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The assessment of thermoelastic attenuation is crucial in designing surface acoustic wave (SAW) devices. As irregular structures are more and more involved in modern applications for which efficient numerical tools are required, a multi-physics finite-element model is proposed in this paper, where thermoelastic damping in piezoelectric materials can be accounted for in both coated and uncoated conditions. The coupled equations are solved iteratively in time domain, using the Newmark method. The mechanical, electrical, and thermal degrees of freedom are calculated simultaneously at each time step. An application of the model is presented through the investigation of thermoelastic loss in a lithium niobate SAW device.

I. INTRODUCTION

S URFACE ACOUSTIC WAVE (SAW) devices are widely used due to the small size, high reliability, and signal processing capability. For instance, SAWs are employed for microparticle separation [START_REF] Nam | Manipulation of microparticles using surface acoustic wave in microfluidic systems[END_REF] in flow-based analysis. The SAW-based sensors in biomedical [START_REF] Lange | Surface acoustic wave biosensors: A review[END_REF] and space research [START_REF] Sinha | Surface acoustic wave devices for space applications[END_REF] are also broadly used.

A SAW device usually consists of a piezoelectric substrate and deposited interdigital transducers (IDTs). The IDTs can be divided into transmitting and receiving pairs. The SAW can be stimulated when electric signals are applied to the transmitting IDTs. They can then be measured when reaching the receiving IDTs. The part between both pairs is the delay-line area, where sensitive films or fluidic parts can be integrated. Since most of the energy is concentrated near the surface, even very tiny variation in the delay-line area can be detected, which makes the SAW device ideal for sensing and micromanipulation. The operating frequencies are normally located in megahertz range and the thermoelastic attenuation becomes significant [START_REF] Mayer | Thermoelastic attenuation of surface-acoustic waves in coated elastic media[END_REF]. This loss is, in fact, due to cyclic heat flow from the region of compressive stress to the region of tensile stress. Elastic energy is thus partly converted into heat and dissipated.

The mechanism of thermoelastic attenuation of SAW were descript in isotropic media [START_REF] Atkin | Surface waves in a heat-conducting elastic body: Correction and extension of a paper of Chadwick and Windle[END_REF] and layered structures [START_REF] Garova | Theory of the photothermal generation of Rayleigh waves[END_REF]. Analytical models for quantitative calculation were developed in [START_REF] Mayer | Thermoelastic attenuation of surface acoustic waves[END_REF], on the basis of perturbation theory. Even though analytically calculated thermoelastic loss coincided well with the experimental results in simple cases, the developments and assumptions were somehow cumbersome and can be invalid in other cases. For example, microcavities in the substrate are frequently shown in flow-based analysis [START_REF] Nam | Manipulation of microparticles using surface acoustic wave in microfluidic systems[END_REF], which makes the homogeneous half space assumption of the substrate no longer hold. The finite-element method, on the other hand, is versatile due to its flexibility in modeling complicated geometry and its been built in preceding works [START_REF] Tian | Finite element method for generalized piezothermoelastic problems[END_REF], [START_REF] Goernandt | Finite element analysis of thermopiezoelectric smart structures[END_REF]. However, these models were mostly for thermal shock problems, thermoelastic damping problems remain to be investigated. Here, we developed a new multi-physics finite-element (M-FE) model dedicating for thermoelastic attenuation in SAW devices. This paper is organized as follows. Governing equations of thermoelastic attenuation in piezoelectric materials and their finite-element formulations are presented in Section II. It is followed by a numerical example of the developed M-FE model applied to the investigation of thermoelastic attenuation in a lithium niobate substrate in both coated and uncoated cases. Finally, the conclusions are drawn in Section IV.

II. MULTI-PHYSICS EQUATIONS AND FINITE-ELEMENT FORMULATIONS

A. Multi-Physics Equations

In what follows, we use the Einstein summation convention to describe different physic equations. Linear theory of thermopiezoelectricity can be found in [START_REF] Goernandt | Finite element analysis of thermopiezoelectric smart structures[END_REF] among others. Primary procedures are adapted and resumed in this section. In the absence of body force, free charge and internal heat generation, the equilibrium relations of the coupled fields can be expressed in [START_REF] Nam | Manipulation of microparticles using surface acoustic wave in microfluidic systems[END_REF], where σ i j is the vector of stress tensor, u i vector of elastic displacement in the ith direction, ρ mass density, q i vector of heat flux, T 0 initial equilibrium temperature, η entropy density, and D i vector of electric displacement. A comma subscript followed by an index number i indicates a derivation with respect to the corresponding coordinate direction i σ i j, j = ρ üi (1a)

q i,i = -T 0 ρ η (1b) D i,i = 0. ( 1c 
)
By noting with ε i j indicating the vector of strain tensor, E i vector of electric intensity, φ electric potential, k i j tensor capability in obtaining fully coupled multi-physics field solutions. Coupled electrothermoelastic finite-element models have page 4-1 of heat conduction coefficients, and θ = T -T 0 difference between actual and initial temperatures, linear comportments of elastic, electric, and thermal fields read as follows:

ε i j = (u i, j + u j,i )/2 ( 2 a ) E i = -φ ,i (2b) 
q i = -k i j θ , j . ( 2c 
)
The constitutive equations can then be expressed by

σ i j = c i j kl ε kl + e ki j φ ,k -α i j θ (3a) D i = e ikl ε kl -p ik φ ,k + d i θ (3b) ρη = α kl ε kl -d k φ ,k + c E θ (3c)
where c i j kl is the stiffness tensor, e ikl piezoelectric tensor, α i j tensor of thermal stress coefficients, p ik permittivity tensor, d i vector of pyroelectric coefficients, and c E the specific heat per unit volume at constant deformation (more detailed definitions of the quantities can be found in [START_REF]IEEE Standard on Piezoelectricity, ANSI/IEEE Standard[END_REF]). Substitution of ( 2) and ( 3) in ( 1) yields the governing equations, which take the form

ρ üi = c i j kl u k,l j + e ki j φ ,kj -α i j θ , j (4a) 0 = e ikl u k,li -p ik φ ,ki + d i θ ,i (4b) 
k i j θ ,i j = T 0 (α i j ui, j -T 0 d i φ,i + c E θ). (4c) 
For multi-physics investigations with (4) in a domain , the boundary conditions along its boundary ∂ should be satisfied. The continuity of u i , φ, and the normal component of D i , σ i j n j , and k i j T , j n j (n j is the normal unit vector) at an interface have to be fulfilled.

B. Finite-Element Formulations

The variational principle is applied to obtain weak forms. More specifically, equations in (4) are multiplied with the test functions u i , φ , and θ , and integrated by part, respectively. The following equations, in considering corresponding boundary conditions represent the variational form:

u i, j (c i j kl u k,l +e ki j φ ,k -α i j θ)dV + u i ρ üi dV = 0 (5a) φ , i (e ikl u k,l -p ik φ ,k + d i θ)dV = 0 (5b) θ (T 0 α i j ui, j -T 0 d i φ, i +c E ρ θ)dV + θ , i k i j θ, j dV = 0. ( 5c 
)
They are spatially discredited by interpolating the field unknowns in an element u e , φ e , and θ e in terms of nodal degrees of freedom (DoFs) u k , φ k , and θ k using appropriate nodal shape functions N u , N φ , and N θ , as shown in

u e = N u u k φ e = N φ φ k θ e = N θ θ k . ( 6 
)
For brevity, the following differential matrices are defined:

D u = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ∂/∂ x 1 0 0 0 ∂/∂ x 2 0 0 0 ∂/∂ x 3 ∂/∂ x 1 ∂/∂ x 2 0 0 ∂/∂ x 2 ∂/∂ x 3 ∂/∂ x 1 0 ∂/∂ x 3 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ D φ = D θ = ∂/∂ x 1 ∂/∂ x 2 ∂/∂ x 3 . ( 7 
)
Then, differentials of shape functions can be denoted as

B u = D u N u B φ = D φ N φ B θ = D θ N θ . ( 8 
)
Substituting ( 6) and ( 8) into ( 5) leads to element level equations

M e uu ük + K e uu u k + K e uφ φ k -K e uθ θ k = f e u (9a) K e φu u k -K e φφ φ k + K e φθ θ k = f e φ (9b
)

K e θu uk -K e θφ φk + H e θθ θ k + K e θθ θ k = f e θ ( 9c 
)
where

M e uu = e N T u ρN u d K e uu = e B T u CB u d K e uφ = e B T u e T B φ d K e uθ = e B T u αN θ d K e φu = e B T φ eB u d K e φφ = e B T φ pB φ d K e φθ = e B T φ dB θ d K e θu = e T 0 N T u α T B u d K e θφ = e T 0 N T u d T B θ d K e θθ = e B T θ kB θ d H e θθ = e N T θ ρc E N θ d . ( 10 
)
Element-level matrices are then assembled to form the global equations, as presented in

M uu 0 0 0 0 0 0 0 0 ⎡ ⎣ ü φ θ ⎤ ⎦ + 0 0 0 0 0 0 K θu -K θφ H θθ ⎡ ⎣ u φ θ ⎤ ⎦ + K uu K uφ -K uθ K φu -K φφ K φθ 0 0 K θθ u φ θ = ⎡ ⎣ f u f φ f θ ⎤ ⎦ . ( 11 
)
Since the unknown DoFs are of different orders of magnitude, it is numerically convenient to treat them as non-dimensional quantities (the asterisk symbol marked as follows) by introducing the following relations [START_REF] Tian | Finite element method for generalized piezothermoelastic problems[END_REF]:

x * i = c 0 ξ 0 x i , u * i = c 0 ξ 0 u i , t * = c 2 0 ξ 0 t φ * = c 2 0 ξ 0 δ 0 φ, θ * = θ/T 0 , c 0 = √ c 33/ρ ξ 0 = ρc E /k, δ 0 = e 33 /c 33 ( 12 
)
page 4-2 where c 33 and e 33 are corresponding components in the stiffness and piezoelectric tensor, respectively, k the heat conduction coefficients, and c 0 the propagating velocity of elastic wave in the solid. Calculated results are converted back to the original quantities for their visibility of physics sense. Equation ( 11) is integrated in time domain using the Newmark method, being unconditionally stable and of secondorder accuracy.

C. Absorbing Boundary Conditions

An important issue worthy noting here is the absorbing boundary condition, i.e., the perfectly matched layer (PML), with which one can avoid wave reflections. Otherwise, larger dimensions need to be constructed wasting too much computing resource. Demonstration of PML in modeling SAW devices in frequency and time domain can be found in [START_REF] Karim | Finite element analysis in combination with perfectly matched layer to the numerical modeling of acoustic devices in piezoelectric materials[END_REF] and [START_REF] Li | Convolutionperfectly matched layer (C-PML) absorbing boundary condition for wave propagation in piezoelectric solid[END_REF], respectively. Time domain implementation is rather complicated due to the frequency dependent nature of some parameters in PML setting. The memory variables [START_REF] Li | Development of numerical simulation method for nonlinear elastodynamic: Application to acoustic imaging of defect with the help of cavity chaotic transducer[END_REF] are used in the work to avoid convolution terms resulted from the inverse Fourier transform of frequency domain formulations. A three wavelength wide PML boundary is set to sides of the computing domain except for the free surface (as presented in Section III). Reflections are thus successfully avoided; the demand for computing resources is also significantly reduced.

III. NUMERICAL EXAMPLES

A. Modeling of SAWs in Piezoelectric Substrate

The M-FE model is evaluated through modeling of the Rayleigh SAWs propagating in the x-direction and z-direction in a Y -cut LiNbO 3 substrate. A similar configuration [Fig. 1(a)] has been adapted from [START_REF] Xu | Direct finite-element analysis of the frequency response of a Y-Z lithium niobate SAW filter[END_REF].

Five volts peak-to-peak sinusoidal electric signals of central frequency f 0 = 300 MHz are applied to the transmitting IDTs. Corresponding analytical solutions of displacements and potential take the form of ( 13), in which α = 1, 2, 3; b n indicates the decaying coefficient along z-direction when no other attenuations are accounted for, U n i and n i are initial values, k the wave number, and v the wave velocity [START_REF] Mason | Physical Acoustics Principles and Methods[END_REF]. As [START_REF] Li | Development of numerical simulation method for nonlinear elastodynamic: Application to acoustic imaging of defect with the help of cavity chaotic transducer[END_REF] indicates, components in y-direction are decoupled. This enables a model in 2-D possible. Fig. 1(b) shows the 

u α = 2 n=1 U n i exp(kb j z)exp(ik(x -vt)) φ α = 2 n=1 n i exp(kb j z)exp(ik(x -vt)). ( 13 
)
A program was developed in MATLAB in which a substrate of 30λ wide and 10λ high (λ is the wavelength) was built. 24 electrodes were modeled in transmitting and receiving IDTs, which are separated by 20λ and of period of λ. In the coated situation, the thin film was set to be 1/100λ and assumed to be isotropic and electrically non-conductive. Delaunay triangular elements were employed with maximal element length set to be 1/32λ, and the time step set to 1/40 T 0 with T 0 = 1/ f 0 being the signal period. Electrically grounded and mechanically fixed conditions have been set to the bottom to reduce the second-order effects of the piezoelectric effect [START_REF] Xu | Direct finite-element analysis of the frequency response of a Y-Z lithium niobate SAW filter[END_REF]. For nodes on the upper surface on which electrodes are supposed to be located, electric potentials are explicitly defined as boundary conditions. In the coated case, continuity of displacement and temperature fields is demanded at the interface. Besides, the surface of the coating material can be regarded as isothermal [START_REF] Mayer | Thermoelastic attenuation of surface-acoustic waves in coated elastic media[END_REF] and electrically non-conductive. Hence, the corresponding thermal and electric DoFs need to be set as identical and ignored, respectively.

Material constants of the substrate are referred to [START_REF] Nam | Manipulation of microparticles using surface acoustic wave in microfluidic systems[END_REF] and summarized in Table I. Elastic and thermoelastic constants are set to be identical to, while the specific heat and thermal conductivity of the film to be half of the corresponding values of the substrate.

B. Results and Discussion

A contour plot of displacements in the normal direction is shown in Fig. 2. As can be seen, the wave intensity dies down in the normal direction till null at about three wavelengths away from the surface. In Fig. 3, displacements in the normal direction of points A and B [Fig. 1(b)] are shown. Point A is closer to the stimulating source and locates four wavelengths away from point B. Displacements at both points oscillate at constant amplitudes after sometime. Due to the presence of thermoelastic damping, slight descending in the amplitude in B can be observed. Figs. 2 and 3 qualitatively verified the propagating characteristics of SAW as described by [START_REF] Li | Development of numerical simulation method for nonlinear elastodynamic: Application to acoustic imaging of defect with the help of cavity chaotic transducer[END_REF].

A quantitatively validation can be found in Fig. 4 in which comparisons between the results of numerical and analytical page 4-3 models are demonstrated. In the figure , -log(u i α /u 0 α ) versus relative displacements is plotted. u 0 α indicates displacement in α direction of a reference point. According to the analytical method, the thermoelastic attenuation coefficients in coated condition (upper part) were found to be 13 and 13.3 dB/m for x-direction and z-direction propagation, respectively, whereas those in the uncoated condition (lower part) were 2.7 and 0.6 dB/m, as represented by the lines. Close values were obtained through the M-FE model, as shown by the scattering symbols.

The proposed M-FE model is straightforward and easy to implement. Through general coupled thermopiezoelectric finite-element approach instead of cumbersome development and excessive simplification in the analytical method, characteristics of the thermoelastic attenuation of the SAW device can be accurately captured. In addition, in modern applications, more complicated geometries are involved in SAW devices, the analytical method becomes no longer applicable. However, though not presented here due to the short of comparable counterparts from the literature (neither analytical nor experimental available to the best of authors knowledge), the proposed method remains an effective approach for simulation.

IV. CONCLUSION This paper presents a multi-physics finite-element model dedicating for the thermoelastic damping in SAW devices. The model is validated through comparison with an analytical model in which SAWs of 300 MHz propagate in a lithium niobate substrate under both uncoated and thin-film coated conditions. Numerical values accurately predicted the characteristics of thermoelastically attenuated SAWs. We may conclude that the M-FE method can be employed for thermoelastic attenuation investigation in SAW devices. Compared with other simplified methods, benefits can be drawn because of the simplicity and capacity for handling complicated geometries of the proposed methodology.
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 1 Fig. 1. (a) Typical SAW device schema [14]. (b) 2-D model configuration.
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 23 Fig. 2. Contour plot of displacements in z-direction at 15 T 0 .
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 4 Fig. 4. Wave amplitude versus normalized propagation distance (acoustic attenuation coefficients are proportional to slopes of the lines).

TABLE I MATERIAL

 I CONSTANTS OF THE Y -CUT LITHIUM NIOBATE 2-D model in which PML is applied