in view of (57-58), it is necessary that r̃i = ri. Then

vN (ωε)− (d+ ε)hN1 (ωε) = (c− (d+ ε)c̃)(ωε − ωi)ri+2 +O(ωε − ωi)ri+3

Using (57) and ωε − ωi 6= 0, we see that

(c− (d+ ε)c̃) +O(ωε − ωi) < 0.

Passing to the limit we obtain that c − dc̃ ≤ 0. But at the same time 0 ≤ vN − dhN1 . In view of the
local expansion

vN (ωε)− dhN1 (ωε) = (c− dc̃)(ωε − ωi)ri +O(ωε − ωi)ri+1

it implies 0 ≤ c− dc̃. Therefore c− dc̃ = 0, meaning that

vN (ωε)− dhN1 (ωε) = O(ωε − ωi)ri+3.

It shows that the local contact number is increased at least by 1.
In all cases there is strict increase of the total contact number.
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3.3.3 Next steps

The problems in the second layer, and in the third layer, fourth layer, . . . , have exactly the same
structure as in the first layer. It constructs by iteration a sequence (vNl , ξl, h

N
l ). The first steps are

(vN0 , ξ0, h
N
0 ) = (uN , 0, 1) and (vNl , ξl, h

N
l ) = (vN , ξ1, h

N
1 ). The next steps are constructed with the

method used to construct (vNl , ξl, h
N
l ) from (vN0 , ξ0, h

N
0 ).

Some properties are guaranteed by construction

• i) one has the iterations vNl+1(ω) = vNl (ω)− (ξl+1 − ξl)hNl (ω),

• ii) one has the bound 0 ≤ 1
u+−ξl v

N
l (ω) ≤ 1,

• iii) the contact number of hNl (and vNl ) increases strictly at each step,

• iv) the generalization of (51) holds∫
hNl (ω)dµ(ω) ≥ 1

D − ξl

∫
vNl (ω)dµ(ω).

Theorem 3.10 (Completion of the algorithm) The method ends in a finite number of steps L ≤
N , and the layers fill the interval [0, u+]

0 = ξ0 < ξ1 < · · · < ξL < ξL+1 = u+.

By construction the function MN (uN ; ξ, ω) =
∑

l≥0 h
N
l (ω)1I{ξl<ξ<ξl+1} is a solution of the second

maximization problem 3.6.

Proof. The proof is by contradiction. Assume the algorithm never completes. It construct a infinite
series of layers, all of them [ξl, ξl+1] ⊂ [0, u+] with ξl < ξl+1. Since the total contact number increases
at least by 1 at each level, it reaches N+1 or more at a certain step L of the algorithm. N+1 contacts
imply N + 1 equality constraints for hNL . There is only one possibility hNL = 1

u+−ξL v
N
L . It implies that

ξL+1 = u+ and vNL+1=0. The rest of the proof is evident.
The completion property of the kinetic polynomials is also related to the identity uN (ω) =

∫
MN
uN

(ξ, ω)dξ.
Applying this identity for any µj which is an upper point of contact at every layer, one obtains

u+ = uN (µj) =

L∑
l=0

(ξl+1 − ξl)hNl (µj) =

L∑
l=0

(ξl+1 − ξl) = ξL+1.

4 A simple numerical scheme for the projected equations (11)

We discretize in time and space and implement the method under the form

uNj − uNj
∆t

+
FN [uNj ]− FN [uNj−1]

∆x
= 0 (59)

where uNj ∈ PN (ω) is a polynomial in ω of degree N (fixed), in cell j and at the current time step

tn = n∆t and the generic flux FN [uNj ] is constructed with the kinetic polynomial formula (11), a more
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detailed formula is (37), accordingly the construction presented in the previous section. The value at
next time step tn+1 = (n+ 1)∆t in cell j is denoted with a bar uNj ∈ PN (ω).

We assume the initial data is a positive and bounded polynomial. With our notations it can be
written as

0 ≤ Um ≤ uNj (ω) ≤ UM <∞, ∀j and ∀ω ∈ I. (60)

We consider the archetype of a convex flux which is the Burgers flux F (ξ) = ξ2

2 . This is compatible with
the upwinding of the discrete spatial derivative visible in (59) which corresponds to the characteristic
lines ω per ω of a non negative initial data.

The following result states that the explicit Euler scheme satisfies the maximum principle (this is
a minimal stability requirement) under a CFL condition which is independent of N . The property is
here checked directly on the scheme (59) but can also be derived as a consequence of the underlying
kinetic formulation.

Theorem 4.1 Assume the CFL condition UM∆t ≤ ∆x. Then

Um ≤ uNj (ω) ≤ UM , ∀j and ∀ω ∈ I. (61)

Proof. Using vNj = FN [uNj ] to simplify the notations, one notices that by construction
uNj (ω)2

2 ≤
vNj (ω) ≤ U2

M
2 , where the lower bound is, by the standard Brenier inequality, a consequence of (8). One

rewrites the Euler scheme as

uNj (ω) = uNj (ω)− ∆t

∆x
vNj (ω) +

∆t

∆x
vNj−1(ω). (62)

It yields

uNj (ω) ≤ uNj (ω)−∆t

∆x

uNj (ω)2

2
+

∆t

∆x

U2
M

2
= (1−αNj (ω))uNj (ω)+αNj (ω)UM , αNj (ω) =

∆t

∆x
×
uNj (ω) + UM

2
.

The condition 0 ≤ αNj (ω) ≤ 1 yields the propagation of the propagation of the upper bound uNj ≤ UM .
This inequality is guaranteed under the CFL condition.

To prove the lower bound in (61), we need a sharper upper bound on vj(ω). Let us start with

MN
j (uN ; ξ, ω) = 1 for ξ < Um and

∫ UM

ξ=Um

MN
j (uN ; s, ω)ds = uNj (ω)− Um.

Therefore

vNj (ω) =

∫ UM

0
ξMN

j (uN ; s, ω)ds ≤ U2
m

2
+

∫ UM

Um

ξMN
j (uN ; s, ω)ds.

A Brenier type inequality [5] yields the needed upper bound

vj(ω) ≤ U2
m

2
+

∫ UM

UM−(uN (ω)−Um)
ξdξ =

U2
m

2
+
U2
M

2
−
(
UM −

(
uN (ω)− Um

))2
2

≤ U2
m

2
+UM (uN (ω)−Um).

Plugging in (62), we get

uNj (ω) ≥ uNj (ω)− ∆t

∆x

U2
m

2
− ∆t

∆x
UM (uNj (ω)− Um) +

∆t

∆x
vNj−1(ω).
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It yields

uNj (ω) ≥ uNj (ω)− ∆t

∆x
UM (uN (ω)− Um) = Um +

(
1− UM

∆t

∆x

)(
uNj (ω)− u−

)
≥ Um

where the last inequality is a consequence of the CFL condition.
By iteration, the maximum principle (61) holds true one step after the other and the proof is

complete.
We now show an explicit construction of the solution of the Theorem 3.10 for the case N = 2, and

we use it to obtain preliminary numerical results for the corresponding projected equations.

4.1 Construction of the kinetic polynomial for N = 2

Let u2 ∈ P 2 be a non negative polynomial u2(ω) = aω2 + bω + c ≥ 0. We assume a 6= 0 since the
solution for a = 0 can be determined by the method for N = 1. We first determine u+ and u−. Let
ω0 = − b

2a be the solution of u′(ω0) = 0.

• If ω0 ≥ 1 and a > 0: u+ = u2(−1) = a− b+ c and u− = u2(1) = a+ b+ c.

• If ω0 ≥ 1 and a < 0: u+ = u2(1) = a+ b+ c and u− = u2(−1) = a− b+ c.

• If ω0 ≤ 1 and a > 0: u+ = u2(1) = a+ b+ c and u− = u2(−1) = a− b+ c.

• If ω0 ≤ 1 and a < 0: u+ = u2(−1) = a− b+ c and u− = u2(1) = a+ b+ c.

• If −1 < ω0 < 1 and a > 0: u+ = max(u2(−1), u2(1)) = a+ |b|+c and and u− = u2(ω0) = c2− b2

4a .

• If −1 < ω0 < 1 and a < 0: u+ = u2(ω0) = c2− b2

4a and and u− = min(u2(−1), u2(1)) = a−|b|+c.

We introduce the notations: D = u+ − u−, v21(ω) = u2(ω)− u− and w2(ω) =
v21(ω)
D .

In case the absolute extrema of u2 strictly belongs to I, it is the same for w2. The only possibility
to reconstruct a second order polynomial when prescribing one value at ±1, one value at ω0 and the
zero derivative at ω0 is to keep the same polynomial. In this case we set h21 = w2 and

M2
u2(ξ, ω) = 1I{0<ξ<u−} + h21(ω)1I{u−<ξ<u+} = M2

u2(ξ, ω) = 1I{0<ξ<u−} +
u2(ω)− u−
u+ − u−

1I{u−<ξ<u+}. (63)

In the other case, w2 has necessarily its extrema at the boundary. Assume w2(−1) = 0 and w2(1) = 1.
We factorize w2(ω) = (1 + ω) (H(Ω) +W (ω)r(ω)). Necessarily W (ω) = 1− ω so 1 = w2(1) = 2H(1).
So more precisely w2(ω) = (1 + ω)

(
1
2 + (1− ω)r

)
, r ∈ R. The condition 0 ≤ w2 ≤ 1 on the interval

reads −1
4 ≤ r ≤

1
4 .

In view of the representation formula, the maximum of the integral is for r = 1
4 , and the minimum

is for r = −1
4 . Let ξ1 be the solution of Dr = ξ1

1
4 + (D − ξ1)(−1

4), which is given by ξ1 = 2D(r + 1
4)

where D = u+ − u−. One obtains

M2(u2; ξ, ω) = 1I{0<ξ<u−} + (1 + ω)(
3

4
− 1

4
ω)1I{u−<ξ<u−+ξ1} +

1

4
(1 + ω)21I{u−+ξ1<ξ<u+}. (64)

The case where w2(−1) = 1 and w2(1) = 0 is deduced by symmetry

M2(u2; ξ, ω) = 1I{0<ξ<u−} + (1− ω)(
3

4
+

1

4
ω)1I{u−<ξ<u−+ξ1} +

1

4
(1− ω)21I{u−+ξ1<ξ<u+}. (65)
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With these formulas one can compute
∫
R+ ξM2(ξ, ω)dξ. One finds, in the first case (63),

F 2[u2] =
∫
R+ ξM

2(u2; ξ, ω)dξ = 1
2u

2
− + w2(ω)

(
1
2u

2
+ − 1

2u
2
−
)

= 1
2u

2
− + (u2(ω)− u−)u++u−

2 = u2(ω)u++u−
2 − u+u−

2 .

(66)

In the second case (64) the flux is

F 2[u2] =

∫
R+

ξM2(u2; ξ, ω)dξ =
1

2
u2− + (1 + ω)(

3

4
− 1

4
ω)ξ1 +

1

4
(1 + ω)2(D − ξ1). (67)

The third case (65) is symmetric and yields

F 2[u2] =

∫
R+

ξM2(u2; ξ, ω)dξ =
1

2
u2− + (1− ω)(

3

4
+

1

4
ω)ξ1 +

1

4
(1− ω)2(D − ξ1). (68)

4.2 Numerical examples

We compare numerical results obtained for N = 2 with the usual moment method, with the new
method based on kinetic polynomials and also with a non intrusive method. We use the measure
dµ(ω) = d

π
√
1−ω2

and consider first the Burgers equation. Also we restrict the numerics to N = 2.

The moment method, that is solving (4), is easy to compute since the orthonormal basis is formed
of the Tchebycheff polynomials and the Burgers flux is also a polynomial. It writes

∂t

 a
b
c

+ ∂x


a2+b2+c2

2

ab+ bc√
2

ac+ b2

2
√
2

 = 0.

The kinetic polynomials method use the fluxes defined in (66-68).
We consider the initial data

uini(x, ω) =


3 for x < 1/2 and − 1 < ω < 0,
5 for x < 1/2 and 0 < ω < 1,
1 for 1/2 < x and − 1 < ω < 1.

(69)

The exact solution is a shock at velocity 2 for ω < 0, and another shock at velocity 3 for 0 < ω. The
results plotted in Figure 4 show the gain in term of stability of the new method with respect to the
moment method.

We consider still the Burgers equation, but with another initial data, which is continuous,

uini(x, ω) =


12 for x− ω/5 < 1/2,
1 for x− ω/5 < 3/2,
12− 11 (x− ω/5− 1/2) in between.

(70)

The exact solution is a compressive ramp on all lines, and a shock at time T = 1
11 . Therefore the

exact solution is continuous in x and ω directions for t < T , and is discontinuous in the ω direction
for T < t.

Notice that we preprocess the initial data with the modified Jackson kernel in order to make sure
the initial data is in bounds. As one can see it in Figure 5, the compressive nature of the solution is
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Figure 4: Burgers flux. Illustration of the maximum principle satisfied by the method based on kinetic
polynomials for the initial data (69). The usual moment solution does not satisfy the maximum
principle which is a salient property of the exact solution.

evident at time t = 0.1 > T . The moment method generates oscillations. On the contrary, the new
method based on kinetic polynomials satisfies the maximum principle at all times.

It is interesting also to compare with the non intrusive method which is fierce competitor due to
its simplicity and versatility in engineering. This last method amounts to decide quadrature points
denoted as ωi with 1 ≤ N + 1, to solve in parallel N + 1 standard conservation laws, and after that to
reconstruct the function in the ω direction in order to get an approximation for all ω. This method
also has its difficulties. The first one is the approximation of the initial data if it is discontinuous in
ω. So if a quadrature point if at the discontinuity, the initialization is ambiguous. The second one is
the oscillations may show up after reconstruction with Lagrange interpolation techniques.

In the test, we use the general prescription for quadratures. We take the roots of the Tchebycheff

polynomial T3(ω) = 4ω4 − 3ω: ω1 = −
√

3
4 , ω2 = 0 and ω3 =

√
3
4 . We do not perform a test for

the first initial data (69) due to the ambiguity of the initialization at ω2. The results for the second
problem (70) are displayed in figure 6. Without any surprise, we observe that the maximum principle
is not satisfied, an artefact also observed with the moment method.
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Figure 5: Burgers flux. Illustration of the maximum principle satisfied by the new method, for the
initial data (70). The usual moment solution does not satisfy the maximum principle which is a salient
property of the exact solution.
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