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Rare mutations limit of a steady state dispersal evolution model

Benôıt Perthame∗ Panagiotis E. Souganidis†‡

February 25, 2016

Abstract

The evolution of a dispersal trait is a classical question in evolutionary ecology, which has been
widely studied with several mathematical models. The main question is to define the fittest dispersal
rate for a population in a bounded domain, and, more recently, for traveling waves in the full space.

In the present study, we reformulate the problem in the context of adaptive evolution. We consider
a population structured by space and a genetic trait acting directly on the dispersal (diffusion) rate
under the effect of rare mutations on the genetic trait. We show that, as in simpler models, in the
limit of vanishing mutations, the population concentrates on a single trait associated to the lowest
dispersal rate. We also explain how to compute the evolution speed towards this evolutionary stable
distribution.

The mathematical interest stems from the asymptotic analysis which requires a completely different
treatment for each variable. For the space variable, the ellipticity leads to the use the maximum
principle and Sobolev-type regularity results. For the trait variable, the concentration to a Dirac
mass requires a different treatment. This is based on the WKB method and viscosity solutions
leading to an effective Hamiltonian (effective fitness of the population) and a constrained Hamilton-
Jacobi equation.

Key words: Dispersal evolution; Nonlocal pde; Constrained Hamilton-Jacobi equation; Effective
fitness;
Mathematics Subject Classification (2010): 35B25; 35F21; 92D15

1 Evolution of dispersion

Evolutionary dynamics of a structured population. There are several well established math-
ematical formalisms to describe evolution. Game theory is widely used since the seminal paper [29];
see also [23]. Dynamical systems are also employed to describe the possible invasion of a population
be a mutant, and to characterize Evolutionary Stable Strategies and other mathematical concepts;
see, for instance, [16, 20]. Stochastic individual based models are often used to describe the evolution
of individuals undergoing birth, death and mutations. Relations with other approaches can also been
made at the large population limit, see [2, 12] and the references therein.
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The formalism we use here is still different and relies on a population structured by a phenotypical trait
and competing for a limited resource. This approach was initiated and has been widely studied in [17].
Several other versions use the formalism of a population structured by a trait, undergoing mutations
and competition [34, 15, 25, 28]. All these papers, however, consider only proliferative advantage. The
population with the highest birth rate or best competition ability survives while other traits undergo
extinction. Mathematically this is represented by a limiting process where the population number
density, denoted here by n, takes the form of a weighted Dirac concentrated at the fittest trait θ̄.

The extension to models, where the phenotypical trait is combined with another structuring variable,
usually space, is more recent and leads to considerable mathematical difficulties; see [1, 9, 37, 30, 13,
10]. This is mainly due to the fact that for the trait variable θ the solutions concentrate as described
above while in the space variable solutions remain bounded.

Another motivation for considering the model in this note is to study the selection of the fittest
individuals without a proliferative advantage. In this context, the reproduction rate might be com-
pensated by another advantage. This gives rise to the question of defining an “effective fitness.” The
gradient of the effective fitness determines the direction of trait evolution and its maximum defines
the evolutionary stable strategy.

A particularly interesting example, both mathematically and biologically, in this directions is the
selection of a dispersal rate, which we describe next in the context of a continuous dispersal trait.
When only two species are represented by their number densities n1(x), n2(x) and are competing for
the same resource (carrying capacity) K, the question is to know which of the two dispersal rates D1,
D2 is prefered in the competiton. Then, the model is

−Di∆xni = ni
(
K(x)− n1 + n2

)
, x ∈ Ω, i = 1, 2.

Is it better to ‘move’ faster or slower? In other words, is it favorable to have D1 > D2 or the contrary?

The model. Here we assume that all dispersal rates are possible, and include mutations. We ask
the question of the rare mutation limit of the steady state version for a still simple model of evolution
of dispersal in a population. The main modeling assumptions are: (i) all individuals wear a phenotype
characterized by a parameter θ, which induces a dispersal rate D(θ), (ii) a Fisher-type Lotka-Volterra
growth/death rate with a space dependent carrying capacity K and limitation by the total population
whatever the trait is, and (iii) rare mutations acting on the genetic variable and modeled by a diffusion
with covariance

√
2ε; we refer to [12] for a derivation of this type of equations from individual based

stochastic models.

More precisely, we study the asymptotic behavior, as ε → 0, of the density nε = nε(x, θ) : Ω × R →
(0,∞), with Ω ⊂ Rd a smooth domain, of the nonlocal and nonlinear problem

−D(θ)∆xnε − ε2∆θnε = nε
(
K(x)− ρε(x)

)
in Ω× R,

ρε(x) =

∫ 1

0
nε(x, θ)dθ,

(1)

with Neumann boundary condition on ∂Ω and 1− periodicity in θ, that is, if ν is the external normal
vector to Ω,

∂

∂ν
nε = 0 on ∂Ω× R and nε is 1− periodic in θ. (2)

We have chosen periodic boundary conditions in θ to simplify some technical aspects concerning a
priori estimates.
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As far as the carrying capacity K and the dispersion rate D are concerned, we assume

K ∈ C1(Ω̄), there exists Km > 0 such that K(x) ≥ Km > 0, K is not constant. (3)

and {
D ∈ C1

(
R; (0,∞)

)
is 1-periodic and

there exists a unique local minimizer θm ∈ [0, 1) such that D ≥ D(θm) := Dm > 0;
(4)

we note (4) is used to assert that the effective Hamiltonian also has a minimum at θm.

Finally, for technical reasons, we also assume that

Ω is convex. (5)

It follows from, for example, [3, 14], that, given (3) and (4), the problem (1) and (2) admits a strictly
positive solution nε : Ω× R→ (0,∞).

Formal derivation of the mathematical result. We proceed now formally to explain what
happens in the limit ε → 0 and, hence, motivate the statement of the results. As it is often the case
with problems where it is expected to see concentration in the limit, we make the exponential change
of variables

nε = exp
(
uε/ε

)
, (6)

which leads to

− D(θ)

ε
∆xuε −

D(θ)

ε2
|∇xuε|2 − ε∆θuε − |∇θuε|2 = K(x)− ρε(x) in Ω× R, (7)

with

uε is 1−periodic in θ and
∂

∂ν
uε = 0 on ∂Ω× R. (8)

It is clear from (7) that, if the uε’s have, as ε→ 0, a limit u, it must be independent of x, and, hence,
it is natural to expect the expansion

uε(x, θ) = u(θ) + ε lnN (x, θ) +O(ε). (9)

Assuming that, as ε → 0, the ρε’s converge to some ρ, a formal computation suggests that N is the
positive eigenfunction of{

−D(θ)∆xN = N
(
K − ρ

)
+N H

(
θ, ρ(·)

)
in Ω,

∂
∂νN = 0 on ∂Ω,

(10)

with eigenvalue H
(
θ, ρ(·)

)
, and that u solves the constrained Hamilton-Jacobi equation

−|∇θu|2 = −H
(
θ, ρ(·)

)
in R,

maxθ∈R u(θ) = 0,

u is 1− periodic.

(11)

The constraint on the maxu becomes evident from the facts that, as it turns out, the ρε’s are bounded
uniformly in ε and the equality

ρε(x) =

∫ 1

0
nε(x, θ)dθ =

∫ 1

0
exp

(
uε(x, θ)/ε

)
dθ, (12)

which also suggests that, as ε→ 0, the nε’s behave like a Dirac mass with weight ρ.
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The mathematical result. To state the result we recall that δ denotes the Dirac mass at 0 and
we introduce the nonlinear Fisher-type stationary problem{

−Dm∆xNm = Nm (K −Nm) on Ω

∂
∂νNm = 0 on ∂Ω,

(13)

which, in view of (3) and (4), admits a positive solution Nm > 0 (see, for example, [3, 14].)
We have:

Theorem 1.1 Assume (3), (4), and (5). Then, as ε→ 0 and in the sense of distributions,

nε → Nm(x)δ(θ − θm) and ρε → Nm.

Moreover, as ε→ 0 and uniformly in x and θ, ε lnnε → u, where u is the unique 1−periodic solution
to (11), with ρ = Nm, such that maxu = u(θm) = 0.

Biological interpretation. The conclusions of Theorem 1.1 can be thought as a justification of
the fact that the population selects the “slowest” individuals in accordance with several previous
observations on the evolution of dispersal. In this respect, the eigenvalue −H

(
θ, ρ(·)

)
defines the

fitness of individuals depending upon their trait. This fact can be stated using the canonical equation
(31), which is formally derived in Section 6. In the words of adaptive dynamics, our result characterizes
the unique Evolutionary Stable Distribution (or Strategy), [16, 25].

That mutants with lower dispersal rates can invade a population, that is the characterization of θm by
property (4), is known from the first mathematical studies [22, 18]. However, these papers use time
scale separation, heuristically assuming a mutant appears, with ‘small mutation’, and compete with
the resident population. Our approach here is more intrinsic since we consider structured populations
competing for resources and undergoing mutations. Surprisingly when set in the full space where the
problem is characterized in terms of traveling waves, the opposite effect is observed, that is mutants
with higher dispersal rates are selected giving rise to accelerating waves, [8, 9, 37, 4, 5]. For two
competing populations, the combined effect of dispersal and a drift is studied in [21]. The analysis of
dispersal evolution also gave rise to the notion of ideal free distribution [11, 13].

The question of dispersal evolution is a classical and important topic in evolutionary biology. The
reader can consult [36] for a survey of the many related issues, to [33] for the case with patches and
demographic stochasticity, to [24] for the case of trajectories with jumps (nonlocal operators) and to
[8] for other biological references about accelerating fronts. A formalism using Fokker-Planck equation
is used in [35]. Also, let us mention that a remarkable qualitative aspect fo spatial sorting is that in
the full space, the largest dispersion rate is selected [8, 6, 7]. Finally, another mathematical approach
to the concentration effect, stated in Theorem 1.1, can be found in [26].

Organization of the paper. In Section 2 we prove some uniform in ε estimates for the ρε’s that
are then used in Section 3 where we derive the effective Hamiltonian, that is the eigenvalue problem
of (10). In Section 4 we introduce the constrained Hamilton-Jacobi equation to conclude the proof
of Theorem 1.1 and Theorem 4.1. In Section 5 we prove the two technical lemmata that were used
in Section 4. Finally, In Section 6, we provide some perspectives about the problem, namely a more
precise asymptotic expansion and the parabolic case, as well as numerical examples for the evolution
driven by the parabolic equation.
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2 Estimates on ρε

We state and prove here some, uniform in ε, estimates for the ρε’s, which are fundamental for the
analysis in the rest of the paper; here |Ω| is the measure of Ω and C(A) denotes a constant that
depends on A.

Lemma 2.1 Assume (3) and (4). There exist positive independent of ε constants C1 = C1(K,D,Ω),
C2 = C2(K,D,Ω) and C3 = C3(|Ω|,minK) such that

(i) 0 ≤ ρε ≤ C1,

(ii) supε∈(0,1) ‖ρε‖W 2,p(Ω) ≤ C2 for all p ∈ [1,∞), and

(iii)
∫

Ω ρε(x)dx ≥ C3,

(14)

and, along subsequences ε→ 0, the ρε’s converge uniformly in Ω to ρ ∈ C(Ω).

Proof. We first observe that ρε trivially satisfies the Neumann condition

∂

∂ν
ρε = 0 on ∂Ω. (15)

After dividing (1) by D(θ), integrating in θ and using the periodicity in θ, we find

−∆xρε − ε2

∫ 1

0
nε(x, θ)∆θ

1

D
dθ =

∫ 1

0

1

D
nεdθ (K − ρε),

and, hence, for some constant C, which only depends on D and K, we have

−∆xρε +
1

‖D‖∞
ρ2
ε ≤ Cρε.

Then (14)(i) follows from the strong maximum principle, while the W 2,p-estimates are a consequence
of the classical elliptic regularity theory.
The lower bound (14)(iii) comes from integrating (1) in x and θ. Indeed, in view of the assumed
periodicity, we find

maxK

∫
Ω
ρε(x)dx ≥

∫
Ω
ρε(x)K(x)dx =

∫
Ω
ρε(x)2dx ≥ 1

|Ω|

(∫
Ω
ρε(x)dx

)2

.

The last claim is an immediate consequence of the a priori estimates and the usual Sobolev imbedding
theorems.

3 The effective Hamiltonian

For θ ∈ [0, 1] and ρ ∈ L∞
(
Ω; [0,∞)

)
we consider the eigenfunction N = N

(
·; θ, ρ(·)

)
∈ H1(Ω) and the

eigenvalue H = H
(
θ, ρ(·)

)
of{
−D(θ)∆xN = N (K − ρ) +N H in Ω,

∂
∂νN = 0 on ∂Ω and

∫
ΩN

(
x; θ, ρ(·)

)2
dx = 1.

(16)
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Note that in view of (3) and the regularity of Ω, the existence of the pair
(
N
(
·; θ, ρ(·)

)
, H
(
θ, ρ(·)

))
follows from, for example, [3, 14].

The next lemma provides some important estimates and information about H
(
θ, ρ(·)

)
. In the state-

ment we use the notation KM := maxΩK.

Lemma 3.1 Assume (3) and (4). Then

(i) −KM ≤ H
(
θ, ρ(·)

)
and (ii) H

(
θ, ρ(·)

)
≤ 1

|Ω|

∫
Ω
ρ(x)dx, (17)

the maps θ → H
(
θ, ρ(·)

)
and θ → D(θ) have the same monotonicity properties for all ρ, (18)

and, in particular, θm is the unique minimum of H(θ, ρ) in [0, 1] for all ρ.

Proof. Multiplying the equation by N and integrating in x gives

0 ≤ D(θ)

∫
Ω
|∇N |2 =

∫
Ω
N 2[K − ρ+H]dx ≤

∫
Ω
N 2dx [KM +H],

and, thus, (17)(i) holds.

The upper bound (17)(ii) follows from the positivity of K, since, after dividing the equation by N
and integrating by parts, we find

−
∫

Ω

∣∣∇xN ∣∣2
N 2

dx =

∫
Ω

[K − ρ+H] dx ≤ 0.

For (18), we differentiate in θ the equation in (16) to find

−D′(θ)∆xN −D(θ)∆xNθ = Nθ
(
K(x)− ρ(x) +H

)
+N Hθ, (19)

where Nθ and Hθ denote derivatives with respect to θ, we multiply by N and integrate by parts using
the boundary condition to get

D′(θ)

∫
Ω

∣∣∇xN ∣∣2 +D(θ)

∫
∇xN .∇xNθ =

∫
NNθ[K − ρ] +Hθ

(
θ; ρ(·)

)
. (20)

Next we use the fact that the L2−normalization of N yields
∫

ΩNθNdx = 0 and after multiplying the
equation in (16) by Nθ, integrating by parts and subtracting the result from (20) we find

D′(θ)

∫
Ω

∣∣∇xN ∣∣2 = Hθ

(
θ; ρ(·)

)
.

Since we have assumed in (3) that K is not constant, ∇xN does not vanish and the result follows.

To conclude, we observe that (4) and (18) yield that H as the same monotonicity, in θ, as D and,
thus, has a unique local minimum at θm.
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4 The constrained Hamilton-Jacobi equation

We prove here the generalized Gaussian-type convergence asserted in Theorem 1.1, derive the con-
strained Hamilton-Jacobi equation (11) and state some more properties. For the benefit of the reader
we restate these assertions as a separate theorem below.

Theorem 4.1 The family uε is uniformly in ε Lipschitz continuous and converges, uniformly in x and
θ, to u, which is independent of x and satisfies, in the viscosity sense, the constrained Hamilton-Jacobi
equation (11). Moreover,

min
θ
H
(
θ, ρ(·)

)
= 0 = H

(
θm, ρ(·)

)
= Hθ

(
θm, ρ(·)

)
. (21)

Since −H represents the fitness, it turns out that (21) characterizes δ(θ − θm) as the Evolutionary
Stable Distribution (or θm as the Evolutionary Stable Strategy). See [16, 25].
It follows from (21) that both H and its derivative vanish at θm. As a result the viscosity solution u
of (11) also vanishes at θm as u(θ) = O

(
(θ − θm)3/2

)
, and this makes the connection with the result

of [26].

The proof is a consequence of the next two lemmata which are proved later in the paper.

Lemma 4.2 (Bounds on uε) There exists an independent of ε constant C such that∫
Ω

max
θ
uε(x, θ)dx ≤ Cε. (22)

Lemma 4.3 (Lipschitz estimates) There exist an independent of ε constant C such that

1

ε2
|∇xuε|2 + |∇θuε|2 ≤ C and max

x∈Ω,0≤θ≤1
uε(x, θ) ≤ Cε.

Moreover, the uε’s converge, along a subsequence ε→ 0 and uniformly in x and θ, to a Lipschitz and
1-periodic function u : R→ R such that max0≤θ≤1 u(θ) = 0.

We continue with the proofs of Theorem 4.1 and Theorem 1.1.

Proof of Theorem 4.1. The fact that any limit u of the uε’s satisfies (11) is a standard application
of the so-called perturbed test function method (see [19]) and we do not repeat the argument.

It follows from (11) thatH
(
θ, ρ(·)

)
≥ 0, while, at any maximum point θ̄ of u, we must haveH

(
θ̄, ρ(·)

)
≤

0, and, hence, H
(
θ̄, ρ(·)

)
= 0, and, in view of Lemma 3.1,

min
θ
H
(
θ, ρ(·)

)
= 0 = H

(
θm, ρ(·)

)
.

As a result the only possible maximum point of any solution of (11) must be at at θm, which implies
that the equation has a unique solution.

Also the knowledge of θm determines uniquely the limit ρ(x) = Nm(x), from equation (13), and, thus,
the full family (ρε, uε) converges.
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Proof of Theorem 1.1. The statement in terms of nε is an immediate consequence of Theorem 4.1.
Because uε achieves a unique maximum at θm, from the Laplace formula for nε written as (6), we
conclude that the nε(x, θ)’s converge weakly in the sense of measures to ρ(x)δ(θ − θm), with ρ(x) the
limit of ρε (see Section 2).
Next, integrating equation (1) in θ we conclude that

−∆

∫ 1

0
D(θ)nεdθ = ρε(x)

(
K(x)− ρε(x)

)
.

Passing to the limit ε→ 0, and taking into account that n is a Dirac mass at θm, we find that ρ = Nm

because they both satisfy the equation (13).

5 The proofs

We begin with the proof of Lemma 4.2

Proof of Lemma 4.2. Integrating (7), we find

1

ε2

∫ ∫
|∇xuε|2dxdθ +

∫ ∫
|∇θuε|2dxdθ ≤ C. (23)

The claim for the maximum bound follows from the L∞−estimate on ρε.

For each x ∈ Ω, let Mε(x) := maxθ uε(x, θ) and choose θε(x) such that Mε(x) = uε(x, θε(x)). Then it
follows from (14)(i) that

eMε(x)/ε

∫ 1

0
e

(
uε(x,θ)−uε(x,θε)

)
/εdθ = ρε(x) ≤ C. (24)

Inserting in (24) the estimate

uε(x, θ)− uε(x, θε(x)) =

∫ θε(x)

θ
∂θuε(x, θ

′)dθ′ ≥ −1−
∫ 1

0
|∂θuε(x, θ′)|2dθ′,

we get

eMε(x)/ε e
−1

ε
[1 +

∫ 1

0
|∂θuε(x, θ′)|2dθ′]

≤ C,

and, hence,
Mε(x)

ε
− 1

ε
[1 +

∫ 1

0
|∂θuε(x, θ′)|2dθ′] ≤ lnC.

Using (23), we obtain ∫
Ω
Mε(x)dx ≤ Cε,

and this concludes the proof.

Next we discuss the proof of Lemma 4.3.
Proof of Lemma 4.3. We first assume the Lipschitz bound and prove the rest of the claims.
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Let Mε := maxx∈ΩMε(x), with Mε(x) as in the proof of the previous lemma. It is immediate from
(22) and the fact that |∇xuε|2 ≤ εC that, for some C > 0,

Mε ≤ εC.

Next we show that lim infε→0Mε ≥ 0, which, in turn, yields that limε→0Mε = 0.

Let yε ∈ Ω be such that Mε := Mε(yε) = uε
(
yε, θε(yε)

)
and write

ρε(x) = eMε/ε

∫ 1

0
e

(
uε(x,θ)−uε(yε,θε)

)
/εdθ.

Combining the lower bound on ρε in Lemma 2.1 and the (Lipschitz) estimate |∇xuε|2 ≤ εC, we get

C3 ≤
∫

Ω
ρε(x)) ≤ |Ω|eMε/εeC

∫ 1

0
e

(
uε(yε,θ)−uε(yε,θε)

)
/εdθ ≤ eMε/εeC |Ω|,

and, thus, Mε ≥ −Cε.
Now we turn to the proof of the Lipschitz bounds, which is an appropriate modification of the classical
Bernstein estimates to take into account the different scales. We note and prove Lemma 4.3. Note
that the convexity assumption on Ω is used solely in this proof.

We begin by writing the equations satisfied by |Dxuε|2 and |∂θuε|2 which we obtain by differentiating
(7) in x and θ and multiplying by Dxuε and ∂θuε. We have:

−D(θ)
ε ∆x|Dxuε|2− ε∆θ|Dxuε|2 + 2D(θ)

ε |D
2
xxuε|2 + 2ε|D2

xθuε|2

−2D(θ)
ε2
Dxuε.Dx|Dxuε|2 − 2∂θuε.∂θ|Dxuε|2 = 2Dx(K − ρε).Duε,

(25)

and

−D(θ)
ε ∆x|∂θuε|2 − ε∆θ|∂θuε|2 + 2D(θ)

ε |D
2
xθuε|2 + 2ε|D2

θθuε|2

−2D(θ)
ε2
Dxuε.Dx|∂θuε|2 − 2∂θuε.∂θ|∂θuε|2 = 2D

′(θ)
ε ∆xuε∂θuε + 4D

′(θ)
ε2
|Dxuε|2∂θuε.

(26)

Let q = |Dxuε|2
ε2

+ |∂θuε|2 and compute

− D(θ)
ε ∆xq − ε∆θq + 2D(θ)

ε3
|D2

xxuε|2 + 1+D(θ)
ε |D2

xθuε|2 + 2ε|D2
θθuε|2

−2D(θ)
ε2
Dxuε.Dxq − 2∂θuε.∂θq = 2

ε2
Dx(K − ρε).Duε + 2D

′(θ)
ε ∆xuε∂θuε + 4D

′(θ)
ε2
|Dxuε|2∂θuε.

Assume that (x̄, θ̄) is a maximum point of q. Because of the convexity assumption, we have ∂
∂ν q < 0

on the boundary (see [27]) and thus xε /∈ ∂Ω× [0, 1].

Therefore, at this point (x̄, θ̄), we have

D
ε3
|D2

xxuε|2 + ε|D2
θθuε|2 ≤

1
ε2
Dx(K − ρε).Duε + D′

ε ∆xuε∂θuε + 2D
′

ε2
|Dxuε|2∂θuε

≤ 1
ε2
Dx(K − ρε).Duε + δD

ε3
(∆xuε)

2 + ε
δ (∂θuε)

2 + 2D
′

ε2
|Dxuε|2∂θuε

9



and we choose δ small enough so that we can absorb the term δD
ε3

(∆xuε)
2 in the left hand side.

Since there is a constant C4(d,D) such that

1

ε

[
D

ε
∆xuε + ε∆θuε

]2

≤ C1
D

ε3
|D2

xxuε|2 + C1ε|D2
θθuε|2,

we conclude (using the equation) that, for some C5(d,D, δ) > 0,

1

ε

[
D
|Dxuε|2

ε2
+ |∂θuε|2 +K − ρε

]2

≤ C2

[
1

ε2
Dx(K − ρε).Duε + ε(∂θuε)

2 +
2

ε2
|Dxuε|2∂θuε

]
.

It follows that there exists some positive constant C such that

q2 ≤ C
[
1 + 1

ε |Duε|+ ε2(∂θuε)
2 + 2

ε |Dxuε|2|∂θuε|
]

≤ C
[
1 +
√
q + ε2q + εq3/2

]
.

From this we conclude that q is bounded and the Lipschitz continuity statement is proved.

6 Conclusion and perspectives

Conclusion We have studied a steady state model describing the Evolutionary Stable Distribution
for a simple model of dispersal evolution. The novelty is that mutations acting on the continuous
dispersal trait (the diffusion rate) are modeled thanks to a Laplacian operator, and this replaces the
standard ‘invasion of a favorable mutant’ in the usual time scale separation approach. When the mu-
tation rate is small, we have shown that the minimal dispersal is achieved, in accordance with previous
analyses. This is mathematically stated as the limit to a Dirac mass which selects the minimum of
the diffusion coefficient in the equation. Technical difficulties rely on a priori estimates in order to
make the approach rigorous and establish the constrained Hamilton-Jacobi equation which defines the
potential in the Gaussian-like concentration.

We indicate two possible extensions of our results. The first concerns the way to make more precise
the convergence result of Theorem 1.1. The second is about the time evolution problem.

A more precise convergence result. The question we address here is whether it is possible to
make more precise the convergence nε → Nm(x)δ(θ − θm) in the weak sense of measures stated in
Theorem 1.1.

The gradient bound in Lemma 4.3 implies that ‖uε(x, θ) − uε(0, θ)‖∞ ≤ C‖∇uε(x, θ‖∞ ≤ Cε, and,

therefore along subsequences, the uε(x,θ)−uε(0,θ)
ε ’s converge in L∞− w?. To prove more about the

corrector, it necessary to have an estimate for uε(0, θ) − u(θ), which is not, however, available from
what we have here.

Another approach is to introduce, instead of u(θ), the eigenvalue problem

−ε2∆θWε = Wε[−H(θ, ρε) + λε], Wε is 1-periodic, Wε > 0.

10



The change of unknown wε = ε lnWε gives the equation

−ε∆θwε − |Dθwε|2 = −H(θ, ρε) + λε.

Standard gradient estimates yield that |Dθwε| is bounded independently of ε, and, from the equation,
we see that the ε∆θwε’s are also bounded independently of ε. It follows that, as ε→ 0, λε → 0 and,
after an appropriate normalization, wε → u uniformly.

As a result we can factorize the solution of (1) as

nε(x, θ) = vε(x, θ)e
wε(θ)/ε,

and we claim that, for some other factor ρ̄,

vε(x, θ)→ ρ̄N (x, θ), L∞−w ?, (27)

a statement which is more precise than that of Theorem 1.1.

To see this, we write the equation for vε as

−∆xvε − ε2∆θvε − 2εDθwε ·Dθvε = vε[K − ρε +H(θ, ρε)− λε].

To obtain bounds on vε we notice that ρε(x) =
∫ 1

0 vεWεdθ is bounded (from above and below), and,
since Wε → δ(θ − θm), we conclude that, for some θ̄ε and θε near θm and independent of ε constants
C and c, vε(x, θ̄ε) ≤ C and vε(x, θε) ≥ c. It then follows from standard arguments that the vε’s are
bounded in L∞.

The limiting equation is the eigenfunction problem (16) and positive solutions are all proportional to
N (x, θ), which gives the statement.

The parabolic problem. Our approach is mainly motivated by the dynamics of the evolution of
dispersal. The steady states are the Evolutionary Stable Distribution and are obtained as the long
time distribution of competing populations [25]. This leads to the study of the time dependent problem{

εnε,t(x, θ, t)−D(θ)∆xnε − ε2∆θ = nε
(
K(x)− ρε(x, t)

)
in Ω× R× (0,∞),

ρε(x, t) =
∫ 1

0 nε(x, θ, t)dθ,
(28)

with the Neuman boundary conditions on ∂Ω and 1−periodicity in θ.

For this problem there are two limits of interest, namely ε → 0 and t → ∞. So far, we have studied
the limit t→∞, reaching a steady state (1) of (28), and then considered the limit ε→ 0.

Reversing the order, we need to study first what happens as ε → 0. In this case, we expect that, in
the weak sense of measures,

nε(x, θ, t)→ N̄(x, t)δ(θ − θ̄(t)) and ρε → N̄(x, t),

where at least formally, the weight N̄(x, t) is defined, for each t, by the stationary Fisher/KPP equation{
−D(θ̄(t))∆xN̄ = N̄

(
K(x)− N̄

)
in Ω,

∂
∂ν N̄(x, t) = 0 on ∂Ω.

(29)
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We can follow the same derivation as before, and discover that the value θ̄(t) of the fittest dispersal
trait is now obtained through the time evolution constrained Hamilton-Jacobi equation{

ut(θ, t)−D(θ)|∇θu|2 = −H
(
θ, N̄(·, t)

)
in R,

maxθ u(θ, t) = 0 = u(θ̄(t), t).
(30)

Here the effective fitness H
(
θ, N̄(·, t)

)
is still given by the eigenvalue problem (16) with ρ = N̄ .

Note that, since derivatives vanish at a maximum point, we conclude that

H
(
θ̄(t), N̄(·, t)

)
= 0,

and we also have N̄(x, t) = N
(
x, θ̄(t), N̄(·, t)

)
, where N̄(x, t) = limε→0 ρε(x, t),

We recall that, still formally, we can derive from (30) a canonical equation for the fittest trait θ̄(t)
which takes the form, see [17, 28, 31, 32],

d

dt
θ̄(t) = −

(
−D2

θu(θ̄(t), t)
)−1

.∇θH
(
θ̄(t),N (·, t)

)
. (31)

We note that this equation also describes the fact that θ̄(t) will evolve towards smaller values of H
and thus of the dispersal rate D.
The main difficulties compared to the stationary case are to derive a priori estimates for ρε(x, t)
analogous to those in Lemma 2.1 and to obtain gradient estimates on uε. Since the Lipschitz regularity
of u is optimal and only differentiability can be proved at the maximum point [34], giving a meaning
to (31) is also a challenge.

Figure 1: Snapshots of the evolution of the dispersal for three different times according to the parabolic
problem (28). Top figures depict the space repartition ρ(x) (fixed blue curve = K, increasing red =
ρ). Bottom figures depict the trait distribution

∫ 1
0 n(x, θ, t)dx.

12



Some numerics on the parabolic problem. Numerical simulations are presented in Figure 1
which illustrates the selection of lowest dispersal rate. Considering the parabolic problem (28), that
means the convergence of the fittest trait θ̄(t) to the smaller values of the trait (with the coefficients
below, this value is θ = 0) as t→∞.

For this simulation we have chosen Ω = (0, 1) and the data

D(θ) = 1.5 θ, K(x) = 1 + 20
(
1− 4(x− .5)2

)8
,

and we have used, for the convenience of numerics, Dirichlet boundary conditions both in x and θ.
The numerical scheme is the standard three points scheme in each direction, implicit in x and explicit
in θ because ε = 10−2 is small enough so as not to penalize the computational time.

In Figure 1, we observe that the average trait, which initially is θ ∼ 0.7, decreases and gets close to 0
at the third time displayed here, also the trait exhibits a concentrated pattern around its average.
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