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The evolution of a dispersal trait is a classical question in evolutionary ecology, which has been widely studied with several mathematical models. The main question is to define the fittest dispersal rate for a population in a bounded domain, and, more recently, for traveling waves in the full space.

In the present study, we reformulate the problem in the context of adaptive evolution. We consider a population structured by space and a genetic trait acting directly on the dispersal (diffusion) rate under the effect of rare mutations on the genetic trait. We show that, as in simpler models, in the limit of vanishing mutations, the population concentrates on a single trait associated to the lowest dispersal rate. We also explain how to compute the evolution speed towards this evolutionary stable distribution.

The mathematical interest stems from the asymptotic analysis which requires a completely different treatment for each variable. For the space variable, the ellipticity leads to the use the maximum principle and Sobolev-type regularity results. For the trait variable, the concentration to a Dirac mass requires a different treatment. This is based on the WKB method and viscosity solutions leading to an effective Hamiltonian (effective fitness of the population) and a constrained Hamilton-Jacobi equation.

Evolution of dispersion

Evolutionary dynamics of a structured population. There are several well established mathematical formalisms to describe evolution. Game theory is widely used since the seminal paper [START_REF] Smith | The theory of games and the evolution of animal conflicts[END_REF]; see also [START_REF] Hofbauer | Evolutionary games and population dynamics[END_REF]. Dynamical systems are also employed to describe the possible invasion of a population be a mutant, and to characterize Evolutionary Stable Strategies and other mathematical concepts; see, for instance, [START_REF] Diekmann | A beginner's guide to adaptive dynamics[END_REF][START_REF] Geritz | Dynamics of adaptation and evolutionary branching[END_REF]. Stochastic individual based models are often used to describe the evolution of individuals undergoing birth, death and mutations. Relations with other approaches can also been made at the large population limit, see [START_REF] Baar | From stochastic, individual-based models to the canonical equation of adaptive dynamics -in one step[END_REF][START_REF] Champagnat | Unifying evolutionary dynamics: From individual stochastic processes to macroscopic models[END_REF] and the references therein.

The formalism we use here is still different and relies on a population structured by a phenotypical trait and competing for a limited resource. This approach was initiated and has been widely studied in [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF]. Several other versions use the formalism of a population structured by a trait, undergoing mutations and competition [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Desvillettes | On selection dynamics for continuous structured populations[END_REF][START_REF] Jabin | Selection dynamics with competition[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF]. All these papers, however, consider only proliferative advantage. The population with the highest birth rate or best competition ability survives while other traits undergo extinction. Mathematically this is represented by a limiting process where the population number density, denoted here by n, takes the form of a weighted Dirac concentrated at the fittest trait θ. The extension to models, where the phenotypical trait is combined with another structuring variable, usually space, is more recent and leads to considerable mathematical difficulties; see [START_REF] Arnold | Existence of nontrivial steady states for populations structured with respect to space and a continuous trait[END_REF][START_REF] Bouin | A Hamilton-Jacobi limit for a model of population structured by space and trait[END_REF][START_REF] Turanova | On a model of a population with variable motility[END_REF][START_REF] Mirrahimi | Asymptotic analysis of a selection model with space[END_REF][START_REF] Cosner | Evolutionary stability of ideal free nonlocal dispersal[END_REF][START_REF] Campillo | Weak convergence of a mass-structured individual-based model[END_REF]. This is mainly due to the fact that for the trait variable θ the solutions concentrate as described above while in the space variable solutions remain bounded. Another motivation for considering the model in this note is to study the selection of the fittest individuals without a proliferative advantage. In this context, the reproduction rate might be compensated by another advantage. This gives rise to the question of defining an "effective fitness." The gradient of the effective fitness determines the direction of trait evolution and its maximum defines the evolutionary stable strategy. A particularly interesting example, both mathematically and biologically, in this directions is the selection of a dispersal rate, which we describe next in the context of a continuous dispersal trait. When only two species are represented by their number densities n 1 (x), n 2 (x) and are competing for the same resource (carrying capacity) K, the question is to know which of the two dispersal rates D 1 , D 2 is prefered in the competiton. Then, the model is

-D i ∆ x n i = n i K(x) -n 1 + n 2 , x ∈ Ω, i = 1, 2.
Is it better to 'move' faster or slower? In other words, is it favorable to have D 1 > D 2 or the contrary?

The model. Here we assume that all dispersal rates are possible, and include mutations. We ask the question of the rare mutation limit of the steady state version for a still simple model of evolution of dispersal in a population. The main modeling assumptions are: (i) all individuals wear a phenotype characterized by a parameter θ, which induces a dispersal rate D(θ), (ii) a Fisher-type Lotka-Volterra growth/death rate with a space dependent carrying capacity K and limitation by the total population whatever the trait is, and (iii) rare mutations acting on the genetic variable and modeled by a diffusion with covariance √ 2ε; we refer to [START_REF] Champagnat | Unifying evolutionary dynamics: From individual stochastic processes to macroscopic models[END_REF] for a derivation of this type of equations from individual based stochastic models. More precisely, we study the asymptotic behavior, as ε → 0, of the density

n ε = n ε (x, θ) : Ω × R → (0, ∞), with Ω ⊂ R d a smooth domain, of the nonlocal and nonlinear problem      -D(θ)∆ x n ε -ε 2 ∆ θ n ε = n ε K(x) -ρ ε (x) in Ω × R, ρ ε (x) = 1 0 n ε (x, θ)dθ, (1) 
with Neumann boundary condition on ∂Ω and 1-periodicity in θ, that is, if ν is the external normal vector to Ω,

∂ ∂ν n ε = 0 on ∂Ω × R and n ε is 1 -periodic in θ. (2) 
We have chosen periodic boundary conditions in θ to simplify some technical aspects concerning a priori estimates.

As far as the carrying capacity K and the dispersion rate D are concerned, we assume

K ∈ C 1 ( Ω), there exists K m > 0 such that K(x) ≥ K m > 0, K is not constant. ( 3 
)
and

D ∈ C 1 R; (0, ∞) is 1-periodic and
there exists a unique local minimizer

θ m ∈ [0, 1) such that D ≥ D(θ m ) := D m > 0; (4) 
we note ( 4) is used to assert that the effective Hamiltonian also has a minimum at θ m . Finally, for technical reasons, we also assume that Ω is convex.

(

) 5 
It follows from, for example, [START_REF] Berestycki | Traveling wave solutions to combustion models and their singular limits[END_REF][START_REF] Coville | Propagation speed of travelling fronts in non local reaction-diffusion equations[END_REF], that, given (3) and ( 4), the problem (1) and ( 2) admits a strictly positive solution

n ε : Ω × R → (0, ∞).
Formal derivation of the mathematical result. We proceed now formally to explain what happens in the limit ε → 0 and, hence, motivate the statement of the results. As it is often the case with problems where it is expected to see concentration in the limit, we make the exponential change of variables

n ε = exp u ε /ε , (6) 
which leads to

- D(θ) ε ∆ x u ε - D(θ) ε 2 |∇ x u ε | 2 -ε∆ θ u ε -|∇ θ u ε | 2 = K(x) -ρ ε (x) in Ω × R, (7) 
with u ε is 1-periodic in θ and

∂ ∂ν u ε = 0 on ∂Ω × R. (8) 
It is clear from [START_REF] Bouin | Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts[END_REF] that, if the u ε 's have, as ε → 0, a limit u, it must be independent of x, and, hence, it is natural to expect the expansion

u ε (x, θ) = u(θ) + ε ln N (x, θ) + O(ε). (9) 
Assuming that, as ε → 0, the ρ ε 's converge to some ρ, a formal computation suggests that N is the positive eigenfunction of

-D(θ)∆ x N = N K -ρ + N H θ, ρ(•) in Ω, ∂ ∂ν N = 0 on ∂Ω, (10) 
with eigenvalue H θ, ρ(•) , and that u solves the constrained Hamilton-Jacobi equation

       -|∇ θ u| 2 = -H θ, ρ(•) in R, max θ∈R u(θ) = 0, u is 1-periodic. ( 11 
)
The constraint on the max u becomes evident from the facts that, as it turns out, the ρ ε 's are bounded uniformly in ε and the equality

ρ ε (x) = 1 0 n ε (x, θ)dθ = 1 0 exp u ε (x, θ)/ε dθ, (12) 
which also suggests that, as ε → 0, the n ε 's behave like a Dirac mass with weight ρ.

The mathematical result. To state the result we recall that δ denotes the Dirac mass at 0 and we introduce the nonlinear Fisher-type stationary problem

-D m ∆ x N m = N m (K -N m ) on Ω ∂ ∂ν N m = 0 on ∂Ω, (13) 
which, in view of ( 3) and ( 4), admits a positive solution N m > 0 (see, for example, [START_REF] Berestycki | Traveling wave solutions to combustion models and their singular limits[END_REF][START_REF] Coville | Propagation speed of travelling fronts in non local reaction-diffusion equations[END_REF].)

We have: 4), and (5). Then, as ε → 0 and in the sense of distributions,

Theorem 1.1 Assume (3), (
n ε → N m (x)δ(θ -θ m ) and ρ ε → N m .
Moreover, as ε → 0 and uniformly in x and θ, ε ln n ε → u, where u is the unique 1-periodic solution to [START_REF] Cantrell | Approximating the ideal free distribution via reaction-diffusionadvection equations[END_REF],

with ρ = N m , such that max u = u(θ m ) = 0.
Biological interpretation. The conclusions of Theorem 1.1 can be thought as a justification of the fact that the population selects the "slowest" individuals in accordance with several previous observations on the evolution of dispersal. In this respect, the eigenvalue -H θ, ρ(•) defines the fitness of individuals depending upon their trait. This fact can be stated using the canonical equation [START_REF] Mirrahimi | Uniqueness in a class of Hamilton-Jacobi equations with constraints[END_REF], which is formally derived in Section 6. In the words of adaptive dynamics, our result characterizes the unique Evolutionary Stable Distribution (or Strategy), [START_REF] Diekmann | A beginner's guide to adaptive dynamics[END_REF][START_REF] Jabin | Selection dynamics with competition[END_REF].

That mutants with lower dispersal rates can invade a population, that is the characterization of θ m by property (4), is known from the first mathematical studies [START_REF] Hastings | Can spatial variation alone lead to selection for dispersal?[END_REF][START_REF] Dockery | The evolution of slow dispersal rates: a reaction diffusion model[END_REF]. However, these papers use time scale separation, heuristically assuming a mutant appears, with 'small mutation', and compete with the resident population. Our approach here is more intrinsic since we consider structured populations competing for resources and undergoing mutations. Surprisingly when set in the full space where the problem is characterized in terms of traveling waves, the opposite effect is observed, that is mutants with higher dispersal rates are selected giving rise to accelerating waves, [START_REF] Bouin | Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration[END_REF][START_REF] Bouin | A Hamilton-Jacobi limit for a model of population structured by space and trait[END_REF][START_REF] Turanova | On a model of a population with variable motility[END_REF][START_REF] Berestycki | Propagation in a nonlocal reaction diffusion equation with spatial and genetic trait structure[END_REF][START_REF] Berestycki | Existence of self-accelerating fronts for a non-local reactiondiffusion equation[END_REF]. For two competing populations, the combined effect of dispersal and a drift is studied in [START_REF] Hambrock | The evolution of conditional dispersal strategies in spatially heterogeneous habitats[END_REF]. The analysis of dispersal evolution also gave rise to the notion of ideal free distribution [START_REF] Cantrell | Approximating the ideal free distribution via reaction-diffusionadvection equations[END_REF][START_REF] Cosner | Evolutionary stability of ideal free nonlocal dispersal[END_REF].

The question of dispersal evolution is a classical and important topic in evolutionary biology. The reader can consult [START_REF] Ronce | How does it feel to be like a rolling stone? Ten questions about dispersal evolution[END_REF] for a survey of the many related issues, to [START_REF] Parvinen | Evolution of dispersal in metapopulations with local density dependence and demographic stochasticity[END_REF] for the case with patches and demographic stochasticity, to [START_REF] Hutson | The evolution of dispersal[END_REF] for the case of trajectories with jumps (nonlocal operators) and to [START_REF] Bouin | Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration[END_REF] for other biological references about accelerating fronts. A formalism using Fokker-Planck equation is used in [START_REF] Potapov | Evolutionary stable diffusive dispersal[END_REF]. Also, let us mention that a remarkable qualitative aspect fo spatial sorting is that in the full space, the largest dispersion rate is selected [START_REF] Bouin | Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration[END_REF][START_REF] Bouin | Travelling waves for the cane toads equation with bounded traits[END_REF][START_REF] Bouin | Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts[END_REF]. Finally, another mathematical approach to the concentration effect, stated in Theorem 1.1, can be found in [START_REF] Lam | A mutation-selection model for evolution of random dispersal[END_REF].

Organization of the paper. In Section 2 we prove some uniform in ε estimates for the ρ ε 's that are then used in Section 3 where we derive the effective Hamiltonian, that is the eigenvalue problem of [START_REF] Campillo | Weak convergence of a mass-structured individual-based model[END_REF]. In Section 4 we introduce the constrained Hamilton-Jacobi equation to conclude the proof of Theorem 1.1 and Theorem 4.1. In Section 5 we prove the two technical lemmata that were used in Section 4. Finally, In Section 6, we provide some perspectives about the problem, namely a more precise asymptotic expansion and the parabolic case, as well as numerical examples for the evolution driven by the parabolic equation.

Estimates on ρ ε

We state and prove here some, uniform in ε, estimates for the ρ ε 's, which are fundamental for the analysis in the rest of the paper; here |Ω| is the measure of Ω and C(A) denotes a constant that depends on A.

Lemma 2.1 Assume (3) and (4). There exist positive independent of ε constants

C 1 = C 1 (K, D, Ω), C 2 = C 2 (K, D, Ω) and C 3 = C 3 (|Ω|, min K) such that        (i) 0 ≤ ρ ε ≤ C 1 , (ii) sup ε∈(0,1) ρ ε W 2,p (Ω) ≤ C 2 for all p ∈ [1, ∞), and 
(iii) Ω ρ ε (x)dx ≥ C 3 , (14) 
and, along subsequences ε → 0, the ρ ε 's converge uniformly in Ω to ρ ∈ C(Ω).

Proof. We first observe that ρ ε trivially satisfies the Neumann condition

∂ ∂ν ρ ε = 0 on ∂Ω. (15) 
After dividing (1) by D(θ), integrating in θ and using the periodicity in θ, we find

-∆ x ρ ε -ε 2 1 0 n ε (x, θ)∆ θ 1 D dθ = 1 0 1 D n ε dθ (K -ρ ε ),
and, hence, for some constant C, which only depends on D and K, we have

-∆ x ρ ε + 1 D ∞ ρ 2 ε ≤ Cρ ε .
Then (14)(i) follows from the strong maximum principle, while the W 2,p -estimates are a consequence of the classical elliptic regularity theory. The lower bound (14)(iii) comes from integrating (1) in x and θ. Indeed, in view of the assumed periodicity, we find max

K Ω ρ ε (x)dx ≥ Ω ρ ε (x)K(x)dx = Ω ρ ε (x) 2 dx ≥ 1 |Ω| Ω ρ ε (x)dx 2 .
The last claim is an immediate consequence of the a priori estimates and the usual Sobolev imbedding theorems.

The effective Hamiltonian

For θ ∈ [0, 1] and ρ ∈ L ∞ Ω; [0, ∞) we consider the eigenfunction

N = N •; θ, ρ(•) ∈ H 1 (Ω) and the eigenvalue H = H θ, ρ(•) of -D(θ)∆ x N = N (K -ρ) + N H in Ω, ∂ ∂ν N = 0 on ∂Ω and Ω N x; θ, ρ(•) 2 dx = 1. ( 16 
)
Note that in view of (3) and the regularity of Ω, the existence of the pair N •; θ, ρ(•) , H θ, ρ(•) follows from, for example, [START_REF] Berestycki | Traveling wave solutions to combustion models and their singular limits[END_REF][START_REF] Coville | Propagation speed of travelling fronts in non local reaction-diffusion equations[END_REF].

The next lemma provides some important estimates and information about H θ, ρ(•) . In the statement we use the notation K M := max Ω K.

Lemma 3.1 Assume (3) and (4). Then

(i) -K M ≤ H θ, ρ(•) and (ii) H θ, ρ(•) ≤ 1 |Ω| Ω ρ(x)dx, (17) 
the maps θ → H θ, ρ(•) and θ → D(θ) have the same monotonicity properties for all ρ,

and, in particular, θ m is the unique minimum of H(θ, ρ) in [0, 1] for all ρ.

Proof. Multiplying the equation by N and integrating in x gives 0 ≤ D(θ)

Ω |∇N | 2 = Ω N 2 [K -ρ + H]dx ≤ Ω N 2 dx [K M + H],
and, thus, (

The upper bound (17)(ii) follows from the positivity of K, since, after dividing the equation by N and integrating by parts, we find

- Ω ∇ x N 2 N 2 dx = Ω [K -ρ + H] dx ≤ 0.
For [START_REF] Dockery | The evolution of slow dispersal rates: a reaction diffusion model[END_REF], we differentiate in θ the equation in ( 16) to find

-D (θ)∆ x N -D(θ)∆ x N θ = N θ K(x) -ρ(x) + H + N H θ , (19) 
where N θ and H θ denote derivatives with respect to θ, we multiply by N and integrate by parts using the boundary condition to get

D (θ) Ω ∇ x N 2 + D(θ) ∇ x N .∇ x N θ = N N θ [K -ρ] + H θ θ; ρ(•) . ( 20 
)
Next we use the fact that the L 2 -normalization of N yields Ω N θ N dx = 0 and after multiplying the equation in [START_REF] Diekmann | A beginner's guide to adaptive dynamics[END_REF] by N θ , integrating by parts and subtracting the result from (20) we find

D (θ) Ω ∇ x N 2 = H θ θ; ρ(•) .
Since we have assumed in (3) that K is not constant, ∇ x N does not vanish and the result follows.

To conclude, we observe that (4) and [START_REF] Dockery | The evolution of slow dispersal rates: a reaction diffusion model[END_REF] yield that H as the same monotonicity, in θ, as D and, thus, has a unique local minimum at θ m .

The constrained Hamilton-Jacobi equation

We prove here the generalized Gaussian-type convergence asserted in Theorem 1.1, derive the constrained Hamilton-Jacobi equation [START_REF] Cantrell | Approximating the ideal free distribution via reaction-diffusionadvection equations[END_REF] and state some more properties. For the benefit of the reader we restate these assertions as a separate theorem below.

Theorem 4.1 The family u ε is uniformly in ε Lipschitz continuous and converges, uniformly in x and θ, to u, which is independent of x and satisfies, in the viscosity sense, the constrained Hamilton-Jacobi equation [START_REF] Cantrell | Approximating the ideal free distribution via reaction-diffusionadvection equations[END_REF]. Moreover,

min θ H θ, ρ(•) = 0 = H θ m , ρ(•) = H θ θ m , ρ(•) . (21) 
Since -H represents the fitness, it turns out that (21) characterizes δ(θ -θ m ) as the Evolutionary Stable Distribution (or θ m as the Evolutionary Stable Strategy). See [START_REF] Diekmann | A beginner's guide to adaptive dynamics[END_REF][START_REF] Jabin | Selection dynamics with competition[END_REF]. It follows from ( 21) that both H and its derivative vanish at θ m . As a result the viscosity solution u of ( 11) also vanishes at θ m as u(θ) = O (θ -θ m ) 3/2 , and this makes the connection with the result of [START_REF] Lam | A mutation-selection model for evolution of random dispersal[END_REF].

The proof is a consequence of the next two lemmata which are proved later in the paper.

Lemma 4.2 (Bounds on u ε )

There exists an independent of ε constant C such that

Ω max θ u ε (x, θ)dx ≤ Cε. ( 22 
)
Lemma 4.3 (Lipschitz estimates) There exist an independent of ε constant C such that

1 ε 2 |∇ x u ε | 2 + |∇ θ u ε | 2 ≤ C and max x∈Ω,0≤θ≤1 u ε (x, θ) ≤ Cε.
Moreover, the u ε 's converge, along a subsequence ε → 0 and uniformly in x and θ, to a Lipschitz and 1-periodic function u : R → R such that max 0≤θ≤1 u(θ) = 0.

We continue with the proofs of Theorem 4.1 and Theorem 1.1.

Proof of Theorem 4.1. The fact that any limit u of the u ε 's satisfies ( 11) is a standard application of the so-called perturbed test function method (see [START_REF] Evans | The perturbed test function method for viscosity solutions of nonlinear PDE[END_REF]) and we do not repeat the argument.

It follows from ( 11) that H θ, ρ(•) ≥ 0, while, at any maximum point θ of u, we must have H θ, ρ(•) ≤ 0, and, hence, H θ, ρ(•) = 0, and, in view of Lemma 3.1,

min θ H θ, ρ(•) = 0 = H θ m , ρ(•) .
As a result the only possible maximum point of any solution of ( 11) must be at at θ m , which implies that the equation has a unique solution.

Also the knowledge of θ m determines uniquely the limit ρ(x) = N m (x), from equation ( 13), and, thus, the full family (ρ ε , u ε ) converges.

Proof of Theorem 1.1. The statement in terms of n ε is an immediate consequence of Theorem 4.1.

Because u ε achieves a unique maximum at θ m , from the Laplace formula for n ε written as ( 6), we conclude that the n ε (x, θ)'s converge weakly in the sense of measures to ρ(x)δ(θ -θ m ), with ρ(x) the limit of ρ ε (see Section 2). Next, integrating equation ( 1) in θ we conclude that

-∆ 1 0 D(θ)n ε dθ = ρ ε (x) K(x) -ρ ε (x) .
Passing to the limit ε → 0, and taking into account that n is a Dirac mass at θ m , we find that ρ = N m because they both satisfy the equation ( 13).

The proofs

We begin with the proof of Lemma 4.2

Proof of Lemma 4.2. Integrating ( 7), we find

1 ε 2 |∇ x u ε | 2 dxdθ + |∇ θ u ε | 2 dxdθ ≤ C. (23) 
The claim for the maximum bound follows from the L ∞ -estimate on ρ ε .

For each x ∈ Ω, let M ε (x) := max θ u ε (x, θ) and choose θ ε (x) such that M ε (x) = u ε (x, θ ε (x)). Then it follows from (14)(i) that

e Mε(x)/ε 1 0 e uε(x,θ)-uε(x,θε) /ε dθ = ρ ε (x) ≤ C. ( 24 
)
Inserting in [START_REF] Hutson | The evolution of dispersal[END_REF] the estimate

u ε (x, θ) -u ε (x, θ ε (x)) = θε(x) θ ∂ θ u ε (x, θ )dθ ≥ -1 - 1 0 |∂ θ u ε (x, θ )| 2 dθ ,
we get

e Mε(x)/ε e - 1 ε [1 + 1 0 |∂ θ u ε (x, θ )| 2 dθ ] ≤ C,
and, hence,

M ε (x) ε - 1 ε [1 + 1 0 |∂ θ u ε (x, θ )| 2 dθ ] ≤ ln C.
Using [START_REF] Hofbauer | Evolutionary games and population dynamics[END_REF], we obtain

Ω M ε (x)dx ≤ Cε,
and this concludes the proof.

Next we discuss the proof of Lemma 4.3.

Proof of Lemma 4.3. We first assume the Lipschitz bound and prove the rest of the claims.

Let M ε := max x∈Ω M ε (x), with M ε (x) as in the proof of the previous lemma. It is immediate from [START_REF] Hastings | Can spatial variation alone lead to selection for dispersal?[END_REF] and the fact that |∇ x u ε | 2 ≤ εC that, for some C > 0,

M ε ≤ εC.
Next we show that lim inf ε→0 M ε ≥ 0, which, in turn, yields that lim ε→0 M ε = 0.

Let

y ε ∈ Ω be such that M ε := M ε (y ε ) = u ε y ε , θ ε (y ε ) and write ρ ε (x) = e Mε/ε
1 0 e uε(x,θ)-uε(yε,θε) /ε dθ.

Combining the lower bound on ρ ε in Lemma 2.1 and the (Lipschitz) estimate |∇ x u ε | 2 ≤ εC, we get

C 3 ≤ Ω ρ ε (x)) ≤ |Ω|e Mε/ε e C 1 0
e uε(yε,θ)-uε(yε,θε) /ε dθ ≤ e Mε/ε e C |Ω|, and, thus, M ε ≥ -Cε.

Now we turn to the proof of the Lipschitz bounds, which is an appropriate modification of the classical Bernstein estimates to take into account the different scales. We note and prove Lemma 4.3. Note that the convexity assumption on Ω is used solely in this proof.

We begin by writing the equations satisfied by |D x u ε | 2 and |∂ θ u ε | 2 which we obtain by differentiating (7) in x and θ and multiplying by D x u ε and ∂ θ u ε . We have:

-D(θ) ε ∆ x |D x u ε | 2 -ε∆ θ |D x u ε | 2 + 2 D(θ) ε |D 2 xx u ε | 2 + 2ε|D 2 xθ u ε | 2 -2 D(θ) ε 2 D x u ε .D x |D x u ε | 2 -2∂ θ u ε .∂ θ |D x u ε | 2 = 2D x (K -ρ ε ).Du ε , (25) 
and

-D(θ) ε ∆ x |∂ θ u ε | 2 -ε∆ θ |∂ θ u ε | 2 + 2 D(θ) ε |D 2 xθ u ε | 2 + 2ε|D 2 θθ u ε | 2 -2 D(θ) ε 2 D x u ε .D x |∂ θ u ε | 2 -2∂ θ u ε .∂ θ |∂ θ u ε | 2 = 2 D (θ) ε ∆ x u ε ∂ θ u ε + 4 D (θ) ε 2 |D x u ε | 2 ∂ θ u ε . (26) 
Let q = |Dxuε| 2 ε 2 + |∂ θ u ε | 2 and compute -D(θ) ε ∆ x q -ε∆ θ q + 2 D(θ) ε 3 |D 2 xx u ε | 2 + 1+D(θ) ε |D 2 xθ u ε | 2 + 2ε|D 2 θθ u ε | 2 -2 D(θ) ε 2 D x u ε .D x q -2∂ θ u ε .∂ θ q = 2 ε 2 D x (K -ρ ε ).Du ε + 2 D (θ) ε ∆ x u ε ∂ θ u ε + 4 D (θ) ε 2 |D x u ε | 2 ∂ θ u ε .
Assume that (x, θ) is a maximum point of q. Because of the convexity assumption, we have ∂ ∂ν q < 0 on the boundary (see [START_REF] Lions | Neumann type boundary conditions for Hamilton-Jacobi equations[END_REF]) and thus

x ε / ∈ ∂Ω × [0, 1].
Therefore, at this point (x, θ), we have

D ε 3 |D 2 xx u ε | 2 + ε|D 2 θθ u ε | 2 ≤ 1 ε 2 D x (K -ρ ε ).Du ε + D ε ∆ x u ε ∂ θ u ε + 2 D ε 2 |D x u ε | 2 ∂ θ u ε ≤ 1 ε 2 D x (K -ρ ε ).Du ε + δ D ε 3 (∆ x u ε ) 2 + ε δ (∂ θ u ε ) 2 + 2 D ε 2 |D x u ε | 2 ∂ θ u ε
and we choose δ small enough so that we can absorb the term δ D ε 3 (∆ x u ε ) 2 in the left hand side. Since there is a constant C 4 (d, D) such that

1 ε D ε ∆ x u ε + ε∆ θ u ε 2 ≤ C 1 D ε 3 |D 2 xx u ε | 2 + C 1 ε|D 2 θθ u ε | 2 ,
we conclude (using the equation) that, for some C 5 (d, D, δ) > 0,

1 ε D |D x u ε | 2 ε 2 + |∂ θ u ε | 2 + K -ρ ε 2 ≤ C 2 1 ε 2 D x (K -ρ ε ).Du ε + ε(∂ θ u ε ) 2 + 2 ε 2 |D x u ε | 2 ∂ θ u ε .
It follows that there exists some positive constant C such that

q 2 ≤ C 1 + 1 ε |Du ε | + ε 2 (∂ θ u ε ) 2 + 2 ε |D x u ε | 2 |∂ θ u ε | ≤ C 1 + √ q + ε 2 q + εq 3/2 .
From this we conclude that q is bounded and the Lipschitz continuity statement is proved.

Conclusion and perspectives

Conclusion We have studied a steady state model describing the Evolutionary Stable Distribution for a simple model of dispersal evolution. The novelty is that mutations acting on the continuous dispersal trait (the diffusion rate) are modeled thanks to a Laplacian operator, and this replaces the standard 'invasion of a favorable mutant' in the usual time scale separation approach. When the mutation rate is small, we have shown that the minimal dispersal is achieved, in accordance with previous analyses. This is mathematically stated as the limit to a Dirac mass which selects the minimum of the diffusion coefficient in the equation. Technical difficulties rely on a priori estimates in order to make the approach rigorous and establish the constrained Hamilton-Jacobi equation which defines the potential in the Gaussian-like concentration.

We indicate two possible extensions of our results. The first concerns the way to make more precise the convergence result of Theorem 1.1. The second is about the time evolution problem.

A more precise convergence result. The question we address here is whether it is possible to make more precise the convergence n ε → N m (x)δ(θ -θ m ) in the weak sense of measures stated in Theorem 1.1.

The gradient bound in Lemma 4.3 implies that u ε (x, θ) -u ε (0, θ) ∞ ≤ C ∇u ε (x, θ ∞ ≤ Cε, and, therefore along subsequences, the uε(x,θ)-uε(0,θ) ε 's converge in L ∞ -w . To prove more about the corrector, it necessary to have an estimate for u ε (0, θ) -u(θ), which is not, however, available from what we have here.

Another approach is to introduce, instead of u(θ), the eigenvalue problem

-ε 2 ∆ θ W ε = W ε [-H(θ, ρ ε ) + λ ε ], W ε is 1-periodic, W ε > 0.
The change of unknown w ε = ε ln W ε gives the equation

-ε∆ θ w ε -|D θ w ε | 2 = -H(θ, ρ ε ) + λ ε .
Standard gradient estimates yield that |D θ w ε | is bounded independently of ε, and, from the equation, we see that the ε∆ θ w ε 's are also bounded independently of ε. It follows that, as ε → 0, λ ε → 0 and, after an appropriate normalization, w ε → u uniformly.

As a result we can factorize the solution of (1) as

n ε (x, θ) = v ε (x, θ)e wε(θ)/ε ,
and we claim that, for some other factor ρ,

v ε (x, θ) → ρN (x, θ), L ∞ -w , (27) 
a statement which is more precise than that of Theorem 1.1.

To see this, we write the equation for v ε as

-∆ x v ε -ε 2 ∆ θ v ε -2εD θ w ε • D θ v ε = v ε [K -ρ ε + H(θ, ρ ε ) -λ ε ].
To obtain bounds on v ε we notice that ρ ε (x) = 1 0 v ε W ε dθ is bounded (from above and below), and, since W ε → δ(θ -θ m ), we conclude that, for some θε and θ ε near θ m and independent of ε constants C and c, v ε (x, θε ) ≤ C and v ε (x, θ ε ) ≥ c. It then follows from standard arguments that the v ε 's are bounded in L ∞ .

The limiting equation is the eigenfunction problem [START_REF] Diekmann | A beginner's guide to adaptive dynamics[END_REF] and positive solutions are all proportional to N (x, θ), which gives the statement.

The parabolic problem. Our approach is mainly motivated by the dynamics of the evolution of dispersal. The steady states are the Evolutionary Stable Distribution and are obtained as the long time distribution of competing populations [START_REF] Jabin | Selection dynamics with competition[END_REF]. This leads to the study of the time dependent problem

εn ε,t (x, θ, t) -D(θ)∆ x n ε -ε 2 ∆ θ = n ε K(x) -ρ ε (x, t) in Ω × R × (0, ∞), ρ ε (x, t) = 1 0 n ε (x, θ, t)dθ, (28) 
with the Neuman boundary conditions on ∂Ω and 1-periodicity in θ.

For this problem there are two limits of interest, namely ε → 0 and t → ∞. So far, we have studied the limit t → ∞, reaching a steady state (1) of ( 28), and then considered the limit ε → 0.

Reversing the order, we need to study first what happens as ε → 0. In this case, we expect that, in the weak sense of measures, n ε (x, θ, t) → N (x, t)δ(θ -θ(t)) and ρ ε → N (x, t), where at least formally, the weight N (x, t) is defined, for each t, by the stationary Fisher/KPP equation We can follow the same derivation as before, and discover that the value θ(t) of the fittest dispersal trait is now obtained through the time evolution constrained Hamilton-Jacobi equation u t (θ, t) -D(θ)|∇ θ u| 2 = -H θ, N (•, t) in R, max θ u(θ, t) = 0 = u( θ(t), t). [START_REF] Mirrahimi | Asymptotic analysis of a selection model with space[END_REF] Here the effective fitness H θ, N (•, t) is still given by the eigenvalue problem ( 16) with ρ = N .

Note that, since derivatives vanish at a maximum point, we conclude that H θ(t), N (•, t) = 0, and we also have N (x, t) = N x, θ(t), N (•, t) , where N (x, t) = lim ε→0 ρ ε (x, t),

We recall that, still formally, we can derive from (30) a canonical equation for the fittest trait θ(t) which takes the form, see [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF][START_REF] Mirrahimi | Uniqueness in a class of Hamilton-Jacobi equations with constraints[END_REF][START_REF] Mirrahimi | A class of Hamilton-Jacobi equations with constraint: uniqueness and constructive approach[END_REF],

d dt θ(t) = --D 2 θ u( θ(t), t) -1 .∇ θ H θ(t), N (•, t) . (31) 
We note that this equation also describes the fact that θ(t) will evolve towards smaller values of H and thus of the dispersal rate D.

The main difficulties compared to the stationary case are to derive a priori estimates for ρ ε (x, t) analogous to those in Lemma 2.1 and to obtain gradient estimates on u ε . Since the Lipschitz regularity of u is optimal and only differentiability can be proved at the maximum point [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF], giving a meaning to [START_REF] Mirrahimi | Uniqueness in a class of Hamilton-Jacobi equations with constraints[END_REF] is also a challenge.

Figure 1: Snapshots of the evolution of the dispersal for three different times according to the parabolic problem [START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF]. Top figures depict the space repartition ρ(x) (fixed blue curve = K, increasing red = ρ). Bottom figures depict the trait distribution 1 0 n(x, θ, t)dx.

  -D( θ(t))∆ x N = N K(x) -N in Ω, ∂ ∂ν N (x, t) = 0 on ∂Ω.(29)
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Some numerics on the parabolic problem. Numerical simulations are presented in Figure 1 which illustrates the selection of lowest dispersal rate. Considering the parabolic problem [START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF], that means the convergence of the fittest trait θ(t) to the smaller values of the trait (with the coefficients below, this value is θ = 0) as t → ∞. For this simulation we have chosen Ω = (0, 1) and the data

and we have used, for the convenience of numerics, Dirichlet boundary conditions both in x and θ.

The numerical scheme is the standard three points scheme in each direction, implicit in x and explicit in θ because ε = 10 -2 is small enough so as not to penalize the computational time.

In Figure 1, we observe that the average trait, which initially is θ ∼ 0.7, decreases and gets close to 0 at the third time displayed here, also the trait exhibits a concentrated pattern around its average.