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Rare mutations limit of a steady state dispersion trait model

Benôıt Perthame∗†‡ Panagiotis E. Souganidis§¶

May 6, 2015

Abstract

The evolution of dispersal is a classical question in evolutionary ecology, which has been widely
studied with several mathematical models. The main question is to define the fittest dispersal rate
for a population in a bounded domain, and, more recently, for traveling waves in the full space.

In the present study, we reformulate the problem in the context of adaptive evolution. We consider
a population structured by space and a genetic trait acting directly on the dispersal (diffusion) rate
under the effect of rare mutations on the genetic trait. We show that, as in simpler models, in the
limit of vanishing mutations, the population concentrates on a single trait associated to the lowest
dispersal rate. We also explain how to compute the evolution speed towards this evolutionary stable
distribution.

The mathematical interest stems from the asymptotic analysis which requires a completely different
treatment of the different variables. For the space variable, the ellipticity leads to the use the
maximum principle and Sobolev-type regularity results. For the trait variable, the concentration
to a Dirac mass requires a different treatment. This is based on the WKB method and viscosity
solutions leading to an effective Hamiltonian (effective fitness of the population) and a constrained
Hamilton-Jacobi equation.

Key words: Dispersion evolution; Nonlocal pde; Constrained Hamilton-Jacobi equation; Effective
fitness;
Mathematics Subject Classification (2010): 35B25; 35F21; 92D15

1 Evolution of dispersion
sec:ed

The model. We consider here the rare mutation limit of the steady state version of a simple model
of evolution of dispersal in a population. The main modeling assumptions are: (i) all individuals wear
a genotype characterized by a parameter θ, which induces a dispersal rate D(θ), (ii) a Fisher-type
Lotka-Volterra growth/death rate with a space dependent carrying capacity K and limitation by the
total population whatever the trait is, and (iii) rare mutations acting on the genetic variable and
modeled by a diffusion with covariance

√
2ε; we refer to [6] for a derivation of this type of equations

from individual based stochastic models.
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More precisely, we study the asymptotic behavior, as ε → 0, of the density nε = nε(x, θ) : Ω × R →
(0,∞), with Ω ⊂ Rd a smooth domain, of the nonlocal and nonlinear problem

−D(θ)∆xnε − ε2∆θnε = nε
(
K(x)− ρε(x)

)
in Ω× R,

ρε(x) =

∫ 1

0
nε(x, θ)dθ,

(1) equation

with Neumann boundary condition on ∂Ω and 1− periodicity in θ, that is, if ν is the external normal
vector to Ω,

∂

∂ν
nε = 0 on ∂Ω× R and nε is 1− periodic in θ. (2) bc

As far as the carrying capacity K and the dispersion rate D are concerned, we assume

K ∈ C1(Ω̄), there exists Km > 0 such that K(x) ≥ Km > 0, K is not constant. (3) asK

and {
D ∈ C1

(
R; (0,∞)

)
is 1-periodic and

there exists a unique local minimizer θm ∈ [0, 1) such that D ≥ D(θm) := Dm > 0;
(4) asD

we note (4) is used to assert that the effective Hamiltonian also has a minimum at θm.

Finally, for technical reasons, we also assume that

Ω is convex. (5) convex

It follows from, for example, [1, 8], that, given (3) and (4), the problem (1) and (2) admits a strictly
positive solution nε : Ω× R→ (0,∞).

Formal derivation of the mathematical result. We proceed now formally to explain what
happens in the limit ε → 0 and, hence, motivate the statement of the results. As it is often the case
with problems where it is expected to see concentration in the limit, we make the exponential change
of variables

nε = exp
(
uε/ε

)
, (6) exp

which leads to

− D(θ)

ε
∆xuε −

D(θ)

ε2
|∇xuε|2 − ε∆θuε − |∇θuε|2 = K(x)− ρε(x) in Ω× R, (7) eqhje1

with

uε 1−periodic in θ and
∂

∂ν
uε = 0 on ∂Ω× R. (8) expbc

It is clear from (7) that, if the uε’s have, as ε→ 0, a limit u, it must be independent of x, and, hence,
it is natural to expect the expansion

uε(x, θ) = u(θ) + ε lnN (x, θ) +O(ε). (9) ansatz

Assuming that, as ε → 0, the ρε’s converge to some ρ, a formal computation suggests that N is the
positive eigenfunction of{

−D(θ)∆xN = N
(
K − ρ

)
+N H

(
θ, ρ(·)

)
in Ω,

∂
∂νN = 0 on ∂Ω,

(10) ef
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with eigenvalue H
(
θ, ρ(·)

)
, and that u solves the constrained Hamilton-Jacobi equation

−|∇θu|2 = −H
(
θ, ρ(·)

)
in R,

maxθ∈R u(θ) = 0,

u is 1− periodic.

(11) chj

The constraint on the maxu becomes evident from the facts that, as it turns out, the ρε’s are bounded
uniformly in ε and the equality

ρε(x) =

∫ 1

0
nε(x, θ)dθ =

∫ 1

0
exp

(
uε(x, θ)/ε

)
dθ, (12)

which also suggests that, as ε→ 0, the nε’s behave like a Dirac mass with weight ρ.

The mathematical result. To state the result we recall that δ denotes the Dirac mass at 0 and
we introduce the nonlinear Fisher-type stationary problem{

−Dm∆xNm = Nm (K −Nm) on Ω

∂
∂νNm = 0 on ∂Ω,

(13) eq:Nm

which, in view of (3) and (4), admits a positive solution Nm > 0 (see, for example, [1, 8].)
We have:

Theorem 1.1 Assume (3), (4), and (5). Then, as ε→ 0 and in the sense of distributions,

nε → Nm(x)δ(θ − θm) and ρε → Nm.

Moreover, as ε→ 0 and uniformly in x and θ, ε lnnε → u, where u is the unique 1−periodic solution
to (11), with ρ = Nm, such that maxu = u(θm) = 0.th1

Biological interpretation and motivation. The conclusions of Theorem 1.1 can be thought as a
justification of the fact that the population selects the “slowest” individuals in accordance with several
previous observations on the evolution of dispersal. In this respect, the eigenvalue −H

(
θ, ρ(·)

)
defines

the fitness of individuals depending upon their trait. This fact can be stated using the canonical
equation (30), which is formally derived in Section 6. In the words of adaptive dynamics, our result
characterizes the unique Evolutionary Stable Distribution (or Strategy), [9, 16].

That mutants with lower dispersal rates can invade a population, that is property (18), is known
from the first mathematical studies [14, 11]. Our approach here is more intrinsic since we consider
structured populations competing for resources. Surprisingly when set in the full space where the
problem is characterized in terms of traveling waves, the opposite effect is observed, that is mutants
with higher dispersal rates are selected giving rise to accelerating waves, [3, 4, 24, 2]. For two competing
populations, the combined effect of dispersal and a drift is studied in [13]. The analysis of dispersal
evolution also gave rise to the notion of ideal free distribution [5, 7].

The question of dispersal evolution is a classical and important topic in evolutionary biology. The
reader can consult [23] for a survey of the many related issues, to [20] for the case with patches and
demographic stochasticity, to [15] for the case of trajectories with jumps (nonlocal operators) and to
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[3] for other biological references about accelerating fronts. A formalism using Fokker-Planck equation
is used in [22].

Another motivation for the study of the model in this note is to represent selection of the fittest
individuals without a proliferative advantage. In this context the formalism we use here, with a
population structured by a trait, has been studied widely when there is only proliferative advantage;
see [10, 21, 16, 18]. Other formalisms to study evolution can be found in [9, 6] and the references
therein. The extension to cases when the trait is combined another structuring variable is more recent,
[3, 4, 24, 19, 7].

Organization of the paper. The paper is devoted to the proof of Theorem 1.1. In Section 2 we
derive some uniform in ε estimates for the ρε’s that are then used in Section 3 where we derive the
effective Hamiltonian, that is the eigenvalue problem of (10). In Section 4 we derive the constrained
Hamilton-Jacobi equation to conclude the proof of Theorem 1.1 and Theorem 4.1. In Section 6, we
provide some perspectives about the problem and some numerical examples, and, finally, in Section 5
we prove the two technical lemmata that were used in Section 4.

2 Estimates on ρε
sec:est_rho

We state and prove here some, uniform in ε, estimates for the ρε’s, which are fundamental for the
analysis in the rest of the paper; here |Ω| is the measure of Ω and C(A) denotes a constant that
depends on A.

lm:takis2 Lemma 2.1 Assume (3) and (4). There exist positive independent of ε constants C1 = C1(K,D,Ω),
C2 = C2(K,D,Ω) and C3 = C3(|Ω|,minK) such that

(i) 0 ≤ ρε ≤ C1,

(ii) supε∈(0,1) ‖ρε‖W 2,p(Ω) ≤ C2 for all p ∈ [1,∞), and

(iii)
∫

Ω ρε(x)dx ≥ C3,

(14) lm:est_rho

and, along subsequences ε→ 0, the ρε’s converge uniformly in Ω to ρ ∈ C(Ω).

Proof. We first observe that ρε trivially satisfies the Neumann condition

∂

∂ν
ρε = 0 on ∂Ω. (15) takis1

After dividing (1) by D(θ), integrating in θ and using the periodicity in θ, we find

−∆xρε − ε2

∫ 1

0
nε(x, θ)∆θ

1

D
dθ =

∫ 1

0

1

D
nεdθ (K − ρε),

and, hence, for some constant C, which only depends on D and K, we have

−∆xρε +
1

‖D‖∞
ρ2
ε ≤ Cρε.

Then (14)(i) follows from the strong maximum principle, while the W 2,p-estimates are a consequence
of the classical elliptic regularity theory.
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The lower bound (14)(iii) comes from integrating (1) in x and θ. Indeed, in view of the assumed
periodicity, we find

maxK

∫
Ω
ρε(x)dx ≥

∫
Ω
ρε(x)K(x)dx =

∫
Ω
ρε(x)2dx ≥ 1

|Ω|

(∫
Ω
ρε(x)dx

)2

.

The last claim is an immediate consequence of the a priori estimates and the usual Sobolev imbedding
theorems.

3 The effective Hamiltonian
sec:H

For θ ∈ [0, 1] and ρ ∈ L∞
(
Ω; [0,∞)

)
we consider the eigenfunction N = N

(
·; θ, ρ(·)

)
∈ H1(Ω) and the

eigenvalue H = H
(
θ, ρ(·)

)
of{
−D(θ)∆xN = N (K − ρ) +N H in Ω,

∂
∂νN = 0 on ∂Ω and

∫
ΩN

(
x; θ, ρ(·)

)2
dx = 1.

(16) effective_hamiltionian

Note that in view of (3) and the regularity of Ω, the existence of the pair
(
N
(
·; θ, ρ(·)

)
, H
(
θ, ρ(·)

))
follows from, for example, [1, 8].

The next lemma provides some important estimates and information about H
(
θ, ρ(·)

)
. In the state-

ment we use the notation KM := maxΩK.

Lemma 3.1 Assume (3) and (4). Then

(i) −KM ≤ H
(
θ, ρ(·)

)
and (ii) H

(
θ, ρ(·)

)
≤ 1

|Ω|

∫
Ω
ρ(x)dx, (17) H:est1

the maps θ → H
(
θ, ρ(·)

)
and θ → D(θ) have the same momotonicity properties for all ρ, (18) H:est3

and, in particular, θm is the unique minimum of H(θ, ρ) in [0, 1] for all ρ.lm:H

Proof. Multiplying the equation by N and integrating in x gives

0 ≤ D(θ)

∫
Ω
|∇N |2 =

∫
Ω
N 2[K − ρ+H]dx ≤

∫
Ω
N 2dx [KM +H],

and, thus, (17)(i) holds.

The upper bound (17)(ii) follows from the positivity of K, since, after dividing the equation by N
and integrating by parts, we find

−
∫

Ω

∣∣∇xN ∣∣2
N 2

dx =

∫
Ω

[K − ρ+H] dx ≤ 0.

For (18), we differentiate in θ the equation in (16) to find

−D′(θ)∆xN −D(θ)∆xNθ = Nθ
(
K(x)− ρ(x) +H

)
+N Hθ, (19) takis
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where Nθ and Hθ denote derivatives with respect to θ, we multiply by N and integrate by parts using
the boundary condition to get

D′(θ)

∫
Ω

∣∣∇xN ∣∣2 +D(θ)

∫
∇xN .∇xNθ =

∫
NNθ[K − ρ] +Hθ

(
θ; ρ(·)

)
. (20) takis2

Next we use the fact that the L2−normalization of N yields
∫

ΩNθNdx = 0 and after multiplying the
equation in (16) by Nθ, integrating by parts and subtracting the result from (20) we find

D′(θ)

∫
Ω

∣∣∇xN ∣∣2 = Hθ

(
θ; ρ(·)

)
.

Since we have assumed in (3) that K is not constant, ∇xN does not vanish and the result follows.

To conclude, we observe that (4) and (18) yield that H as the same monotonicity, in θ, as D and,
thus, has a unique local minimum at θm.

4 The constrained Hamilton-Jacobi equation
sec:chj

We prove here the generalized Gaussian-type convergence asserted in Theorem 1.1, derive the con-
strained Hamilton-Jacobi equation (11) and state some more properties. For the benefit of the reader
we restate these assertions as a separate theorem below.

Theorem 4.1 The family uε is uniformly in ε Lipschitz continuous and converges, uniformly in x and
θ, to u, which is independent of x and satisfies, in the viscosity sense, the constrained Hamilton-Jacobi
equation (11). Moreover,

min
θ
H
(
θ, ρ(·)

)
= 0 = H

(
θm, ρ(·)

)
= Hθ

(
θm, ρ(·)

)
. (21) eq:ESS

th:u

Since −H represents the fitness, it turns out that (21) characterizes δ(θ − θm) as the Evolutionary
Stable Distribution (or θm as the Evolutionary Stable Strategy). See [9, 16].

The proof is a consequence of the next two lemmata which are proved later in the paper.

Lemma 4.2 (Bounds on uε) There exists an independent of ε constant C such that∫
Ω

max
θ
uε(x, θ)dx ≤ Cε. (22) eq:u_upper

lm:ubdd

Lemma 4.3 (Lipschitz estimates) There exist an independent of ε constant C such that

1

ε2
|∇xuε|2 + |∇θuε|2 ≤ C and max

x∈Ω,0≤θ≤1
uε(x, θ) ≤ Cε.

Moreover, the uε’s converge, along a subsequence ε → 0 and uniformly x and θ, to a Lipschitz and
1-periodic function u : R→ R such that max0≤θ≤1 u(θ) = 0.lm:ulip

6



We continue with the proofs of Theorem 4.1 and Theorem 1.1.

Proof of Theorem 4.1. The fact that any limit u of the uε’s satisfies (11) is a standard application
of the so-called perturbed test function method (see [12]) and we do not repeat the argument.

It follows from (11) thatH
(
θ, ρ(·)

)
≥ 0, while, at any maximum point θ̄ of u, we must haveH

(
θ̄, ρ(·)

)
≤

0, and, hence, H
(
θ̄, ρ(·)

)
= 0, and, in view of Lemma 3.1,

min
θ
H
(
θ, ρ(·)

)
= 0 = H

(
θm, ρ(·)

)
.

As a result the only possible maximum point of any solution of (11) must be at at θm, which implies
that the equation has a unique solution.

Also the knowledge of θm determines uniquely the limit ρ(x) = N̄m(x) (see below), from equation
(13), and, thus, the full family (ρε, uε) converges.

Proof of Theorem 1.1. The statement in terms of nε is an immediate consequence of Theorem 4.1.
Because uε achieves a unique maximum at θm, from the Laplace formula for nε written as (6), we
conlude that the nε(x, θ)’s converge weakly in the sense of measures to ρ(x)δ(θ − θm), with ρ(x) the
limit of ρε (see Section 2).

Next, integrating equation (1) in θ we conclude that

−∆

∫ 1

0
D(θ)nεdθ = ρε(x)

(
K(x)− ρε(x)

)
.

Passing to the limit ε→ 0, and taking into account that n is a Dirac mass at θm, we find that ρ = Nm

because they both satisfy the equation (13).

5 The proofs
sec:proofs

We begin with the proof of Lemma 4.2

Proof of Lemma 4.2. Integrating (7), we find

1

ε2

∫ ∫
|∇xuε|2dxdθ +

∫ ∫
|∇θuε|2dxdθ ≤ C. (23) hj:h1est

The claim for the maximum bound follows from the L∞−estimate on ρε.

For each x ∈ Ω, let Mε(x) := maxθ uε(x, θ) and choose θε(x) such that Mε(x) = uε(x, θε(x)). Then it
follows from (14)(i) that

eMε(x)/ε

∫ 1

0
e

(
uε(x,θ)−uε(x,θε)

)
/εdθ = ρε(x) ≤ C. (24) hjc:estu

Inserting in (24) the estimate

uε(x, θ)− uε(x, θε(x)) =

∫ θε(x)

θ
∂θuε(x, θ

′)dθ′ ≥ −1−
∫ 1

0
|∂θuε(x, θ′)|2dθ′,
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we get

eMε(x)/ε e
−1

ε
[1 +

∫ 1

0
|∂θuε(x, θ′)|2dθ′]

≤ C,

and, hence,
Mε(x)

ε
− 1

ε
[1 +

∫ 1

0
|∂θuε(x, θ′)|2dθ′] ≤ lnC.

Using (23), we obtain ∫
Ω
Mε(x)dx ≤ Cε,

and this concludes the proof.

Next we discuss the proof of Lemma 4.3.
Proof of Lemma 4.3. We first assume the Lipschitz bound and prove the rest of the claims.

Let Mε := maxx∈ΩMε(x), with Mε(x) as in the proof of the previous lemma. It is immediate from
(22) and the fact that |∇xuε|2 ≤ εC that, for some C > 0,

Mε ≤ εC.

Next we show that lim infε→0Mε ≥ 0, which, in turn, yields that limε→0Mε = 0.

Let yε ∈ Ω be such that Mε := Mε(yε = uε
(
yε, θε(yε)

)
and write

ρε(x) = eMε/ε

∫ 1

0
e

(
uε(x,θ)−uε(yε,θε)

)
/εdθ.

Combining the lower bound on ρε in Lemma 20 and the (Lipschitz) estimate |∇xuε|2 ≤ εC, we get

C3 ≤
∫

Ω
ρε(x)) ≤ |Ω|eMε/εeC

∫ 1

0
e

(
uε(yε,θ)−uε(yε,θε)

)
/εdθ ≤ eMε/εeC |Ω|,

and, thus, Mε ≥ −Cε.
Now we turn to the proof of the Lipschitz bounds, which is an appropriate modification of the classical
Bernstein estimates to take into account the different scales. We note and prove Lemma 4.3. Note
that the convexity assumption on Ω is used solely in this proof.

We begin by writing the equations satisfied by |Dxuε|2 and |∂θuε|2 which we obtain by differentiating
(7) in x and θ and multipying by Dxuε and ∂θuε. We have:

−D(θ)
ε ∆x|Dxuε|2− ε∆θ|Dxuε|2 + 2D(θ)

ε |D
2
xxuε|2 + 2ε|D2

xθuε|2

−2D(θ)
ε2
Dxuε.Dx|Dxuε|2 − 2∂θuε.∂θ|Dxuε|2 = 2Dx(K − ρε).Duε,

(25) ge:ux

and

−D(θ)
ε ∆x|∂θuε|2 − ε∆θ|∂θuε|2 + 2D(θ)

ε |D
2
xθuε|2 + 2ε|D2

θθuε|2

−2D(θ)
ε2
Dxuε.Dx|∂θuε|2 − 2∂θuε.∂θ|∂θuε|2 = 2D

′(θ)
ε ∆xuε∂θuε + 4D

′(θ)
ε2
|Dxuε|2∂θuε.

(26) ge:utheta
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Let w = |Dxuε|2
ε2

+ |∂θuε|2 and compute

− D(θ)
ε ∆xw − ε∆θw + 2D(θ)

ε3
|D2

xxuε|2 + 1+D(θ)
ε |D2

xθuε|2 + 2ε|D2
θθuε|2

−2D(θ)
ε2
Dxuε.Dxw − 2∂θuε.∂θw = 2

ε2
Dx(K − ρε).Duε + 2D

′(θ)
ε ∆xuε∂θuε + 4D

′(θ)
ε2
|Dxuε|2∂θuε.

Assume that (x̄, θ̄) is a maximum point of w. Because of the convexity assumption, we have ∂
∂νw < 0

on the boundary (see [17]) and thus xε /∈ ∂Ω× [0, 1].

Therefore, at this point (x̄, θ̄), we have

D
ε3
|D2

xxuε|2 + ε|D2
θθuε|2 ≤

1
ε2
Dx(K − ρε).Duε + D′

ε ∆xuε∂θuε + 2D
′

ε2
|Dxuε|2∂θuε

≤ 1
ε2
Dx(K − ρε).Duε + δD

ε3
(∆xuε)

2 + ε
δ (∂θuε)

2 + 2D
′

ε2
|Dxuε|2∂θuε

and we choose δ small enough so that we can absorb the term δD
ε3

(∆xuε)
2 in the left hand side.

Since there is a constant C4(d,D) such that

1

ε

[
D

ε
∆xuε + ε∆θuε

]2

≤ C1
D

ε3
|D2

xxuε|2 + C1ε|D2
θθuε|2,

we conclude (using the equation) that, for some C5(d,D, δ) > 0,

1

ε

[
D
|Dxuε|2

ε2
+ |∂θuε|2 +K − ρε

]2

≤ C2

[
1

ε2
Dx(K − ρε).Duε + ε(∂θuε)

2 +
2

ε2
|Dxuε|2∂θuε

]
.

It follows that there exists some positive constant C such that

w2 ≤ C
[
1 + 1

ε |Duε|+ ε2(∂θuε)
2 + 2

ε |Dxuε|2|∂θuε|
]

≤ C
[
1 +
√
w + ε2w + εw3/2

]
.

From this we conclude that w is bounded and the Lipschitz continuity statement is proved.

6 Perspectives
sec:conclusion

The dynamics of evolution of dispersal also motivates to study the time dependent problem{
ε ∂∂tnε(x, θ, t)− θ∆xnε = nε

(
K(x)− ρε(x, t)

)
in Ω× R× (0,∞),

ρε(x, t) =
∫ 1

0 nε(x, θ, t)dθ,
(27) eq:parabolic

with the Neuman boundary conditions on ∂Ω and 1−periodicicty in θ. For this problem, we expect
that

nε(x, θ, t) −→
ε→0
N (x, t)δ(θ − θ̄(t)).

The weight N (x, t) is, at least formally, defined by{
−θ̄(t)∆xN = N

(
K −N

)
in Ω,

∂
∂νN (x, t) = 0 on ∂Ω,

(28) eq:No

9



and the value θ̄(t) is now obtained through the constrained Hamilton-Jacobi equation{
∂tu(θ, t)− |∇θu|2 = −H

(
θ,N (·, t)

)
in R

maxθ u(θ, t) = 0 = u(θ̄(t), t).
(29) eq:u

We recall that, still formally, we can derive a canonical equation for the fittest trait θ̄(t) which takes
the form [10, 18]

d

dt
θ̄(t) = −

(
−D2

θu(θ̄(t), t)
)−1

.∇Hθ

(
θ,N (·, t)

)
. (30) canonical

The main difficulties compared to the stationary case are to derive a priori estimates for ρε(x, t)
analogous to those in Lemma 14 and to obtain gradient estimates on uε. Since Lipschitz regularity for
u is optimal, and only differentiability can be proved at the maximum point [21], giving a meaning to
(30) is also a challenge.

Figure 1: Snapshots of the evolution of the dispersal for three different times. Top figures depict the
space repartition ρ(x) (fixed blue curve = K, increasing red = ρ). Bottom figures depict the trait
distribution

∫ 1
0 n(x, θ, t)dx. fig1

Numerical simulations are presented in Figure 1 which illustrates the convergence of the fittest trait
to the smaller values of the trait. For this simulation we have chosen Ω = (0, 1) and the data

D(θ) = 1.5 θ, K(x) = 1 + 20
(
1− 4(x− .5)2

)8
,

and we have used the Dirichlet boundary conditions, both in x and θ, for the convenience of numerics.
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