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13Institut Universitaire de France, Paris, France

14Centre Européen de Recherche et d’Enseignement de Géosciences de l’Environnement, Centre

National de la Recherche Scientifique, et Aix-Marseille Université, Aix-en-Provence, France

Keywords: Planktonic Foraminifera, 18S ribosomal DNA, molecular ecology, genetic diversity,

molecular taxonomy, sequence database.

Corresponding Author: Raphaël Morard, MARUM Center for Marine Environmental Sciences,

University  of  Bremen,  Leobener  Strasse,  28359 Bremen,  Germany, Fax:  +49 (0)  421 218 –

9865974, rmorard@marum.de.

Abstract

Planktonic  Foraminifera  (Rhizaria)  are  ubiquitous  marine  pelagic  protists  producing

calcareous  shells  with  conspicuous  morphology. They  play  an  important  role  in  the  marine

carbon  cycle  and  their  exceptional  fossil  record  serves  as  the  basis  for  past  climate

reconstructions. A major worldwide sampling effort over the last two decades has resulted in the

establishment of multiple large collections of cryopreserved individual planktonic foraminifera

samples. Thousands of 18S rDNA partial sequences have been generated, representing all major

known  morphological  taxa  across  their  worldwide  oceanic  range.  This  comprehensive  data
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coverage provides an opportunity to assess patterns of molecular  ecology and evolution in a

holistic way for an entire group of planktonic protists. We combined all available published and

unpublished  genetic  data  to  build  PFR²,  the  Planktonic  Foraminifera  Ribosomal  Reference

database.  The  first  version  of  the  database  includes  3,322  reference  18S  rDNA sequences

belonging to 32 of the 47 known morphospecies of planktonic Foraminifera, collected from 460

oceanic  stations.  All  sequences  have been rigorously taxonomically  curated  using a  six-rank

annotation system fully resolved to the level of morphological species and linked to a series of

metadata. The PFR² website, available at http://pfr2.sb-roscoff.fr, allows downloading the entire

database  or  specific  sections,  as  well  as  the  identification  of  new planktonic  Foraminiferal

sequences. Its novel, fully documented curation process integrates advances in morphological

and molecular taxonomy. It allows for an increase in its taxonomic resolution and assures that

integrity is maintained by including a complete contingency tracking of annotations and assuring

that the annotations remain internally consistent. 

Introduction

Despite their  ubiquity and the critical  role they play in global biogeochemical cycles,

unicellular eukaryotes (protists) remain the most poorly known domain of life (e.g. Pawlowski et

al., 2012). Because of their extreme morphological and behavioral diversity, the study of even

relatively narrow lineages  requires a high degree of taxonomic expertise (e.g.  Guillou et  al.,

2012, Pawlowski and Holzmann, 2014). As a result,  the knowledge of protistan ecology and

evolution is limited by the small number of taxonomists resulting in scarcity of taxonomically

well-resolved ecological data. As an alternative approach, numerous studies have demonstrated

the potential of identification of protists by means of short DNA sequences or barcodes (e.g.,

Saunders,  2005;  Sherwood et  al.,  2007;  Hollingsworth  et  al.,  2009;  Nossonova et  al.,  2010;

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

http://pfr2.sb-roscoff.fr/


Pawlowski and Lecroq, 2010; Hamsher et al., 2011; Stern et al., 2010; Schoch et al., 2012), both

at the single-cell and metacommunity levels (e. g., Sogin et al., 2006; Logares et al., 2014, de

Vargas et al., 2015). Such barcoding/metabarcoding approaches critically rely on the fidelity of

the  marker  gene  with  respect  to  specificity  (avoiding  ambiguity  in  identification),

comprehensiveness  (assuring  all  taxa  in  the  studied  group  are  represented  in  the  reference

barcode  database)  and  accuracy  (assuring  that  barcode  assignments  are  consistent  with  a

coherent, phenotypic taxonomic framework; e. g. Zimmermann et al., 2014). These three pre-

requisites  are  rarely  found  in  protists,  where  classical  morphological  taxonomy  is  often

challenging, DNA extraction and sequencing from a single cell is prone to contamination, and a

large portion of the diversity in many groups remains unknown (e.g. Mora et al., 2011). In this

respect, planktonic Foraminifera represent a rare exception. 

Planktonic  Foraminifera  are  ubiquitous  pelagic  marine  protists  with  reticulated

pseudopods, clustering within the Rhizaria (Nikolaev et al., 2004). The group is marked by a

rather low number of morphospecies (47; Hemleben et al., 1989), which can be distinguished

using  structural  characteristics  of  their  calcite  shells.  Their  global  geographic  distribution,

seasonal dynamics, vertical habitats and trophic behavior have been thoroughly documented by

analyses of plankton hauls (e.g., Bé and Hudson, 1977), sediment trap series (e.g., Zaric et al.,

2005) and thousands of surface sediment samples across the world oceans (e.g., Kucera et al.,

2005).  Their  outstanding  preservation  in  marine  sediments  resulted  in  arguably  the  most

complete fossil record, allowing comprehensive reconstruction of the evolutionary history of the

group (Aze et al., 2011). The morpho-taxonomy and phylogeny of the group have been largely

confirmed  by  molecular  genetic  analyses  (e.g.,  Aurahs  et  al.,  2009a)  based  on  the  highly

informative,  ~1,000 bp fragment at the 5’end of the 18S rDNA gene. These analyses confirmed
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that  the  morphological  characters  used  to  differentiate  planktonic  Foraminifera  taxa  are

phylogenetically valid both at the level of morphological species and at the level of higher taxa.

The  studied  gene  fragment  contains  six  hypervariable  expansion  segments,  some  unique  to

Foraminifera, providing excellent taxonomic resolution (Pawlowski and Lecroq, 2010). Analyses

of  this  fragment  revealed  the  existence  of  genetically  distinct  lineages  within  most  of  the

morphospecies, which likely represent reproductively isolated units (Darling et al., 1996, 1997,

1999, 2000, 2003, 2004, 2006, 2007, 2008, 2009; Wade et al., 1996; de Vargas et al., 1997, 1999,

2001, 2002, de Vargas and Pawlowski, 1998; Stewart et al., 2001; Aurahs et al., 2009b, 2011;

Ujiié et al., 2008, 2009, 2012; Morard et al., 2009, 2011, 2013; Seears et al., 2012; Weiner, 2012,

2014;  André et  al.,  2014).  In  order  to  assess  the  ecology and biogeography of  such cryptic

species,  large  numbers  of  rDNA sequences  from single-cell  extractions  collected  across  the

world oceans have been generated for most morphospecies (Figure 1). Due to this extensive

single-cell  rDNA  sequencing  throughout  the  last  decades,  the  genetic  and  morphological

diversity of planktonic foraminifera have been linked together to a degree that now allows for

transfer of taxonomic expertise. The knowledge of the genetic and morphological taxonomy of

the group allows the establishment of an exceptionally comprehensive reference genetic database

that can be further used to interpret complex data from plankton metagenomic studies with a

high level of taxonomic resolution.  Because planktonic Foraminifera are subject  to the same

ecological  forcing as other microplankton,  including the dominance of passive transport  in a

relatively  unstructured  environment,  huge  population  sizes,  and  basin-scale  distribution  of

species, they can potentially serve as a model for the study of global ecological patterns in other

groups of pelagic protists, whose diversity remains largely undiscovered (Mora et al., 2011).
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By  early  2014,  1,787  partial  18S  rDNA  sequences  from  single-cell  extractions  of

planktonic Foraminifera were available in public databases. However, their NCBI taxonomy is

often inconsistent, lacking standardization. It includes (and retains) obvious identification errors,

as discussed by Aurahs et al. (2009) and André et al. (2014), and their annotation lacks critical

metadata.  In  addition,  an  equivalent  number  of  rDNA  sequences  not  deposited  in  public

databases have been generated by the co-authors of the present study. Collectively, the existing

rDNA sequences  from  single  cells  collected  throughout  the  world  oceans  cover  the  entire

geographic and taxonomic range of planktonic Foraminifera. This collection unites the current

morphological, genetic, ecological, and biogeographic knowledge of the group and may serve as

a Rosetta Stone/Philae Obelisk for interpreting metabarcoding data (Pawlowski et al., 2014). To

pave the way for future exploitation of this resource, we combined all published and unpublished

planktonic Foraminifera rDNA sequence data and curated the resulting database with a semi-

automated bioinformatics pipeline. The resulting “Planktonic Foraminifera Ribosomal Reference

database” (PFR2) is a highly resolved, fully annotated and internally entirely consistent collection

of  18S  rDNA sequences  of  planktonic  Foraminifera,  aligned  and  evaluated  in  a  way  that

facilitates direct assessment of barcoding markers.

Material and Methods

Primary database assembly

A total of 1,787 18S rDNA sequences of planktonic Foraminifera were downloaded from the

GenBank query portal (http://www.ncbi.nlm.nih.gov/; release 201) on the 14th of May 2014. The

taxonomic path and metadata for these sequences were extracted from NCBI and supplemented

by information  in original  papers  when available.  The metadata  associated to each sequence
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consisted  of:  (i)  their  organismal  origin  (specimen  voucher,  taxonomic  path,  infra  specific

genetic type assignment), (ii) their methodological origin (direct sequencing or cloning), and (iii)

their  spatio-temporal origin (geographic coordinates,  depth, and time of collection).  Metadata

were described using standard vocabularies and data formats. For 47 sequences, the coordinates

of the collection site could not be recovered, in which case the locality was described in words

(Supplementary Material 1).

We next compiled all unpublished 18S rDNA sequences generated by the authors of this paper

and linked them with the same suite of metadata.  These sequences originate from single-cell

extractions of planktonic Foraminifera collected by stratified or non-stratified plankton net hauls,

in-situ  water  pumping,  as  well  as  SCUBA  diving.  After  collection,  the  specimens  were

individually picked under a stereomicroscope, cleaned, taxonomically identified and transferred

into DNA extraction buffer or air-dried on cardboard slides and stored at -20°C or -80°C. DNA

extractions were performed following the DOC (Holzmann & Pawlowski,  1996), the GITC*

(Morard et al., 2009), or the Urea (Weiner et al., 2014) protocols. Sequences located at the 5’ end

of the 18S rDNA were obtained following the methodology described in de Vargas et al. (1997),

Darling et al. (1996, 1997), Aurahs et al. (2009b), Morard et al. (2011) and Weiner et al., (2014).

In total, 820 new planktonic Foraminiferal sequences were analyzed and annotated for this study.

In addition,  925 unpublished sequences  analyzed in  Darling et  al.  (2000, 2003, 2004, 2006,

2007),  Darling  and  Wade  (2008),  Seears  et  al.  (2012)  and  Weiner  et  al.  (2014)  were  also

included. All unpublished sequences, except 177 sequences shorter than 200bp, were deposited

in GenBank under the accession numbers KM19301 to KM194582. Overall, PFR2  contains data

from 460 sites sampled during 54 oceanographic cruises and 15 near shore collection campaigns
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between 1993 and 2013.  It  covers  all  oceanic  basins,  all  seasons,  and water  depths  ranging

between the surface and 700 meters (Figure 1; Supplementary Material 1).

Taxonomy

Morphological taxonomy

As the first step in the curation process, the primary taxonomic annotations of all 3,532 18S

rDNA  sequences  gathered  from  NCBI  and  our  internal  databases  were  harmonized.  The

identification of planktonic Foraminifera is challenging especially for juvenile individuals, which

often  lack  diagnostic  characters  (Brummer  et  al.,  1986).  Thus,  many  of  the  published  and

unpublished 18S rDNA sequences were mislabelled or left in open nomenclature. In some cases

the same taxon has been recorded under different names, reflecting inconsistent usage of generic

names, synonyms and misspelling. To harmonize the taxonomy, we first carried out a manual

curation  of  the  original  annotations  to  remove  the  most  obvious  taxonomic  conflicts  in  the

primary database. To this end, the sequence annotations were aligned with a catalog of 47 species

names  based on the  taxonomy used in  Hemleben  et  al.  (1989),  but  adding  Globigerinoides

elongatus following Aurahs et  al.  (2011) and treating  Neogloboquadrina incompta following

Darling et al. (2006). Thus, the 109 sequences labelled as Globigerinoides ruber (pink) and the

63 labelled as  Globigerinoides ruber  (white) were renamed as  Globigerinoides ruber. The 113

sequences  of  Globigerinoides  ruber and  Globigerinoides  ruber  (white)  attributed  to  the

genotypes II were renamed Globigerinoides elongatus. The 12 sequences labelled Globigerinella

aequilateralis were renamed Globigerinella siphonifera following Hemleben et al. (1989). The 7

sequences corresponding to the right-coiled morphotype of Neogloboquadrina pachyderma were

renamed Neogloboquadrina incompta. All taxonomic reassignments were checked by sequence
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similarity  analyses  to  the  members  of  the  new  group.  Next,  we  attempted  to  resolve  the

attribution  of  sequences  with  unresolved  taxonomy  and  searched  manually  for  obviously

misattributed  sequences.  This  refers  to  sequences  which  are  highly  divergent  from  other

members of their group but identical to sequences of other well resolved taxa. Overall, these first

steps of manual curation led to taxonomic reassignment of 124 sequences. All corrections and

their justification are documented in the Supplementary Material 1.

Molecular taxonomy

In order to preserve the information on the attribution of 18S rDNA sequences to genetic types

(potential cryptic species), we harmonized the existing attributions at this level for species where

extensive surveys have been carried out and published. A total of 1,356 sequences downloaded

from NCBI were associated with a genetic type label, which was always retained. In addition, 19

sequences  labelled  as  Globigerinoides  ruber,  15  as  Globigerinoides  sacculifer,  36  as

Globigerinita  glutinata,  6  as  Globigerinita  uvula,  9  as  Globorotalia  inflata,  10  as

Neogloboquadrina incompta, 6 as Neogloboquadrina pachyderma, 5 as Orbulina universa, 5 as

Pulleniatina obliquiloculata, 30 as  Hastigerina pelagica and 32 as  Globigerinella siphonifera

have been analyzed after their first release in the public domain by Aurahs et al. (2009), Ujiié et

al. (2012), Weiner et al. (2012, 2014) and André et al.  (2013, 2014), and were attributed to a

genetic type by these authors. These attributions differ from those in the NCBI label, but were

retained in the PFR² database. In case of multiple attributions of the same sequence to different

genetic types by several authors, we retained the molecular taxonomy that was based on the

study presenting the most resolved and comprehensive attribution. In addition, 877 unpublished

sequences belonging to Orbulina universa, Globigerina bulloides, Neogloboquadrina incompta,

Neogoboquadrina  dutertrei,  Neogloboquadrina  pachyderma,  and  Turborotalita  quinqueloba
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received a genotypic attribution following de Vargas et al. (1999) and Darling et al. (2004, 2006,

2007, 2008). Most of these sequences have been produced and identified within earlier studies,

but  were  not  originally  deposited  on  NCBI.  Their  PFR²  genotypic  assignment  is  therefore

entirely consistent with the attribution of the representative sequences of the same genetic type

that were deposited on NCBI.

PFR  2   final taxonomic framework

As a result of the first manual curation and annotation to the level of genetic type, the original

3,532 18S rDNA sequences were re-assigned to 33 species names and 2,276 sequences were

annotated  to  the  level  of  genetic  types  (Supplementary  Material  1).  For  all  sequences,  we

established a ranked taxonomy with six levels: 1- Morphogroup, 2-Genus, 3-Species, 4-Genetic

type level 1, 5-Genetic type level 2, 6-Genetic type 3. For the “Morphogroup” rank we used the

taxonomical framework of Hemleben et al. (1989), dividing the extant planktonic Foraminifera

species into five clades based on the ultrastructure of the calcareous shell: Spinose, Nonspinose,

Microperforate,  Monolamellar  and  Non-spiral.  The “Genus”  and  “Species”  ranks  follow the

primary annotation as described above. For the “Genetic type level 1”, “Genetic type level 2”

and “Genetic type level 3” ranks, we used the hierarchical levels presented in the labels of the

genetic types of  Globigerinoides ruber,  Globigerinoides elongatus,  Globigerinella siphonifera,

Globigerinella calida, Hastigerina pelagica, Globigerina bulloides, Neogloboquadrina dutertrei,

Pulleniatina  obliquiloculata and  Turborotalita  quinqueloba.  Genetic  type attributions  lacking

hierarchical  structure  were  reported  in  the  rank  “Genetic  type  level  1”.  After  this  step,  the

Primary Reference Database (Figure 2) of 3,532 sequences contained 113 different taxonomic

paths (Supplementary Material 1). 
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Sequences partitioning into conserved and variable regions

Because  PFR²  is  a  resource  not  only  for  taxonomic  assignment  but  also  for  ecological  and

biogeographical  studies,  all  planktonic  Foraminiferal  18S  rDNA  sequences  were  included

irrespective of length, as long as they contained taxonomically relevant information. As a result,

the length of the sequences included in the annotated primary database ranges between 33 and

3,412 bp.  To evaluate  their  coverage  and information  content,  all  sequences  were  manually

aligned using Seaview 4 (Gouy et al., 2010) to the borders of each variable region of the 18S

rDNA fragment.  The positions  of the borders  were determined according to  the SSU rDNA

secondary structure of the monothalamous Foraminifera  Micrometula hyalostera  presented by

Pawlowski and Lecroq (2010), except for the region 37/f where a strict homology was difficult to

establish for all sequences. Instead, we defined the end of this region by the  occurrence of a

pattern homologous to the series of nucleotides “CUUUCACAUGA” located at the 3’ end of

Helix 37. We also noticed that the short conserved fragment located between the variable regions

45/e and 47/f was difficult to identify across all sequences. We thus merged the regions 45/e, 46

and 47/f into a single region that we named 45E-47F (Table1). As a result,  the position and

length of six conserved (32-37, 37-41, 39-43, 44-45, 47-49, 50) and five variable (37F, 41F, 43E,

45E-47F, 49E) regions were identified for all sequences (Figure 2). The remaining part of the

18S  rDNA sequence,  only  present  in  sequences  EU199447,  EU199448  and  EU199449  and

located before the motive “AAGGGCACCACAAGA” has not been analyzed in this way. All

regions fully covered in a sequence and containing sequence motives observed at least twice in

the whole dataset were labelled as “complete”. Regions fully covered but containing a sequence

motive that was observed only once in the whole dataset were labelled as “poor”. This is because

we consider sequencing/PCR errors as the most likely cause for the occurrence of such unique

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242



sequence motives. We realize that using this procedure, even genuine unique sequences may be

discarded from the analysis, but this would be the case only if such sequences deviated in all

regions. In all other cases, the regions were labelled as “partial” when only a part of the region

was present or “not available” if they did not contain any fragment of the sequence. As a result

we  obtain  the  Partitioned  Primary  Reference  Database  (Figure  2).  The  coverage  of  each

individual  region  in  the  Partitioned  Primary  Reference  Database  is  given  in  Supplementary

Material 1, and all sequence partitions are given in Supplementary Material 2.

Semi-automated iterative curation pipeline for optimal taxonomic assignment

The  consistency  of  taxonomic  assignments  within  the  annotated  database  of  partitioned

sequences was assessed using a semi-automated process (Figure 2 and 3). All “complete” regions

of sequences with the same taxonomic assignment at the morphospecies level were automatically

aligned using global pairwise alignment (Needleman & Wunsch 1970), as implemented in the

software  needle from the Emboss suite  of bioinformatics  tools (Rice et  al.,  2000). To detect

annotation  inconsistencies,  mean  pairwise  similarities  were  computed  for  each  “complete”

region of each sequence against all other sequences with the same taxonomic assignment from

the  finest  annotation  level  “Genetic  type  level  3”  to  the  rank  “Species  level”.  Results  are

provided in Supplementary Material 1 and were visualized using R (R Development Core Team,

2014) and the ggplot2 library (Wickham, 2009). The resulting plots are given in Supplementary

Material 3. If all annotations are consistent and there is no variation within taxa, each sequence

within the analyzed taxon should only find an exact match and the mean pairwise similarity for

that taxon should be 1. However, there are several reasons why the mean pairwise similarity

within  a  taxon  may  be  lower.  First,  if  a  sequence  has  been  assigned  the  wrong  name,  its

similarity to all other sequences labelled with that name will be low and the resulting mean
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pairwise similarity decreases. Second, if a sequence has been assigned to the correct taxon, but

the taxon comprises multiple sequence motives, that sequence will find a perfect match within

the taxon but the mean pairwise similarity may also be lower than 1.

In order to deconvolve the different sources of sequence variability within taxa, we followed a

three-step iterative approach, which was repeated for each of the 11 ‘complete’ regions of the

analyzed SSU rDNA fragment. First, we considered the distribution of mean pairwise similarities

for all sequences within each region assigned to one taxon at the finest rank of “Genetic type

level  3”.  Assuming that misidentifications  are rare and result  in large pairwise distances,  we

manually searched for sequences whose mean pairwise similarity deviates substantially from the

rest of the sequences within the taxon. Such sequences were initially “invalidated”, whereas all

other sequences analyzed at this level were “validated”. We then repeated the same procedure for

the higher ranks of “Genetic type level 2”, “Genetic type level 1” and at the “Species level”,

always starting with the full database (Figure 2 and 3A). Thus, at each level,  we expected a

misidentified sequence to have a lower pairwise similarity  from the mean than any pairwise

similarity between correctly assigned sequences (Figure 3B). This procedure had to be repeated

for  every  rank,  because  not  all  sequences  in  the  database  are  assigned  to  all  ranks.  Once

“validated”, sequences cannot be “invalidated” during analyses of higher rank taxa, because they

represent known variability within that taxon. In taxa where all sequences within a region show

low mean pairwise similarities all attributions are initially invalidated (this would be typically

the case for a “wastebasket taxa”, Figure 3C). 

In the second step, all  sequences invalidated during step 1 were reconsidered based on their

pairwise similarities  with ‘validated’ sequences  from the same region.  The main goal  of  the

curated  taxonomy  being  to  achieve  correct  taxonomic  assignment  at  the  species  level,  the
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pairwise comparison was carried out at this rank. If the best match is a ‘validated’ sequence with

the same initial species attribution as the invalidated sequence, this sequence is “validated” at the

species level and its assignment at the level of genetic type is then deleted. Such a situation can

only occur when the sequence was initially assigned to the wrong genetic type within the correct

species. If the pairwise comparisons of all regions analyzed match sequences with different but

consistent species attributions than the invalidated sequence, the sequence is reattributed to that

species. If the pairwise comparisons indicate that the analyzed sequence has no close relative in

the  validated  part  of  the  database,  the initial  attribution  is  retained,  provided that  the  initial

attribution is not yet in the validated dataset. This case occurs when all sequences of one species

have  been  initially  invalidated  because  the  same  species  name  was  associated  with  highly

divergent  sequences.  When  the  sequence  has  no  close  relative  but  its  initial  attribution  is

represented  in  the  validated  part  of  the  dataset,  the  initial  attribution  is  discarded  and  the

sequence receives an artificial attribution derived from the nearest higher rank that matches the

pairwise comparisons. In all cases, the erroneous attributions are replaced by the corrected ones

in  the  database  (Figure  2,  Supplementary  Material  1)  and  in  the  third  step,  sequences  that

received  new  attributions  were  reanalyzed  as  described  in  step  1.  If  inconsistencies  in  the

distribution  of  mean  pairwise  similarities  remain,  steps  2  and  3  are  repeated  until  no

inconsistency is observed.

As a final diagnosis, to evaluate the robustness and potential limitations of the curated taxonomy,

we performed a  leave-one-out  BLAST analysis  and a  monophyly  validation  by  NJ  on long

sequences.  First,  each individual  sequence included in the first  version of  PFR² was blasted

against the remaining part of the database including n-1 sequences using SWIPE (Rognes, 2011).

The sequences among the “n-1 PFR² database” returning the highest score were retrieved and
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their taxonomic attribution compared to the one of the blasted sequence (Supplementary Material

1).  Second, we retrieved all  sequences  covering the 5 variable  and 6 conserved regions and

divided them according to their assignment to higher taxa (here simplified by the morphogroups

Monolamellar,  Non-Spinose,  Spinose  and  Microperforates  +  Benthic).  Each  subset  was

automatically aligned using MAFFT v.7 (Katoh et al., 2013) and the subsequent alignments were

trimmed  off  on  the  edge  to  conserve  only  homologous  fragments.  For  each  alignment,  a

phylogenetic tree was inferred using a Neighbor-Joining approach with Juke and Cantor distance

while taking into account gap sites as implemented in SEAVIEW 4 (Supplementary Material 4)

with 100 pseudo-replicates. The scripts used to perform the different curation steps are available

as Supplementary Material 5.

Results

Of the 3,532 planktonic Foraminiferal 18S rDNA partial sequences analyzed, 3,347 contained at

least one gene region that was considered “complete” and could be subjected to the curation

process.  The  remaining  185 sequences  included  33 singletons  (rare  motives  or  poor  quality

sequences) and 152 sequences that were too short to cover at least one region (Supplementary

Material 1). Amongst the 3,347 curated sequences, the taxonomic assignment of 84 was initially

invalidated. Of these, 3 represent cases where the morphospecies attribution was correct, but the

attribution to a genetic type was erroneous. In 46 cases, the invalidated sequences found a perfect

match with a different taxon and thus their taxonomic assignment was changed. In all of these

cases,  the  novel  taxonomic  assignment  corresponded  to  a  morphologically  similar

morphospecies, explaining the original misidentification of the sequenced specimen. In 14 cases,

the original assignment was retained because the sequences did not find any match and their

original attribution did not appear in the validated part of the dataset. All of these sequences were
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labelled as  Hastigerinella digitata. This species name had been entirely invalidated in the first

step because of inconsistent use of the homonymous species name Beella digitata. Finally, 17

sequences received an unresolved artificial assignment. These represent six different sequence

motives diverging substantially from all sequences in the validated part of the database and also

between each other. Because the original attribution upon collection was obviously wrong, we

could not reassign these sequences to the species level. In two cases, we could identify the most

likely generic attribution, but four sequences are left with an entirely unresolved path. Finally,

our procedure captured one sequence with a spelling error in its path and three sequences that

appear  to  have  been  attributed  correctly  but  represent  small  variants  within  species.  After

resolution of the 84 conflicts described above, the re-annotated dataset was subjected to a second

round of the curation process for verification. All sequences were validated.

Having  established  an  internally  consistent  taxonomic  annotation  for  all  3,347  18S  rDNA

sequences from individual planktonic Foraminifera, we generated the Planktonic Foraminiferal

Ribosomal Reference or PFR2 database. Of the 3,347 sequences, 25 were shorter than 200 bp, and

could not be deposited in NCBI (see Supplementary Material  1). The PFR21.0 database thus

includes 3,322 reference sequences assigned to 32 species and 6 taxa with unresolved taxonomy

(Figure 2), and contains 119 unique taxonomic paths when including all three levels of genetic

types.

The leave-one-out BLAST evaluation applied on the first version of PFR² to assess its robustness

returned  an  identical  taxonomic  path  for  2,509  sequences.  For  614  sequences,  the  BLAST-

determined taxonomic paths were identical between the “morphogroup” and “species” rank but

displayed a different resolution between the ranks “genetic type level 1” and “genetic type level

3”. This reflects a situation where some sequences belonging to one species are annotated to the

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357



level of a genetic type, whereas others are not. Finally, 19 sequences were assigned to the correct

species but to a different genetic type. This illustrates the case of genetic types represented by

only one sequence in the database, which were assigned to the closest genetic type within the

same species by the leave-one-out procedure. Thus, 94.5 % of the sequences in the PFR2 database

find a nearest neighbor with a correct taxonomic assignment at the target level of species. For the

remaining 180 sequences, the returned taxonomic path was inconsistent at the level of species. In

two  cases,  the  sequences  were  assigned  to  a  sister  species,  which  is  morphologically  and

phylogenetically close (Globorotalia ungulata and  Globorotalia tumida), reflecting insufficient

coverage  in  the  database  for  these  species.  Two  cases  involved  singleton  sequences  with

unresolved taxonomy, which find no obvious nearest neighbor. Finally, 176 cases of inconsistent

identification refer to sequences of Globigerinella calida and Globigerinella siphonifera, whose

species names have been used mutually interchangeably (Weiner et al., 2014) and the clade has

been shown to be in  need of a taxonomic  revision (Weiner  et  al.,  2015).  The leave-one-out

evaluation thus reveals excellent coverage of PFR2 and confirms that the curated taxonomy is

internally entirely consistent. To further confirm the validity of morphospeceis level taxonomy,

we constructed  NJ phylogenies  for  the  four  major  clades  including only the long sequences

(Supplementary  Material  4).  This  analysis  confirmed  the  monophyly  of  all  morphospecies,

except  the  Globigerinella  calida/Globigerinella  siphonifera plexus.  All  clades  were  strongly

supported except for the sister species  Globorotalia tumida and  Globorotalia ungulata and the

monolamellar species Hastigerina pelagica and Hastigerinella digitata. In the first case, the poor

support reflects the lack of differentiation between the two species in the conserved region of the

gene which decreases the bootstrap score and the in the second case the extreme divergence of
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the two genetic lineage of Hastigerina pelagica renders the phylogenetic reconstruction difficult

(Weiner et al., 2012). 

An analysis of the taxonomic annotations retained in PFR2  reveals that the database covers at

least 70-80% of the traditionally recognized planktonic Foraminiferal species in each clade. The

species represented in PFR2 constitute the dominant part of planktonic Foraminifera assemblages

in the world oceans. Compared with a global database of census counts from surface sediments

(MARGO database, Kucera et al., 2005), the species covered by PFR2 account globally for >90%

of  shells  larger  than  150  μm found  in  surface  sediments  (Figure  4).  In  cold  and temperate

provinces, PFR2  species account for almost the entire assemblages, while in warmer subtropical

and tropical waters, only up to 4% of the sedimentary assemblages are not represented in PFR 2.

Evidently,  PFR2 reference  sequences  cover  most  of  the  ecologically  relevant  portion  of  the

morphological  diversity  and the  taxa  that  are  not  yet  represented  in  PFR2  are small,  rare  or

taxonomically obscure. It is possible that some of these taxa may correspond to the six sequences

with unresolved taxonomy. If so, PFR2 may be considered to cover up to 38 of the 47 recognized

species.

Finally, for each species present in PFR2, we evaluated the ecological coverage of the global

sampling  effort  (Figure  4).  Morphospecies  of  planktonic  Foraminifera  are  known  to  be

distributed zonally across the world oceans, reflecting the latitudinal distribution of sea surface

temperature (e.g.,  Bé and Tolderlund, 1971). A comparison between the temperature range of

each species as indicated by their relative abundance in surface sediment samples (Kucera et al.,

2005) and the temperatures measured at sampling localities shows that a large portion of the

ecological range of the species is covered by the reference sequences in PFR2 (Figure 4).
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The PFR2 web interface

To facilitate data download and comparative sequence analyses, PFR² has been implemented into

a dedicated web interface, available at http://pfr2.sb-roscoff.fr. The website provides:

(1) a search/browse module, which allows the user to download parts of the database either by

taxonomic rank (morphogroup name, genus name, species name), geographic region (e.g.,

North Atlantic, Mediterranean Sea, Indian Ocean) or collection (cruise name) ;
(2) a classical BLAST/Similarity module that facilitates identification of unknown sequences;
(3) a map module displaying the localities for all sequences present in PFR² and facilitating

download of all data from each single locality;
(4) a  download  section  with  direct  access  to  all  data  included  in  PFR².  All  sequences  and

sequence  partitions  are  available  in  FASTA format  and  the  metadata  are  available  in  a

tabulated file.

Discussion

Comprehensive databases of ribosomal RNA sequences with curated taxonomy are available for

Protists  (Protist  ribosomal  reference  database,  PR²;  Guillou  et  al.,  2013)  and  for  the  major

domains of life (SILVA, Yilmaz et  al.,  2013), and these databases also include sequences of

planktonic Foraminifera. However, those databases are used mainly as benchmarks to annotate

complex  environmental  datasets  (e.g.  de  Vargas  et  al.,  2015)  at  the  level  of  morphological

species. In contrast,  PFR² has been designed and implemented in a way that facilitates other

applications. 

First, we note that because of the structural limitations, PFR² contains “only” 402 sequences of

planktonic  Foraminifera  (Based  on Released  203 of  GenBank,  October  2014),  compared  to

PFR²,  which  contains  for  now 3322 SSU rDNA sequences.  Second,  2276 of  the  sequences
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present in PFR² have an assignation to the level of the genetic type and as far as possible, the

sequences are associated with metadata related to the origin of each specimen and the conditions

where it was collected, thus forming a basis for ecological modelling. Third, very importantly,

using planktonic Foraminifera as a case study, we propose and implement an annotation scheme

with unmatched accuracy and full  tracking of changes.  This is  only possible  because of the

relatively “small” size of PFR² combined with high-level expert knowledge of their taxonomy.

The fidelity of the annotations will facilitate a qualitatively entirely different level of analysis of

eDNA libraries.

For  example,  the  design  of  PFR²  allows  to  incorporate  advances  in  classical  and molecular

taxonomy, particularly at the level of genetic types (e. g. André et al., 2014), which can be re-

evaluated  depending of  the  criteria  used  to  delineate  molecular  OTUs.  Further,  by retaining

information on clone attribution to specimens (vouchers), PFR² allows to evaluate intra-genomic

polymorphism, which offers excellent opportunity to identify the phylogenetically relevant level

of  variability  (Weber  and Pawlowski,  2014).  Finally, the modular  structure of PFR2 (i.e.,  its

partitioning into variable and conserved regions) is particularly suitable for the evaluation of

existing  barcodes  or the design of  new barcoding systems needed to capture  total  or partial

planktonic foraminiferal diversity within complex plankton assemblages. An examination of the

length polymorphism in the 11 regions of the 18S rDNA fragment that have been aligned for all

PFR2  sequences reveals that next to the variable 37F region identified as a barcode for benthic

Foraminifera (Pawlowski and Lecroq, 2010), several other regions would be suitable as targets

for barcoding of planktonic Foraminifera (Figure 5).

The main difference between PFR² and classical databases is in the association of sequence data

with  environmental  and  collection  data.  Such  level  of  annotation  is  not  feasible  in  large
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databases, which have to rely on the completeness and level of detail of metadata provided in

GenBank.  The  association  of  metadata  to  PFR²  sequences  facilitates  an  assessment  of

biogeography  and ecology  of  genetic  types  (potential  cryptic  species).  This  is  important  for

studies of evolutionary processes in the open ocean such as speciation and gene flow at basin

scale,  but  also  for  paleoceanography,  which  exploits  ecological  preferences  of  planktonic

Foraminfera species to reconstruct climate history of earth (e. g. Kucera et al., 2005). Modeling

studies  showed  that  the  integration  of  cryptic  diversity  into  paleoceanographic  studies  may

improve  their  accuracy  (Kucera  and Darling,  2002;  Morard et  al.,  2013).  Together  with the

MARGO database  (Kucera  et  al.,  2005)  which  records  the  occurrence  of  morphospecies  of

planktonic Foraminifera in surface sediments and the CHRONOS/NEPTUNE database (Spencer-

Cervato et al., 1994; http://www.chronos.org/) which records their occurrence through geological

time, PFR² represents the cornerstone to connect genetic diversity to the fossil record in an entire

group of pelagic protists. 

Conclusion and perspectives

The  PFR2  database  represents  the  first  geographically  and  taxonomically  comprehensive

reference  barcoding system for an entire  group of pelagic  protists.  Therefore it  constitutes  a

pivotal  tool  to  investigate  the  diversity,  ecology, biogeography, and  evolution  in  planktonic

Foraminifera  as a model  system for pelagic  protists.  In addition,  the database constitutes  an

important  resource  allowing  reinterpretation  and  refinement  of  the  use  of  Foraminifera  as

markers for stratigraphy and paleoceanography. In particular, PFR2  can be used to: (i) annotate

and  classify  newly  generated  18S  rDNA sequences  from  single  individuals;  (ii)  study  the
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biogeography of cryptic genetic types; (iii) design rank-specific primers and probes to target any

group  of  planktonic  Foraminifera  in  natural  communities;  (iv)  assign  accurate  taxonomy  to

environmental  sequences  from  metabarcoding  or  metagenomic  datasets.  This  last  point  is

particularly  important.  Future  global  metabarcoding  of  planktonic  Foraminifera  covering

comprehensive spatio-temporal scales will likely reveal the full extent and complexity of species

diversity and ecology in the group, serving as a model system for studies of the dynamics of the

plankton and its interaction with the Earth system.
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Data Accessibility

Sequences, NCBI accession numbers and metadata are available in Supplementary Material 1
and 2 and on PFR² website at  http://pfr2.sb-roscoff.fr. The custom scripts used to perform the
curation procedure are available in Supplementary Material 5, the results of the curation process
are given in Supplementary Material 1 and 2.

Figures

Figure 1

Sampling Map.  Location  of  the 460 oceanic  stations  sampled over  20 years  for  single-cell
genetic studies of planktonic Foraminifera.  Each symbol corresponds to a scientific cruise or
near shore collection site. Cruise names and dates of the collection expeditions are indicated in
the legend. Grey shading shows ocean bathymetry. 

Figure 2 

Workflow to constitute PFR². In step “I” the sequences, metadata and taxonomic information
are retrieved from public databases and literature or from the internal databases of the authors to
constitute  the  Primary  Reference  Database.  In  step  “II”,  the  coverage  of  each  sequence  is
evaluated by alignment with structural regions of the 18S RNA secondary structure derived for
the species Micrometula hyalostera (Pawlowski and Lecroq, 2010). In step “III”, the consistency
of the annotation is checked from the most exclusive level of annotation “genetic type 3” until
the species level (Phase 1) to detect annotation inconsistency (See Figure 3). Sequences with
wrong annotation are invalidated, compared to the validated part of the dataset (Phase 2) and re-
annotated depending on the best hit out of the valid dataset. The consistency of all annotations is
then checked again following the same procedure as in Phase 1 (Phase 3), to ensure that no
taxonomic inconsistency remains. In step IV, all sequences which have been subjected to the
curation process are integrated in the Planktonic Foraminifera Ribosomal Reference database
(PFR²). The results of all steps are given in Supplementary Material 1.

Figure 3

Annotation  inconsistency  detection. The  procedure  followed  to  identify  annotation
inconsistency  is  exemplified  by  three  cases.  Each  graph  represents  variability  in  pairwise
similarities observed across each region of all sequences sharing the same annotation level. The
names of the taxon and annotation level are given above the plot with the number of sequences
in parenthesis. Each vertical line represents one region with the variability represented as dot
plot, the number of “complete” regions is given at the bottom of the line. The case “A” describes
the annotation validation process starting from the most exclusive rank of “genetic type level 3”
to the “species” rank. After the validation at one rank level, the sequences with valid annotation
are merged in a taxonomic unit of a higher rank. This now includes multiple sequence motifs
decreasing the level of identity in each region, leading to a high variability in higher ranks. Case
“B” represents the occurrence of obvious outliers at  the species level, which are invalidated.
Case  “C”  represents  the  co-occurrence  of  divergent  sequences  under  the  same  taxonomic
attribution, which are consequently all invalidated. The dot plots for all ranks can be found in
Supplementary Material 4 and the pairwise similarities calculated for each taxonomic level are
given in Supplementary Material 1. 
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Figure 4

Taxonomic and ecological coverage of PFR². For each morphogroup (Spinose, Non-Spinose,
Microperforates, Monolamellar and Non-Spiral) the number of species included in PFR² is given
in the filled bar while the number of species not present is indicated in the adjacent open bar. The
relative  abundance  in  the  sediments  of  each  species  included in PFR² is  given in  log value
against mean Sea Surface Temperature (SST) at the sampling station. Relative abundances in
sediments are derived from the MARGO database (Kucera et al., 2005) and the mean annual
SST from the World Ocean Atlas (Locarnini, 2005). The grey dots highlight the mean annual
SST at the location where the living planktonic foraminifera yielding sequences were sampled.
The number of sequences available for each species as well as the number of taxonomic paths
above the species level is shown next to the graphs. Also shown is the cumulative mean relative
abundance in the sediments of all species included in PFR² plotted against the mean annual SST
in discrete 1°C intervals. Vertical bars represent 95% confidence intervals for each 1°C bin. 

Figure 5

Length polymorphism. Each rectangle represents the length polymorphism within each region
of the analyzed 18S rDNA fragment across all resolved taxonomic units in PFR². The regions are
based on the rRNA secondary structure and are named following Pawlowski and Lecroq (2010).

Supplementary Material.

Supplementary Material 1. 

Information on all consecutive steps followed to constitute the PFR². All fields are explained in
the file.

Supplementary Material 2

FASTA files  of  sequences  used  to  build  the  PFR².  FASTA files  are  provided  for  the  full
sequences and individual partitions.

Supplementary Material 3

Dot plots showing pairwise similarities for each taxonomic level. See Figure 3 for explanations
of the content of the plots. 

Supplementary Material 4

Neighbor-joining trees showing the monophyly of each morphospecies.

Supplementary Material 5

Custom scripts used to perform the different curation steps.
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