
HAL Id: hal-01152597
https://hal.sorbonne-universite.fr/hal-01152597

Submitted on 18 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the complex nature of MDE evolution and its impact
on changeability

Regina Hebig, Holger Giese

To cite this version:
Regina Hebig, Holger Giese. On the complex nature of MDE evolution and its impact on changeability.
Software and Systems Modeling, 2015, pp.1-24. �10.1007/s10270-015-0464-2�. �hal-01152597�

https://hal.sorbonne-universite.fr/hal-01152597
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

On the Complex Nature of MDE Evolution
and its Impact on Changeability

Regina Hebig · Holger Giese

Received: date / Accepted: date

Abstract In Model-Driven Engineering (MDE) a par-

ticular MDE setting of employed languages, automated

and manual activities has major impact on productiv-

ity. Furthermore, it has been observed that such MDE

settings evolve over time. However, currently not much

is known about this evolution and its impact on the

MDE setting’s maturity, i.e. on changeability and other

productivity dimensions. Research so far focuses on evo-

lution of separate building blocks, such as (modeling-)

languages, tools, or transformation, only.

In this article we address the lack of knowledge

about evolution of MDE settings by investigating case

studies from different companies. The first results re-

veal (1) that there is evolution that affects the com-

position of an MDE setting (structural evolution) and

has the potential to strongly impact aspects, such as

changeability, and (2) that this structural evolution ac-

tually occurs in practice. Based on these first results

we investigated, (3) whether there are cases in prac-

tice, where structural evolution already altered the risks

for changeability given by the respective MDE setting.

Therefore, we search and identify examples for such

evolution steps on MDE settings from practice and col-

lected 6 case studies on evolution histories in detail. As

a result, we show in this paper that structural evolution

(a) is not seldom in practice and (b) sometimes leads

to the introduction of changeability risks.

R. Hebig
Sorbonne Universités, UPMC Univ Paris 06, UMR 7606,
LIP6, F-75005, Paris, France.
E-mail: regina.hebig@lip6.fr

H. Giese
Hasso Plattner Institute
at the University of Potsdam, Germany
E-mail: holger.giese@hpi.uni-potsdam.de

Keywords Model-driven engineering · Evolution ·
Empirical research

1 Introduction

Model-driven engineering (MDE) techniques, such as

the use of models and (semi-)automated analyzes, trans-

formations, or code generation are applied to improve

productivity of software development as well as the

quality of software. A chosen combination of these MDE

techniques can affect diverse productivity related as-

pects, such as complexity of work, degree of automa-

tion, or changeability [11]. We refer to such a specific

combination of (modeling) languages, automated ac-

tivities (e.g. transformations), manual activities, tools,

and artifacts as MDE setting1 within this paper. A

freely accessible example for such an MDE setting can

be seen in Figure 12. Manual activities, e.g. “Manip-

ulate Implementation”, and automated activities, e.g.

“Generate Java Code”, consume, manipulate, or create

the different model and code artifacts, e.g. “Interface

Implementation”. These artifacts can be specified us-

ing different (modeling) languages, e.g. Ecore or Java.

Finally, manual and automated activities are supported

by tools, such as editors and frameworks like the Eclipse

Modeling Framework.

It is known that single elements of an MDE setting,

e.g. languages and automation steps, such as transfor-

mations or code generators, are subject to evolution

in practice [9,27,40]. Consequently, the question arises

1 In context of Software Configuration Management an
MDE settings might be considered as model-based config-
uration.
2 The EMF generation is described in detail in http://www.

vogella.de/articles/EclipseEMF/article.html.



2 Regina Hebig, Holger Giese

Fig. 2 Overview on the three applied investigation steps

Create

Ecore Model

Create EMF

Generator Model

Generate

Java Code

Manipulate

Implementation

Ecore Model:

.ecore

EMF Generator 

Model:.genmodel
Interface

Implementation: .java

Interface: .java

Adapter

Factory: .java

Eclipse Modeling Framework

Fig. 1 Example for an MDE setting: generation of model
code with EMF (illustrated in an Activity Diagram [31] based
notation). The Ecore model is used to generate an EMF gen-
erator model, which is basis for the later generation of Java
code.

what impact changes on an MDE setting as a whole

do have. Do some types of changes have the poten-

tial to mature and change the way how this MDE set-

ting affects different productivity related aspects? If so,

there arise the two additional questions, whether these

changes actually occur for MDE settings in practice and

whether in consequence the effects of an MDE setting

on productivity related aspects actually change in prac-

tice. However, nearly all existing studies focus on evolu-
tion of single languages or automation steps, only (e.g.

[22],[26],[28],[27], or [6]) and do not study these raised

questions on the overall maturation of an MDE setting.

The only more complex case of evolution that can be

found in literature is called “abstraction evolution” and

affects the number of used languages [8].

In this paper, we investigate the raised questions in

three steps, as summarized in Figure 2.

(1) We chose to introduce a basic classification of

possible atomic change types on MDE settings, which

allows us to systematically capture and differentiate ob-

servable changes. We discuss the relevance of the chosen

differentiation concerning productivity related charac-

teristics of an MDE setting. As a result of this dis-

cussion, we identify two groups of changes that affect

the composition/structure of an MDE setting (later re-

ferred to as “structural changes” and “substantial struc-

tural changes”). We discuss that these groups have the

risk and potential to affect the changeability support of

an MDE setting (i.e. how an MDE setting can imply

risks for the changeability of software that is built with

this MDE setting).

(2) Second, we study whether changes that affect

the composition/structure of an MDE setting actually

occur in practice. Therefore, two different data sets are

investigated, namely a set of 6 MDE settings that have

been captured in context of a former investigation at

SAP, as well as a set of 7 reports from literature that fo-

cus on MDE in practice. The results show that changes

that affect the composition/structure of an MDE set-

ting occur in practice and can be found for more than

25% of the MDE settings in practice.

(3) The first two steps show that changes that af-

fect the composition/structure of an MDE setting have

the potential to introduce risks for changeability into

an MDE setting and that these changes are not sel-

dom in practice. However, it is still not known whether

the changes that affect the composition/structure of an

MDE setting and do occur in practice actually intro-

duce the risks for changeability. Therefore, we apply a

third investigation step, which aims at identifying his-

torical examples of occurred structural evolution steps

that did affect the changeability support of the respec-
tive MDE setting. Therefore, we capture 6 evolution

histories of MDE settings from 4 companies, all in all

spanning 32 evolution steps. We use a pattern-based

technique (presented in [11]) to analyze how the MDE

settings that we captured affect changeability. In a next

step we analyzed the evolution histories in order to

identify evolution steps that introduced the identified

changeability issues. As a result we could identify ex-

amples for structural evolution steps that worsened or

improved the changeability support of the respective

MDE settings.

In the following we introduce the contribution of

this paper, which is an extended version of [14]. There

the risks and potentials of different structural evolution

steps were theoretically discussed and the existence and

commonness of such evolution steps, which affect the

composition/structure of an MDE setting, have been

studied (covering steps (1) and (2)). In this paper, we

extend this research in several directions. We enlarge



On the Complex Nature of MDE Evolution and its Impact on Changeability 3

the set of captured data on MDE settings and their

evolution histories from three to six case studies.

As new contribution, we extend the whole exami-

nation by identifying examples for evolution steps in

industry that actually led to a worsened or improved

changeability (adding step (3)). In addition, we substi-

tute the early list of eight observations presented in [14]

in favor of a more detailed discussion of four selected

observations that is backed up by a more extensive data

set.

While in [14] we opened the research question about

the role of evolution that affects the composition/structure

of an MDE setting in practice by showing that an im-

pact of this evolution on productivity is plausible (i.e.

that this evolution can have an impact and that this

evolution exists in practice), in this paper we are able

to provide the so far missing step to show that evolu-

tion that affects the composition/structure of an MDE

setting really impacts changeability in practice. There-

fore, this paper is able to establish the evolution that

affects the composition/structure of MDE settings as a

research question of high practical relevance and pro-

vides a basis for future research.

This paper is structured as follows. First we discuss

different change types in Section 2. In Section 3, we

investigate the existence of evolution that affects the

composition/structure of an MDE settings in practice.

Afterward, we investigate whether evolution steps that

affect the composition/structure of an MDE setting ac-

tually led to the introduction of changeability issues in

Section 4. In Section 5 we discuss the results and add

some observations on motivations of evolution that af-

fects the composition/structure of an MDE setting. We

discuss related work in Section 6. Finally, we conclude

and discuss implications that these results have for re-

searchers and practitioners.

2 Theoretical Investigation: A Classification for

Atomic Change Types

Available classifications of evolution in context of MDE

concern the substitution of languages, tools, and au-

tomations, only. To study empirically, whether other

types of changes can occur, too, it is first necessary to

clearly identify what kind of changes might be of inter-

est when studying evolution of complete MDE settings.

Therefore, this section focuses on providing a classifi-

cation of atomic changes types that are possible for an

MDE setting. Note that in this paper, the evolution of

software that can be built with an MDE setting (e.g.

evolution of code and models) is out of focus. Although

interaction of evolution of the MDE setting and evolu-

tion of the built software might be interesting subject

to research, we focus in this paper on the general po-

tential impact of an MDE setting, independent of the

concrete software built.

Further, it will be discussed whether a differentia-

tion between the possible change types is really relevant

from the perspective of studying the impact on the pro-

ductivity related characteristics of an MDE setting.

2.1 Atomic Change Types

The main idea of the classification is to identify a set

of atomic changes that can occur to MDE settings

and are the building blocks for the actual changes that

happen during evolution steps.

Definition 1 (Atomic change) The set of atomic

changes can be constructed in a straightforward man-

ner, based on the elements listed in the definition of

MDE settings (artifacts, manual and automated activ-

ities, languages, and tools). Possible changes are that

existing elements are replaced or that the number of

elements changes (i.e. that elements are added or re-

moved from the MDE setting).

Exchanging existing elements does not affect the

structure of an MDE setting. Therefore we call these

changes types non-structural.

Definition 2 (Non-structural change) Non-structural

changes, where only existing elements are exchanged.

Elements in an MDE setting that might be exchanged

during evolution are implementations of automated ac-

tivities, the used (modeling) languages, and tools. In

contrast, concrete actions within manual activities and
data of artifacts are not assets of an MDE setting and

are manifested during development with that MDE set-

ting, only. Therefore, these elements cannot be exchanged

in context of the evolution of an MDE setting.

The resulting non-structural change types are “ex-

change or evolution of an automated activity (e.g. any

model operation or code generation)” (A1 ), “exchange

or evolution of a used language” (A2 ), and “exchange

or evolution of a used tool” (A3 ).

Definition 3 (Structural change) Changes in the

set of elements affect the structure of an MDE setting

and therefore are structural changes.

The resulting atomic structural change types con-

cern adding or removing artifacts (referred to as A4 ),

adding or removing languages (referred to as A5 ), adding

or removing tools (referred to as A6 ), adding or remov-

ing manual activities (referred to as A7 ), and adding

or removing automated activities (referred to as A8 ).



4 Regina Hebig, Holger Giese

Table 1 Summary of atomic change types for MDE settings.

Elements of an MDE Setting
Change Artifact Language Tool Manual

Activity
Automated
Activity

exchange
element

x x x

add or
remove
element

x x x x x

Based on the atomic changes captured in the classi-

fication (as summarized in Table 1), there are complex

changes.

Definition 4 (Complex change) Complex changes

consist of multiple atomic changes and can - beyond

just changing the set of elements - affect the interrela-

tions between elements of an MDE setting.

An example for a complex change that shall be con-

sidered here in addition to the atomic changes is the

change of the order of manual and automated activities:

Each change in the set of automated (A8 ) or manual ac-

tivities (A7 ) leads to a change in the order of activities.

We call the relative positioning of automated activities

within (and behind) the manual activities order of man-

ual and automated activities. Only some changes in the

set of manual or automated activities also change this

order of manual and automated activities. For exam-

ple, an automated activity might be introduced between

two manual activities. Note that it is possible that an

added or removed manual or automated activity does

not lead to the change in the order of manual and au-

tomated activities. For example, a new manual activity

might simply be embedded between two already exist-

ing manual activities. Thus, each automated activity

that was before the change not followed or preceded by

a manual activity is afterward the change also not fol-

lowed or preceded by a manual activity. Subsequently,

we refer to this complex change as change type C1 .

Figure 3 summarizes the considered change types.

2.2 Discussion of Impact

Before studying whether the different identified change

types play a role in practice, the relevance of the cho-

sen differentiation between these change types shall be

discussed here. Therefore, we discuss whether the dif-

ferent change types have similar or different potential to

impact productivity related characteristics of an MDE

setting.

An MDE setting can affect effort and costs for de-

velopers and a company in different ways. For example,

the degree of automation of development depends on

the set of automated activities, and the complexity of

work depends on the set of languages and artifacts that

need to be handled in parallel. Similarly, the changeabil-

ity and maintainability of the software under construc-

tion, i.e. the software that is built with an MDE setting,

might be affected via different aspects of an MDE set-

ting [12]. For example, a concrete risk for changeability

is the loss of manually created content, when a genera-

tion step needs to be re-executed. Whether this risk ex-

ists depends, amongst other influences, on the question

whether generated artifacts in the MDE setting are ma-

nipulated by manual activities. E.g., when the artifact

“EMF Generator Model” is not manually adapted as il-

lustrated in Figure 1, activity “Create EMF Generator

Model” might be newly executed in correspondence to a

change of artifact “Ecore Model” without causing prob-

lems. However, if artifact “EMF Generator Model” was

manually enriched after the first generation, as illus-

trated in Figure 4, a new execution of activity “Create

EMF Generator Model” might lead to the loss of these

manually created contents. This in turn leads to extra

effort during each change and reduces the changeability.

Create EMF

Generator Model

Manipulate

Genmodel

Generate

Java Code

Ecore Model:

.ecore

EMF Generator 

Model:.genmodel

Interface

Implementation: .java

Fig. 4 Alternative version of a part of the MDE setting from
EMF example, where additional changes in generator model
are added by a manual activity.

Further, the effort required for integration and main-

tenance of consistency between artifacts is impacted by

the set of tools and artifacts in an MDE setting. Finally,

tools and implementations of automated activities are

business assets of a company, which need to be main-

tained [35] and therefore affect the cost of ownership

for a company. In the following, we refer to the listed

aspects as productivity dimensions:

Definition 5 (Productivity dimensions) The term

is used in this paper to refer to characteristics of an

MDE setting that directly or indirectly would have to

be in included in a hypothetical calculation of pro-

ductivity, i.e. the overall effort and costs spend during

software development. Productivity dimensions that are

discussed in this section are: costs of ownership, effort

required for integration and maintenance of consistency,

degree of automation, complexity of work, and change-

ability and maintainability of the software under con-

struction.



On the Complex Nature of MDE Evolution and its Impact on Changeability 5

Atomic Change Types

Non-Structural Changes Structural Changes

A1 exchange 

automated activity

A3 exchange 

tool

A2 exchange 

language

A4 add or 

remove artifacts

A5 add or remove 

languages

A7 add or remove 

manual activities

A6 add or remove 

tools

A8 add or remove 

automated activities

C1 change order of manual 

and automated activities

Substantial Structural Changes

Fig. 3 Overview on atomic change types together with complex change type C1

Which of these productivity dimensions can be af-

fected by the different change types is shortly discussed

in the following. Changes in an automated activity (A1 )

and changes in the number of automated activities (A8 )

can affect the degree of automation. Changing a used

(modeling) language (A2 ) or the number of used lan-

guages (A5 ) can have benefits concerning the degree

of abstraction, but yields the risk that the developers

lack the know-how to use that language (affecting the

complexity of the MDE setting) [3]. Similarly, a grow-

ing number of models (A4 ), necessary manual activities

(A7 ), or tools (A6 ) increases complexity for developers.

In addition, a change in the number of models affects

the need to maintain the consistency of different models

[18]. Further, new tools can lead to additional activities

to move artifacts between them increasing the integra-

tion effort. As tools and implementations of automated

activities have to be maintained, changes in either num-

ber of tools A6 or automated activities A8 can affect

the cost of ownership.

Finally, a main risk results from the addition of au-

tomated or manual activities if this leads to a change of

the order of manual and automated activities (A7 , A8 ,

and C1 ). This can lead to constellations, where auto-

matically created artifacts are touched manually. With

it the above described risk for changeability is intro-

duced. For example, the arising need to add a default

values for attributes might cause the addition of the

manual activity “Manipulate Genmodel” to the EMF

example, changing a part of the MDE setting from Fig-

ure 1 to the situation shown in Figure 4. Due to the

tangible character of this possible impact, we partly

will consider the three change types separately in the

remainder of this paper:

Definition 6 (Substantial structural changes) We

refer to structural changes that can introduce constella-

tions where automatically created artifacts are touched

manually as substantial structural changes. Examples

are A7 , A8 , and C1 , as shown in Figure 3.

This discussion leads to two insights: first, every

type of change has possible and plausible consequences

and second, the change types differ concerning affected

productivity dimensions and the way how these dimen-

sions are affected.

2.3 Terminology: Structural Evolution

As mentioned above the changes in this categorization

are atomic. Evolution bases on such changes. Following

terms are used in this paper to refer to different forms

of evolution:

Definition 7 (Evolution step) An evolution step leads

from one version of an MDE setting to a next version.

Within an evolution step multiple atomic or complex

changes might occur simultaneously.

Definition 8 (Evolution history) The evolution his-

tory of an MDE setting, can span multiple evolution

steps

Definition 9 (Structural evolution step) An evo-

lution step, where the set of changes contains at least

one structural change.

Definition 10 (Substantial structural evolution

step) Evolution step, where the set of changes contains

at least one substantial structural change.

2.4 Limits and Decisions on Next Study Steps

The discussion in this Section showed that, judging the

potential of impact, the kinds of changes differ with

respect to the potentially affected productivity dimen-

sions. However, this discussion has the limitation that

it is very difficult to predict the extent of the impact

of a change. For that reason we could discuss possible

kinds of impacts, only. A more detailed discussion of

the impacts on a theoretical level would be very diffi-

cult, since many different parameters would need to be

taken into account, just to name some of them:

– Size, domain, and flexibility requirements of the soft-

ware that is built with the MDE setting,



6 Regina Hebig, Holger Giese

– Extent of the change, such as a degree of difference

between two languages that are exchanged,

– Effort of changed, removed or added activities, or

– Share of changed artifacts on the system under con-

struction.

To learn more about structural changes it is possi-

ble to go for empirical investigations. Would it be pos-

sible to design a study without restriction on resources

and limitations of available data, a possible approach

could be to search for correlations between occurrences

of structural changes and improvements or deteriora-

tion of different productivity dimension.

However, existing data on evolution of MDE set-

tings is very rare. Collecting new data is not only re-

source intensive, but also highly dependent on indus-

trial cooperation. Thus, data sets with a high number

of cases cannot be expected. A further obstacle is that

such an approach requires a for each studied produc-

tivity dimension a method that allows to identify or

measure impacts of an MDE setting on that productiv-

ity dimension.

Facing these challenges, we decided to approach the

further investigation in two steps, as illustrated in Fig-

ure 2. In a first step, we perform a study to learn more

about the frequency of structural evolution, i.e. about

how many MDE projects have to face structural evo-

lution. This study is independent from the need for

methods that analyze the impact of an MDE setting

on productivity. Nonetheless, it can provide us with the

information what forms of structural evolution are not

seldom. While this study step cannot prove the exis-

tence of impacts on the different productivity dimen-

sions, it can, taken together with the theoretical dis-

cussion, show up existing potentials for impacts. This

first empirical study is presented in Section 3.

In a second step, we perform a study to show the

existence of impacts. Therefore, we decided to focus in

the empirical part on one specific aspect of changeabil-

ity. The reason is, that an analysis technique is available

that allows to assess the impact of an MDE setting on

this aspect. Although, this study is restricted to that

changeability aspect, we are convinced that this step is

important. It can show for the first time that impacts

of structural evolution on at least one aspect of pro-

ductivity play a role in practice. This second empirical

study step in presented in Section 4.

3 Empirical Investigation I: Existence and

Relevance of Structural Evolution

In context of the first investigation step (see Figure 2),

we have discussed and categorized the possible changes

on MDE settings above. However, there is currently lit-

tle knowledge whether the structural changes actually

occur in practice and if so, whether they are common.

We approach this question in the second investigation

step, which will be presented in this section.

Therefore we formulate the following hypotheses:

Hexistence: Structural evolution and substantial

structural evolution occur in practice.

Hcommon: Structural evolution and substantial

structural evolution occur for more than 25% of the

MDE settings in practice (i.e. they are common).

Note that we number this “common” with 25%,

here. This is, because for it is important to have a per-

centage to test against for statistical consideration of

frequency. Therefore, we choose the percentage, such

that it reflects a situation, where companies in general

have to take into account that the phenomenon affects

parts of their MDE settings.

3.1 Data Collection and Analysis

To evaluate the hypotheses, data about evolution in

practice is required. However, such data is rare. For

being able to nonetheless retrieve justifiable and gener-

alizable statements, we use the concept of triangulation

as described in [34] and combine the data from two in-

dependent sources, each with its own advantages and

disadvantages.

As the first data source, we use data records from a

former exploratory and descriptive field study that we

performed with the focus on capturing the structure

of MDE settings in practice ([13]). The observed cases

were not chosen with the topic of evolution in mind,

which reduces the selection bias. However, the disad-

vantage of this first data set is that all case studies stem

from a single company and that all data was collected

by our team only. As the second data source, we use re-

ports about MDE in practice that can be found in liter-

ature ([29], [10], [36], [20], [3], [17]). Although a selection

bias cannot be excluded for literature studies, the ad-

vantage of this data source is that it provides us with a

broader spectrum of companies and domains and that

the reports are captured by different research teams.

Thus, the second data source does not suffer from the

problems of the first data source and vice versa.

In the remainder of this Section, we describe the

methods of data collection for the SAP case studies

(Section 3.1.1) and the method of identification and

selection of literature reports (Section 3.1.2).



On the Complex Nature of MDE Evolution and its Impact on Changeability 7

3.1.1 SAP Case Studies

We performed an exploratory and descriptive field study

[4] in cooperation with SAP. The focus of the study was

to learn about the characteristics of MDE in practice.

The choice of the six captured case studies (as sum-

marized in Table 2) was made by our contact persons

within the company. We used semi-structured inter-

views. In contrast to questionnaires, interviews have the

advantage that misunderstandings can be better identi-

fied and compensated [39]. This allowed us to combine

the collection of complex MDE settings with more open

questions about the motivations and reasons for the use

of MDE techniques. The question covered following key

topics (considering artifacts as models or source code):

– Used tools, modeling and programming languages

– Artifacts used and created during development

– Existing and created relations between artifacts

– Activities used to change, enrich, translate, gener-

ate, merge, compile, or interpret artifacts

– Degree of automation of individual activities

– Order of activities

– (Semi-) automated quality assurance activities

– Responsible roles for different activities

For each case study, we performed two telephone in-

terviews, which lasted between 30 and 60 minutes each.

The interviewees were developers that participated in

the creation of tools for the MDE setting or used it. Be-

tween the initial and the final interview, we performed

several rounds of feedback to ensure correctness of the

captured data. More details about this field study can

be found in [13]. As result we gained a descriptive model

of each MDE setting as well as records from the more

exploratory parts of the interviews. We systematically

went through these records, searching for hints or more

concrete information on evolution. Where possible, we

assigned concrete change types to these hints or rated

them as structural or non-structural.

3.1.2 Literature Reports

As a second data source we performed a small meta

study. We systematically searched through

– The proceedings of the MODELS conference from

2007 to 2011 and ECMFA, respectively ECMDA-

FA conferences, from 2007 to 2012,

– The proceedings of the Workshop on Models and

Evolution ME, as well as its predecessors MCCM

(Workshop on Model Co-Evolution and Consistency

Management) and MoDSE (Workshop on Model-

Driven Software Evolution) from 2007 to 2011,

– The proceedings of the OOPSLA Workshops on Do-

main-Specific Modeling from 2007 to 2011,

– As well as the Software and Systems Modeling jour-

nal (SoSyM) from 2007 to 2012, including papers

published online first until end of July 2012.

In addition, we performed online key word search and

followed references in reviewed papers. In particular we

used the ACM digital library for keyword search in the

proceedings of the ICSE conference. We searched for

reports on the application of model-driven techniques

or domain-specific modeling languages in practice. Note

that we focused on non-purchase tool chains. We iden-

tified thirteen reports that describe MDE introduction

or usage ([29,10,38,24,7,33,2,36,20,3] and three case

studies in [17]). We filtered the reports to ensure that

the captured period of time that is long enough to be

able to observe evolution. Thus, reports that focus only

on the initial introduction of MDE or on settings that

were used for a single project only, were not suitable.

Therefore, we excluded five reports ([38,24,7,33,2] as

well as the telecom case study in [17], where the de-

scribed example was only used during one project). Fi-

nally, we chose seven reports ([29] (CsTe), [10] (CsBA),

[36] (CsFO), [20] (CsFBL), [3] (CsMo), as well as the

case studies of the printer company (CsPC) and the car

company (CsCC) [17]), which stem from different do-

mains, such as the telecommunication industry, finan-

cial organizations, and development of control systems.

Again, we systematically went through the reports and

annotated hints or concrete information about evolu-

tion with change types where possible.

3.2 Data

Following, an overview about the changes identified for

MDE settings from the SAP case studies and the liter-

ature reports is given.

3.2.1 SAP Case Studies

For the case study VC, no hints about evolution could

be found in the records. In contrast, for the case stud-

ies SIW, Oberon, and BRF, hints on evolution were

identified in the records. Such hints are often part of

descriptions of the improvements reached by the intro-

duction of the current setting. For example, one record

from case study Oberon included the statement that the

development functionality that is now provided by one

tool was split between several tools before. From this

record it can be concluded that the number of tools

changed (A6).

For the case studies BO and BW, more precise in-

formation is available. On the one hand, the evolution

history of the case study BO was covered in detail in



8 Regina Hebig, Holger Giese

Table 2 Summary on captured SAP case studies

Case

Study

Full Name Number of mod-

eled activities

Years in

use

BO Development of Business Objects for the feature package 2.0 19 > 2

BRF Personalization of business processes using the tool business rule framework 23 > 3

BW Definition and automated execution of reporting with the tool BW 19 > 14

Oberon Development of a user interface and application based on business objects using
the tool Oberon

25 > 3

SIW Development of web services using the tool service implementation workbench 16 > 8

VC Development of a user interface for SAP Net Weaver applications using the tool
visual composer

30 > 5

context of the later investigation of evolution histories.

On the other hand, the records for case study BW in-

cluded a more detailed description of a former version of

this MDE setting. Therefore, the difference to this for-

mer MDE setting is used to derive information about

the evolution that happened. In these two cases, addi-

tional information about non-structural evolution could

be captured.

The change types for which hints could be identified

are summarized in Table 3. It is illustrated whether

there is a more precise documentation of the changes

or whether there are hints on a change type, only.

3.2.2 Literature Reports

In the following, the change types that can be identified

for the different case studies from literature reports are

presented and summarized in Table 3.

The report of the case study CsFO from Shirtz et al.

[36] ends with a note that better integration of different

tools (A6 ) and more automation of the construction

phase (A8 ) are planned in future.

Karaila et al. describe in CsFBL ([20]) several chan-

ges that happened to the tool support for the language

FBL. The tool vendor started with providing the vi-

sual programming language FBL together with an edi-

tor and a code generator. The user interface of the ed-

itor was later on extended. Over time they introduced

the tool “function test” to enable developers to debug

FBL (A6 ). The introduction of automated verification

or debugging operations changes the order of manual

and automated tasks. As a result manual programming

is followed by automated debugging and further man-

ual correction before the automated generation is ap-

plied (A8 ,C1 ). Further they report on the introduction

of templates to allow programming on a higher level

of abstraction. Developers have to choose and config-

ure templates by specifying parameters. A chosen tem-

plate with parameters is then automatically translated

to FBL and from there code is generated. Thus, lan-

guage (templates instead of FBL) and generation im-

plementation (transformation plus generation) changed

(A1 ,A2 ).

Fleurey et al. [10] present an approach to adapt a

migration process towards the specific needs of the cur-

rent application. A case study of the actual application

of this migration process to migrate a banking applica-

tion is also presented (CsBA). Interestingly, the changes

that are actually applied in CsBA differ strongly from

the proposed changes. For example, it was necessary

that the resulting system conforms to the development

standards of the customer. Thus, it was not sufficient

to produce code, but to provide corresponding models

that were synchronized with the code, such that round-

trip engineering on the migrated system was possible.

Therefore, they replaced the code generation with an

automated UML extraction. They integrated the Ra-

tional Rose code generator used by the customer to

generate code skeletons out of the models (A6 ). Fur-

ther, they added a generation to migrate the remaining

code from the platform-independent model (extracted

from the original code) into the code skeletons (A1 ,

A2 , A4 ,A5 ). Conforming to the round trip engineering,

some manual migration tasks have to be applied to the

models (A7 ). The corresponding reapplication of the

Rational Rose code generation adds an additional au-

tomated step to the MDE settings (A8 ). Thus, instead

of being only followed by manual migration, the auto-

mated migration is followed by manual migration activ-

ities on the Rational Rose model, a generation of code

and further manual migration activities on the code.

The order of manual and automated tasks change, as

manual migration is intermixed with automated code

generation (C1 ).

In [29] a DSML for the generation of configuration

files in telecommunication industry is presented (case

study CsTe). It is also reported that the DSML was



On the Complex Nature of MDE Evolution and its Impact on Changeability 9

Table 3 Identified change types in literature reports (◦ = hints on changes; • = documented changes)

SAP Case Studies Meta-Study
SIW

[13]

Oberon

[13]

BO

[13]

BW

[13]

BRF

[13]

VC

[13]

CsFO

[36]

CsFBL

[20]

CsBA

[10]

CsTe

[29]

CsMo

[3]

CsPC

[17]

CsCC

[17]

Changes in General ◦ ◦ • • ◦ ◦ • • • • ◦ •

Atomic Non-structural changes • • • • • •

A1 exchange automated activity • • • • •

A2 exchange language • • • • •

A3 exchange tool ◦

Atomic structural changes ◦ ◦ • • ◦ ◦ • • • •

A4 add or remove artifacts • ◦ • • •

A5 add or remove languages • ◦ • • •

A6 add or remove tools ◦ ◦ • ◦ ◦ • • •

A7 add or remove manual activities • • ◦ • •

A8 add or remove automated activ-
ities

◦ ◦ • • ◦ ◦ • • • •

Complex Changes ◦ • • • •

C1 change order of manual / auto-
mated activities

◦ • • • •

changed later on. The verification language EVL to in-

crementally check the correctness of the models during

development was integrated. This intermixes manual

modeling activities with an added automated analysis

for correctness (A8 ,C1 ). Further, the generation of the

configuration files was exchanged, by an implementa-

tion that is based on a composition system conform-

ing to the approach reported in [19]. Motivation for

this change was the wish to reach higher levels of ab-

straction. The number of input models and languages

changed from one to a flexible number (A4 ,A5 ). Also

the number of manual modeling activities changes for

the developer, who has to create a number of different

DSL models (A7 ).

In [3], Baker et al. described how the use of MDE

within Motorola changed over time (case study CsMo).

This includes reports about changing tools (A6 ) and a

changing number of languages and used models (A4 ,A5 )

due to the introduction of Message Sequence Charts

(MSC) and SDL. Further, it is reported about changes

in MSC (A2 ) that enabled the introduction of auto-

mated generation of test cases (A8 ).

Although the report about the printer company in

[17] (CsPC) includes hints that the MDE setting un-

der study changed, the information is not sufficient to

make assumption about the actual type of change. Sim-

ilarly, the report about the car company in [17] (CsCC)

includes not much detailed information about the ac-

tual change. At least this report explicitly includes the

information that the used modeling language changed

(A2 ).

3.3 Hypotheses Testing

As summarized in Table 3, all types of structural evolu-

tion that were identified in Section 2 actually occur in

practice. This validates the first hypothesis Hexistence.

The evaluation of the second hypothesis Hcommon

requires a statistical test. In each of the two data sets 5

cases with structural evolution have been identified and

in each of these cases also hints for substantial struc-

tural evolution have been found. As defined in hypoth-

esis Hcommon, the phenomenon of structural evolution

is considered to be common if it exists in more than

25% of all MDE settings.

The null hypothesis h0 all is that the percentage of

MDE settings that are subject to structural evolution

in practice is below or equal to 40%. Correspondingly,

the alternative hypothesis h1 all is that the percent-

age of MDE settings that are subject to structural evo-

lution in practice exceeds 40%. The tested percentage

of 40% substitutes the required 25% here, in the in-

terest to approach the actual percentage. When h0 all
can be rejected this is an even stronger confirmation of

Hcommon.



10 Regina Hebig, Holger Giese

To enable a comparison, the probable percentage

is also tested for the two single data sets. Since both

data sets are very small, only the minimal percentage

of 25% is tested. The corresponding null hypotheses are

as follows: h0 smallSet is that the percentage of MDE

settings that are subject to structural evolution in prac-

tice is below or equal to 25%. The corresponding alter-

native hypothesis h1 smallSet is that the percentage of

MDE settings that are subject to structural evolution

in practice exceeds 25%. The hypothesis h0 smallSet will

be tested separately for both data sets.

Binomial Test: For the selection of an appropriate

test, we had to consider that our sample size is quite

small and that we have no assumptions on the gen-

eral distribution of the data. For such situations non-

parametric statistical tests can be used. The data at

hand is categorical data (i.e. structural evolution and

non-structural evolution) of a single sample. The non-

parametric test that can be used to test whether the

probability of one of the categories is smaller than a

given percentage (e.g. 25%) is a one sided binomial test,

which will be used in the following. The two studied

categories are MDE settings that underlie structural

evolution vs. MDE settings that do not. For the test a

significance level of 5% is chosen.

Further, we retrieve the power for the three bino-

mial tests, i.e. the probability that the null hypothesis

is rejected, while the alternative hypothesis is correct.

Therefore, we first we calculated the minimum num-

ber of occurrences required for a rejection of the null

hypothesis. This is the smallest number for which the

cumulative probability that this or a smaller number

of occurrences can be observed under the tested prob-

ability is greater or equal to 0, 95 (1− the significance

level). The minimum number m of occurrences required

for acceptance is m = 4 for sample size n = 6, m = 5 for

sample size n = 7, and m = 9 for sample size n = 13.

Based on that m we can retrieve the power of the

binomial test for all possible actual probabilities for the

occurrence of structural changes, as summarized in Fig-

ure 5. It can be seen that, due to the small sample sizes,

the power of the tests is not very good. For example,

a power of 0.8 can only be reached, when the actual

probability for the occurrence of structural changes is

around 80% to 90%. Due to that the tests are running

with the risk that the null hypothesis is accepted while

the alternative hypothesis is true.

Results: In Table 4 the results of the test are sum-

marized. The hypothesis h0 all can be rejected. The

probability that 10 MDE settings that underlie struc-

tural evolution are identified for a sample size of 13,

while the percentage of such MDE settings is below or

Fig. 5 Power of the three binomial tests per actual proba-
bility

equal to 40%, is less than 5% (p-value = 0.007793).

Thus, h0 all is not plausible.

For each of the two single case studies the hypothesis

h0 smallSet can be rejected, too. Here, the probability

that 5 MDE setting that underlie structural evolution

are identified for a sample size of 6 or 7, respectively,

while the percentage of such MDE settings is below or

equal to 25%, is in both cases less than 5% (p-values =

0.004639 and 0.01288). Thus, h0 smallSet is not plausi-

ble. This adds to the validity, since it shows that the

commonness of structural evolution is not specific for

one of the data sets.

Furthermore, despite the weak power of the three

tests, the null hypothesis was in all three cases rejected.

Although, there was a high risk that the null hypothesis

is accepted while the alternative hypothesis is true, it

was possible to reject the null hypothesis. In each case

the found number of occurrences was higher or equal to

the respective minimum number for acceptance of the

alternative hypothesis m.

Since in all cases, where we found structural evolu-

tion, we also found substantial structural changes, the

results of examination of both data sources supports

the hypothesis that structural and substantial struc-

tural evolution occur for more than 25% of the MDE

settings in practice (Hcommon).



On the Complex Nature of MDE Evolution and its Impact on Changeability 11

Table 4 Results of binomial test to check whether probabilities for structural changes exceed 40%

Date # occur-

rences

sample

size

h0 h1 p-value 95% confidence

interval

Result

SAP 5 6 p ≤ 25% p > 25% 0.004639 0.4182 - 1 h
0 smallSet is rejected

Meta study 5 7 p ≤ 25% p > 25% 0.01288 0.3413 - 1 h
0 smallSet is rejected

All 10 13 p ≤ 40% p > 40% 0.007793 0.5053 - 1 h
0 all is rejected

3.4 Threats to Validity

In this section we discuss validity of the results fol-

lowing the categorization of threats to validity that

was introduced by Wohlin et al. [39]. To address the

observational/non-experimental character of the study,

threats to validity are discussed under the following

viewpoints: Construction validity: “Are data and effects

captured appropriately?”, External validity: “To what

extent can the results be generalized?”, and Conclusion

validity: “Are the conclusions that are drawn correct?”.

The fourth category that is introduced by Wohlin et al.

(internal validity) is specific to experiments and there-

fore not relevant for the studies presented in this paper.

Construction Validity Due to the character of both data

sources, the information about change types is most

probably incomplete, which might have led to an under-

representation of structural evolution within the re-

sults. Fortunately, such an under-representation cannot

lead to a wrong acceptance of the hypotheses Hexistence
and Hcommon.

External Validity Two biases that might influence the

observed frequency of structural evolution are the se-

lection bias and the bias that arises by the corporate

culture or domain. While a selection bias is not proba-

bly for the the six SAP case studies, the fact all of them

stem from the same company might lead to a bias, e.g.

due to the corporate culture or domain. In contrast,

the 7 case studies from the meta study stem from dif-

ferent countries, companies, and domains, which allows

to draw conclusions that are not specific to a single do-

main. However, although a systematic selection method

was applied, a small selection bias can never be ex-

cluded for meta studies. Thus, the biases that might

affect both data sets are different. In consequence, since

the observed frequencies of structural evolution are com-

parable for both data sets, it can be concluded that the

observed frequencies are not caused by selection bias or

biases due to corporate culture.

Conclusion Validity Although larger scaled empirical

studies may help to get more accurate information in

future, the data used here is sufficient to determine

whether structural changes are sufficiently common in

practice to be a relevant object for further research.

3.5 Summary

In context of our overall investigation, which was illus-

trated in Figure 2, this second investigation step reveals

that structural evolution has not only theoretical rele-

vance concerning possible impacts, but also practical

relevance concerning its commonness.

4 Empirical Investigation II: Impact on

Changeability

So far, it was theoretically discussed that structural and

substantial structural evolution can improve or worsen

an MDE setting’s support for changeability and other

productivity dimensions (see Section 2). Further, it was

shown in Section 3 that structural and substantial struc-

tural evolution actually occur in practice.

However, while both results form a strong hint that

the effect on productivity dimensions might really change
for MDE settings in practice due to evolution, actual

examples for such changes are missing. To address this

question, we present in this section the third investi-

gation step as illustrated in Figure 2. Therefore, we

formulate the following hypothesis:

Himpact: In practice there are cases, where structural

evolution already led to changes to an MDE setting’s

impact of changeability.

However, to prove this hypothesis it is necessary to

identify a set of actual historical examples on evolu-

tion steps that caused measurable changes in an MDE

setting’s influence on changeability aspects. The iden-

tification of such examples is the goal of this third in-

vestigation step.

In order to gain data about occurred evolution steps,

we again perform a descriptive and exploratory field

study3 to also capture information about the evolution

3 Project’s home pages: http://www.hpi.uni-potsdam.de/
giese/projects/mde_in_practice.html?L=1



12 Regina Hebig, Holger Giese

history of MDE settings. The examination that will be

presented here is to answer the question whether the

collected data includes hints on or actual evidence for

such evolution steps. As mentioned in Section 2.4, tech-

niques to measure the impact of an MDE setting on

productivity dimensions are rare. However, there is a

technique to identify risks for changeability that are

implied by an MDE setting [11] (for details see be-

low in Section 4.3.1). This technique enables a targeted

search for changeability risks that had been introduced

by structural evolution. A success in this search would

lead to the identification of examples of structural evo-

lution steps that prove the hypothesis Himpact.

In the following, the applied methods for data col-

lection and investigation are presented. Further, the col-

lected case studies and evolution steps are introduced.

Then it is discussed to what extent occurrences of change-

ability risks can be ascribed to specific evolution steps.

Finally, the results are summarized and the validity of

the conclusions is discussed.

4.1 Data Collection Method

The first challenge was to get access to case studies.

Most companies are very cautious about providing de-

tailed data to external researchers (as is necessary for

case studies). This problem was approached in this study

by using personal contacts to different companies. In

addition we contacted alumni students of the Hasso

Plattner Institute. The request was accompanied by

a short description of the project and the data to be

captured. Eventually the contacted persons passed the
request on to colleagues. When the persons in charge

of such a project were interested in the study they an-

swered the request.

All in all, this led to responses from five projects

(from four companies). Unfortunately, in two compa-

nies the management did not agree to the participation

due to confidentiality reasons. However, three compa-

nies agreed to participate in the study: Capgemini (3

MDE settings), VCat, and Carmeq. In addition, one of

the contact persons of the former study at SAP agreed

to resume the participation in the study and helped to

document the evolution history for one of the captured

MDE settings.

We took a conscious decision to go on with research

of a few detailed case studies. This form of research

has some important advantages when it comes to un-

derstanding complex phenomena and their drivers. Fo-

cusing on case studies makes it possible to gain coher-

ent pictures of complex MDE settings. This includes

the different ways in which artifacts are used or reused

in automated and manual activities, the order of ac-

tivities, and the tools used for supporting the activi-

ties. This is even more important since MDE settings

had not been captured explicitly within the cooperating

companies before.

We used semi-structured telephone interviews, since

interviews have the advantage that misunderstandings

can be resolved directly [39], which is beneficial when

capturing complex phenomena. The structure of the in-

terviews provided the basis to capture the MDE set-

tings systematically. The semi-structured character of

the interviews also supports an exploratory mode within

the study.

To address the new issues we changed the method of

eliciting the case studies, by substituting the rounds of

feedback that where performed per email (as described

in Section 3.1) with a third interview. In addition, we

included questions on how the MDE settings evolved

over time and asked for motivations and responsibilities

for the captured changes.

The collected information about the evolution his-

tory was analyzed. The evolution steps were further

categorized according to the change types presented in

Section 2.

4.2 Case Studies

As summarized in Table 54, all captured MDE settings

were in use for between two and eight years. Each cap-

tured model includes between 10 and 30 activities. For

each of the different cases studies between one and seven

evolution steps were captured (33 evolution steps over-

all, as summarized in Tables 6 and 7). This section fur-

ther summarizes details on the stories behind the evo-

lution histories of the 6 captured case studies.

Development of Business Objects for the Feature Pack-

age 2.0 (BO) The MDE setting of the case study BO

was already captured during the SAP study. For this

object of study an old historic version was captured

in detail. The case study BO was already subject to

seven substantial structural evolution steps in a period

of around six years. The MDE setting started as al-

most classical code centric approach with some activ-

ities to ensure tracing between code and data model.

Later on, a modeling tool was introduced followed by

further tools that supported partial generation of the

code and eventually, one of these generation tools was

adopted as standard (evolution step S1 ). To improve

4 Due to a request, names of artifacts and activities from
the Capgemini case studies are substituted within this paper,
in order to ensure confidentiality of the actually investigated
projects.



On the Complex Nature of MDE Evolution and its Impact on Changeability 13

Table 5 Summary on captured case studies for third investigation step

Case

Study

Company Full Name Number of mod-

eled activities

Years in use Number of cap-

tured evolution

steps

BO SAP Development of Business Ob-
jects for the feature package 2.0

19 > 2 7

VCat VCat Consulting
GmbH

Development of TYPO3 based
websites

10 7 2

Carmeq Carmeq GmbH Development of AUTOSAR
standard documents at Carmeq

25 8 5

Cap1 Capgemini Capgemini case study 1 16 4 7

Cap2a Capgemini Capgemini case study 2 18 3 5

Cap2b Capgemini Capgemini case study 3 27 5 6

quality of behavioral implementation an interpretable

modeling language was introduced in addition to the

code (evolution step S2 ). The introduction of an addi-

tional modeling tool was motivated by the aim to in-

troduce further quality assurance (evolution step S3 ).

A next improvement was reached by introducing a semi-

automated support for data migration between the mod-

eling tools (evolution step S4 ). Here, a manual data

migration activity that had to be executed between

two automated activities, was substituted by a semi-

automated support, i.e. an automated activity followed

by a manual activity. The two automation activities be-

fore and after the initial manual activity are still pre-

ceded or followed by a manual activity, respectively.

Consequently, the order of manual and automated ac-

tivities did not change. In order to reduce the number

of tools the three modeling tools were integrated into a

single new modeling tool (evolution step S5 ). A variant

of the MDE setting was created to enable simple use at

the cost of a reduced set of supported features (evolu-

tion step S6 ). Finally, the generation functionality was

moved to this new modeling tool (evolution step S7 ).

Details on this evolution and the underlying decisions

can be found in [14].

Development of TYPO3 based Websites (VCat) The

fourth case study was collected in cooperation with

VCat Consulting GmbH5. The documented MDE set-

ting supports development of websites that rely on the

underlying content management systems TYPO3. For

the case study VCat two substantial structural evolu-

tion steps from a period of around seven years are cap-

tured. The first version of the MDE setting included a

manual task to copy and clean TYPO3 instances from

old projects, such that configurations could be reused.

5 http://www.vcat.de/ (last access at April 1st, 2014)

To improve this process and decrease the probability

that content from old projects is preserved in the copied

TYPO3 instance without notice, an automated instan-

tiation and configuration of new TYPO3 instances was

introduced (evolution step S1 ). Further the use of open

source TYPO3 extensions should be improved in future.

For several reasons, extensions need to be adapted be-

fore they are used. To support reuse of these adaption

among the different projects at VCat, there are con-

crete plans to introduce an internal extension reposi-

tory within VCat (evolution step S2 ).

Development of Standard Documents for AUTOSAR

(Carmeq) The fifth case study was captured in cooper-

ation with Carmeq GmbH6. The captured MDE setting

is used to create documents of the AUTOSAR stan-

dard7, including models and tables. For the case study
Carmeq five structural evolution steps from a period of

around eight years are captured. Three of the five evolu-

tion steps are substantial structural evolution steps. Ini-

tially, the AUTOSAR documentation was created with-

out explicit modeling. To deal with inconsistencies be-

tween documents, a central model of the standardized

software as well as an UML profile for AUTOSAR were

introduced (evolution step S1 ). An automated genera-

tion of figures and tables on the basis of the central

model was introduced. Later on macros were imple-

mented to support the integration of figures and tables

into the standard documents (evolution step S2 ). To

support quality assurance for the generated figures and

tables the modelers started to use diff-tools for compar-

ison between old and new versions of the artifacts (evo-

lution step S3 ). Further, a CI server was introduced,

such that the generator is executed centrally (evolu-

6 http://www.carmeq.de/ (last access at April 1st, 2014)
7 http://www.autosar.org/ (last access at April 1st, 2014)



14 Regina Hebig, Holger Giese

Table 6 Identified structural changes in evolution steps of the case studies BO, VCat, and Carmeq (• = documented change;
* = the MDE setting resulting from this evolution step was captured completely)

SAP (BO) VCat Carmeq Cap1
S1 S2 S3 S4* S5 S6 S7 S1* S2 S1 S2 S3 S4 S5* S1 S2 S3 S4 S5 S6 S7*

Atomic Structural Changes

A4 add or remove arti-
facts

• • • • • • • • • • • • •

A5 add or remove lan-
guages

• • • • • • • • • • •

A6 add or remove tools • • • • • • • • • • • • • • • • • • • •

A7 add or remove man-
ual activities

• • • • • • • • • • •

A8 add or remove auto-
mated activities

• • • • • • • • • • • • • • • • • •

Complex Changes

C1 change order of man-
ual / automated activi-
ties

• • • • • • • • • • • • • • •

tion step S4 ). Finally, an alternative implementation

for some parts of the generator (e.g. the automated im-

port between two of the modeling tools) was introduced

(evolution step S5 ).

Capgemini First Case Study (Cap1) The case study

(Cap1) was captured in cooperation with Capgemini8

and is used in a project that has run for four years. In

this project Capgemini builds software for a customer.

There are two interacting MDE settings involved. The

first MDE setting is used by the customer to collect

requirements and create or prepare parts of the spec-

ification. The second MDE setting is applied within

Capgemini to create prototypes, generate the specifica-

tion, and to implement the software. This second MDE

setting and its history were captured within this study.

For the case study Cap1 seven substantial structural

evolution steps from a period of around four years are

captured. The project started with a standard code gen-

erator, which was soon substituted by a project specific

generator. In addition, a semi-automated support for

the export of the data between two modeling tools was

added (evolution step S1 ). To improve merge of the old

version of the model and the version that is result of

the semi-automated export, a first version of a diff-tool

was introduced (evolution step S2 ). Due to changes the

MDE setting of the customer the support for the export

as well as the diff-tool were taken out of operation (evo-

lution step S3 ). Further the automation of the export

8 http://www.capgemini.com/ (last access at April 1st,
2014)

between the main modeling tool and the code genera-

tor was improved (evolution step S4 ). Later on auto-

mated support for the implementation of a user inter-

face based on mock-ups was introduced (evolution step

S5 ). A change in the development process led to a situ-

ation that modified versions of the model are created by

different teams and need to be merged. To support this

merge a second version of the diff-tool was reintroduced

(evolution step S6 ). Finally, to address a new need on

additional documentation an additional generator was

introduced (evolution step S7 ).

Capgemini Second and Third Case Studies (Cap2a and

Cap2b) Also the second and third case studies (Cap2a

and Cap2b) were captured in cooperation with Capgem-

ini. The two MDE settings are parts of the same project.

This project aims at providing the MDE settings that

are used by a customer of Capgemini. Both settings can

be applied in the same customer projects. They aim at

reaching similar goals for different use cases.

For the case study Cap2a five evolution steps from a

period of around three years are captured. Three of the

five evolution steps are structural evolution steps (and

two of them are substantial structural evolution steps).

The project started with a first generator that was sub-

stituted later on by a more flexible version (evolution

step S1 ). This substitution was planed from the begin-

ning and was motivated by the need to rapidly provide a

working MDE setting to the customer. The underlying

meta model was permanently changed over the time. To

create new output artifacts the generator implementa-



On the Complex Nature of MDE Evolution and its Impact on Changeability 15

Table 7 Identified structural changes in evolution steps of the case studies Cap2a and Cap2b (• = documented change; * =
the MDE setting resulting from this evolution step was captured completely)

Cap2a Cap2b
S1 S2 S3 S4 S5* S1 S2 S3 S4 S5 S6*

Atomic Non-Structural Changes

A1 exchange automated activity • • • • •

A2 exchange language •

A3 exchange tool

Atomic Structural Changes

A4 add or remove artifacts • • • • • • •

A5 add or remove languages • • • • • • • •

A6 add or remove tools • •

A7 add or remove manual activities • • •

A8 add or remove automated activities • • • • •

Complex Changes

C1 change order of manual / automated activities • •

tion was extended (evolution step S2 ). Later on a part

of the generator was reimplemented, such that indepen-

dence of the formerly used implementation technology

is reached (evolution step S3 ). Finally, checks have been

optimized over time, such that they can be applied au-

tomatically and regular (evolution steps S4 and S5 ).

For the case study Cap2b six evolution steps from

a period of around five years are captured. Five of the

six evolution steps are substantial structural evolution

steps. The first version of the MDE setting included a

generator for the creation of the documentation. To im-

prove the usability, the generator was integrated to a

modeling tool and adapted the meta model that was

already used in case study Cap2b (evolution step S1 ).

In order to support creation of additional resulting doc-

uments three further generation activities were embed-

ded into the existing generator over the time (evolution

steps S2, S4, and S6 ). Addressing quality assurance, ba-

sic consistency checks for the models were introduced

(evolution step S3 ) and the introduction of further con-

sistency checks (following the example of case study

Cap2b) is planned. Finally, the output format had to

be changed at least one time (evolution step S5 ).

4.3 Investigation Method

In the following the method applied for this investiga-

tion is described.

4.3.1 Analysis Technique for Changeability Risks

As mentioned above, the subject of this investigation is

the identification of risks for changeability for the soft-

ware that is built with an MDE setting. Based on the

Software Manufacture Model language for the represen-

tation of MDE settings [15], we already introduced in

[11] a technique to identify changeability risks in MDE

settings. There, two anti-patterns910 are presented that

allow to capture and describe structures of activities in

Software Manufacture Models that can be associated

to changeability risk. These two anti-patterns are sub-

sequent adjustment and creation dependence.

Subsequent Adjustment: Here the first activity in

this anti-pattern is an automated activity that gener-

ates an artifact (e.g. model or code) without taking for-

mer versions of this artifact into account. The second

activity is a manual activity that changes parts of the

generated artifact. When two activities that match to

the activities in subsequent adjustment are re-executed

to perform a change to the software, this can cause

a loss of the manually created content in the gener-

ated artifact, since the generation, does not consider

the former artifact version and simply over-generates

the old artifact. For example, as it was illustrated in

9 Here the term anti-pattern is used to refer to the facts
that the patterns are “anti-pattern”, i.e. pattern that describe
negative effects [1,5]
10 In [15] the anti-patterns are introduced as proto-pattern,
i.e. patterns for which the number of documented occurrences
in practice is not yet sufficient to refer to them as pattern[1].
For simplicity we refer to them as anti-patterns in this paper.



16 Regina Hebig, Holger Giese

[15], the activities “Generate Java Code” and “Manip-

ulate Implementation” from the example shown in Fig-

ure 1 match to this anti-pattern, when developers do

not respect protected regions. Thus, a new execution of

“Generate Java Code” due to changes in the generator

model can lead to loss of manually implemented parts

in the code.

Creation Dependence: The only activity in this pat-

tern creates an artifact and in the same moment couples

the artifacts via a references to parts of another “refer-

enced” artifact. Former versions of the created artifact

are not considered during the execution of this activity.

In the MDE setting does not include alternative activi-

ties to manipulate the created artifact, an activity that

matches to anti-pattern creation dependence can work

as an amplifier that increases existing negative effects

on changeability. The reason is that the activity couples

an additional trigger to the complete recreation of the

artifact: a change in the “referenced” artifact. In con-

sequence, existing problems with changeability of the

created artifact (or artifacts that are build based on

the created artifact) are amplified. For example, activ-

ity “Create EMF Generator Model” from the example

shown in Figure 1 matches to creation dependence. Here

the activity needs to be newly executed when the in-

put artifact “Ecore Model” changes in order to reestab-

lish the reference to this input artifact from the created

“EMF Generator Model”. However, this later artifact

might have been subject to manual changes (note that

this is not illustrated in Figure 1), which get lost with

the recreation of the artifact.

As mentioned the patterns describe risks, since ex-

ternal factors can prevent the manifestation of the risk

as an actual problem. These factors are called mitigat-

ing factors. For example, within a software development

project not necessarily all artifacts will become sub-

ject to change. If there is no need to change artifacts

that are part of an occurrence of the subsequent ad-

justment pattern, the associated changeability problem

will not manifest. Similarly, an occurrence of creation

dependence only amplifies existing risks for changeabil-

ity. Thus, it is possible that there is no risk that can be

amplified.

Note that for the investigation of measurable changes

in the characteristics of an MDE setting no technique

for complete assessment of the changeability support

of an MDE setting is required. In contrast it is suffi-

cient to investigate whether local risks for changeability

change. With the help of the anti-pattern, it is possible

to identify pairs of activities (in case of the subsequent

adjustment) or single activities (in case of creation de-

pendence) that cause the corresponding risks within an

MDE setting. In the following, we use this localization

of changeability risks for the investigation of evolution

effects.

4.3.2 Approach

Due to the character of the captured data, we have data

on the evolution steps for the captured MDE settings,

but only respectively one (historical) version of each

MDE setting is completely captured, i.e. only for one

historical version per MDE setting a Software Manu-

facture Model, which is the basis for the identification

of the anti-patterns, is available. The evolution steps

are captured in form of change descriptions, and allow

no detailed reconstruction of the actual activity details.

As a consequence it is not possible to directly identify

the evolution steps that affected the occurrence of the

anti-pattern by analyzing all historical versions of an

MDE setting and comparing the located patterns. For

example, it might be interesting, whether located pat-

terns form older versions of the MDE setting disappear

in younger versions or whether a pattern occurrence

can only be located in the youngest version of an MDE

setting.

Instead another approach is followed for this anal-

ysis. First, we analyzed the available Software Manu-

facture Models to identify occurrences of the two anti-

pattern. In a second step, we reconsidered the evolu-

tion steps in reverse order, starting at the version of

the MDE setting that was analyzed. Thereby, we rated

for each evolution step whether this evolution step in-

troduced an activity that is part of an anti-pattern oc-

currence. This way it is possible to identify evolution

steps that introduced such a anti-pattern occurrence

and with it the corresponding changeability risk. In ad-

dition, we searched through the records from the inter-

views, to identify for each of the occurrences whether

the risk manifested in practice or whether we can iden-

tify mitigating factors.

In the most cases the currently used version of the

MDE setting is the one which was captured completely.

An exception is the case study BO where an older ver-

sion of the MDE setting was captured in detail, which

is the version that resulted from the fourth evolution

step (S4) and was replaced with the fifth evolution step

(S5). The Software Manufacture Model captured for

VCat represents the currently used version. However,

this version is the result of the first evolution step (S1),

while the second captured evolution step will be applied

in future to replace this current setting.

4.3.3 Limitation

Due to the above described constraint on the applica-

ble approach, a limitation is that it is only possible to



On the Complex Nature of MDE Evolution and its Impact on Changeability 17

consider changeability issues in the version of an MDE

setting that is captured in detail. Thus, this approach

cannot be used for the identification of changeability

problems in former or later historical versions of the

MDE setting. Due to this, there cannot be a systematic

search for examples for evolution steps that did remove

changeability problems. As a result, the described anal-

ysis approach allows to identify evolution steps that led

to the introduction of changeability risks that have not

been remove by later evolution steps so far, only.

4.4 Effects of Evolution on Changeability

In the following it is examined whether a direct influ-

ence of evolution on occurrences of the two anti-pattern

subsequent adjustment and creation dependence can be

observed within the six available case studies. Within

the Software Manufacture Models that are captured for

the six case studies, 6 occurrences of anti-pattern cre-

ation dependence could be identified. As summarized

in Table 8, for 5 of these 6 occurrences, it is possible

to identify evolution steps that introduced the matched

activities into the MDE setting. For example, an ac-

tivity that is matches to anti-pattern creation depen-

dence was most probably introduced in the third evo-

lution step of the SAP business object case study (BO

S3), where a couple of validation activities were added

in context of a technological change. Only one of the

occurrences of creation dependence was most probably

part of the corresponding MDE setting from the start

(see Table 8, case study Cap1).

8 occurrences of anti-pattern subsequent adjustment

have been detected for the six case studies. For 5 of

these 8 occurrences evolution steps that introduced these

occurrences can be identified. For example, the the au-

tomated code generation activity that is part of an oc-

currence of anti-pattern subsequent adjustment was al-

ready introduced to the SAP business object case study

in the first evolution step (BO S1). However, the man-

ual activity that is part of the same occurrence of sub-

sequent adjustment was only introduced in the second

evolution step (BO S2). With that second evolution step

the occurrence of the anti-pattern was introduced to the

MDE setting. Three of the occurrences of subsequent

adjustment were most probably part of the correspond-

ing MDE setting from the start.

Further, the fact that the detailed version of the

MDE setting of the SAP business object case stud yBO

is not the currently used version, allows the observation

that occurrences of a anti-pattern can also be removed

by evolution steps. One match of anti-pattern subse-

quent adjustment, which was introduced with evolution

step S2, was removed later on in the evolution step S5,

where the MDE setting was refactored by better inte-

grating multiple tools.

Theoretically, the introduction of anti-pattern sub-

sequent adjustment can be caused by different changes.

In all five examples where an introducing evolution step

could be identified, this evolution step is a substantial

structural evolution step. The match of subsequent ad-

justment was two times introduced by the addition of

an automated activity that matched to initial creation.

Once an automated activity was exchanged by another

automated activity and a following manual activity (in

order to produce the result in another format). In a

fourth case both matched activities were introduced to-

gether. Finally, one match was introduced by the intro-

duction of the manual activity, only.

For three of the five occurrences of subsequent ad-

justment there were introduced by evolution steps the

associated loss of content during changes actually oc-

curred. For the other two introduced occurrences of sub-

sequent adjustment the risks did not manifest to prob-

lems at the time of the interviews, since there is usually

no need to change the involved artifacts.

Considering all 26 captured substantial structural

evolution steps in these 6 case studies, 7 (more than

one quarter) could be ascribed with the actual intro-

duction of anti-patterns.

4.5 Observed Evolution Effects

Based on the six case studies, it is not possible to iden-

tify a correlation between the actual number of struc-

tural or substantial structural evolution steps that oc-

curred to an MDE setting and the number of matches

of the anti-patterns. However, for 10 of the 14 iden-

tified anti-pattern occurrences, we could identify the

evolution steps that introduced these occurrences. For

three of the 10 introduced anti-pattern occurrences the

associated risk already manifested to a problem. With

these results from practice we can confirm the hypothe-

sis Himpact that in practice there are cases where struc-

tural evolution already led to changes to an MDE set-

ting’s impact of changeability.

4.6 Threats to Validity

Again the three categories, construction validity, exter-

nal validity, and internal validity (Wohlin et al. [39]),

are discussed.

Construction Validity Due to the complexity of the cap-

tured information it cannot be excluded that there are

small faults in the created models of the MDE settings,



18 Regina Hebig, Holger Giese

Table 8 Summary of identified evolution steps that introduced occurrences of anti-patterns within MDE settings of the case
studies. Mitigating factors are describes as follows: no change happens = during development usually no changes occur that
trigger the new execution of the involved activities; no problem to amplify = there is no changeability problem in the MDE
setting that is subject to the amplification.

Case

Study

Pattern Occurrence Identified Indications that the Risks Man-

ifest in Projects

Introducing

Evolution

Step

Removing

Evolution

Step

BO subsequent adjustment occurrence 1 X S1
subsequent adjustment occurrence 2 X S2 S5
subsequent adjustment occurrence 3 mitigating factor: no change happens S3
creation dependence occurrence 1 mitigating factor: no problem to amplify S3

VCat subsequent adjustment occurrence 4 mitigating factor: no change happens –
subsequent adjustment occurrence 5 mitigating factor: no change happens –
subsequent adjustment occurrence 6 mitigating factor: no change happens S1

Cap1 creation dependence occurrence 2 X (amplification of subsequent adjust-
ment occurrence 7)

–

subsequent adjustment occurrence 7 X –

Cap2b creation dependence occurrence 3 mitigating factor: no problem to amplify S4
creation dependence occurrence 4 mitigating factor: no problem to amplify S4
creation dependence occurrence 5 mitigating factor: no problem to amplify S1
creation dependence occurrence 6 mitigating factor: no problem to amplify S1

Cap2a subsequent adjustment occurrence 8 X S1

which might impact the results of the applied change-

ability analysis. However, we included rounds of feed-

back in the study designed. This way the probability of

faults can be reduced.

External Validity While it remains possible that the re-

sults cannot be generalized to all domains of software

engineering, the use of case studies from different com-

panies and domain allows to draw conclusions that are

not specific to one domain only.

Conclusion Validity The number of pattern matches

under study is with 6 and 8 relatively low. However, it

was not the goal to make statements about frequencies,

but about the existence of evolution steps with mea-

surable effects, only. The captured data is sufficient to

conclude that changes in changeability risks of MDE

settings are caused by evolution steps in practice.

4.7 Summary

In this third investigation step (see Figure 2), we were

able to show the existence of cases, where risks for

changeability were actually introduced by substantial

structural evolution in practice. Further, we could iden-

tify one example for a substantial structural evolution

step that removed a changeability risk.

5 Discussion

When we put the three presented investigations to-

gether, as shown in Figure 2, we gain a comprehen-

sive picture of the nature of structural evolution and

its impacts on changeability. The theoretical considera-

tion showed that substantial structural evolution has

the potential to introduce (or remove) changeability

risks. The second investigation showed that structural

evolution and substantial structural evolution is com-

mon in practice. Finally, we could show in a third step

that there is more than just a potential that the oc-

curring structural evolution steps impact changeability,

but that changeability risks and problems are actually

introduced by substantial structural evolution in prac-

tice. Furthermore we could identify one example of an

evolution step that removed a changeability problem.

In addition to the investigation of the impact on

changeability, we could also make some additional ob-

servations on how changes are combined, on trade-offs

that are made, when an MDE setting evolves, and on

motivations and triggers of structural evolution.

5.1 Method

Therefore, we systematically inspected and coded the

records from the interviews following the constant com-

parison method described in [34]. At the start, a set of

preformed codes was used. These referred to the moti-



On the Complex Nature of MDE Evolution and its Impact on Changeability 19

vation for an evolution step, the institution or role that

triggered the evolution step, and the institution or role

that implemented the evolution step. During the inspec-

tion of the records, codes were added when necessary

(e.g. for external influences on the evolution). Based on

these codes it was possible to derive observations.

In [14] eight of these observations had been shortly

introduced. Due to the enhanced number of case stud-

ies, we were able to refine four of these observations,

which will be presented in detail in the following.

5.2 Observations

Trade-Offs: Structural changes are often trade-offs,

e.g. with respect to costs and manageability.

For example, implementing a smaller new generation

step is easier to manage than applying a change to an

existing automated activity. A further factor in such

a trade-off is the weight that is given to the different

productivity dimensions. An example is the evolution

step S3 in case study BO. In favor of better consis-

tency between conceptual models and business models,

it was accepted that links between conceptual models

and implementation are no longer maintained during

development.

Part of such trade-offs are also decisions to a de-

lay of MDE evolution. For example, the third evolution

step in case study Cap2a included a complete new de-

velopment of a generator on the basis of a new technol-

ogy. The corresponding idea existed for a while and was

only implemented when a number of other big changes

to the generator became necessary. In many of the ob-

served cases it was decided to increase the degree of

automation or tool support by adding new automated

activities instead of adapting existing automated ac-

tivities like transformation steps. For example, in case

study Carmeq additional importers were added, instead

of adapting the existing importer.

Thus, a substantial structural change that has the

potential to cause drawbacks for the changeability is ac-

cepted in favor of costs and manageability of the struc-

tural evolution step.

The factors involved in such trade-offs change over

time. Costs that can be invested for an evolution step

can change strongly. For example, the evolution step S4

in case study Cap1 was implemented by a developer in

his leisure time. The weight that is given to different

productivity dimensions can also change. For example,

evolution step S1 in case study BO was mainly driven

by the desire to increase the degree of automation. For

a long time explicit conceptual modeling had a priority.

Later on the priorities change, such that efficiency and

total cost of ownership became more important. As a

consequence, evolution step S5 led to reduction of the

number of tools and the number of inconsistencies at

the cost of a loss of graphical modeling capabilities, the

loss of functionality to simulate status models, as well

as loss of the ability to model design alternatives.

Environment: Changes in an MDE setting can be

driven by the need to take other MDE settings into

account.

Sometimes structural evolution is caused by changes

in the environment of the MDE setting. Changes in an

MDE setting that is used in a cooperating project or

company can lead to new opportunities for the inte-

gration of both MDE settings. For example, in Cap1

the customer’s MDE settings was changed, such that it

based on the same framework (Enterprise Architect) as

the MDE setting of Capgemini, afterwards. As a conse-

quence, the automation and support for merging and

exporting could be removed in evolution step S3. A

similar mechanism worked, when the MDE setting of

the customer changed, such that mock-ups were mod-

eled in the Enterprise Architect, too. As a consequence

evolution step S5 was enabled, where a partial gener-

ation of user interfaces on the basis of the mock-up

model was introduced. Another example can be found

in case study Cap2b. Here, functionality to generate an

HTML catalog was introduced in evolution step S2 of

Cap2a. After that, an HTML generator was introduced

in evolution step S4 of case study Cap2b. The resulting

HTML catalog is an extension of the HTML catalog

that can be generated with Cap2a for a same project.

Thus, both MDE settings can be combined to create a

common result.

Pragmatic Developer’s Decision: Some evolution

steps are not planned centrally, but are caused by

developers who add automation steps to ease their

daily work.

Examples, where developers evolved the MDE setting

that they used themselves, can be found in the four of

the case studies. In the first evolution step in BO sim-

ilar automations of the same implementation aspects

were introduced independently by developer teams that

worked on different projects. Eventually, one of the au-

tomations was chosen as standard. In case study Cap1

four evolution steps (S2, S4, S6, and S7) are triggered

this way. As aforementioned, the introduction of the

tool for detecting model differences to automatically

correct typical errors in an output format (S4) was even

performed by a developer in his leisure time. Finally, in

case study Carmeq the macros and diff-tools (S2 and

S3) were introduced by developers and in case study



20 Regina Hebig, Holger Giese

VCat the planned introduction of the new repository

for reuse was triggered by the developers (and was sup-

ported by the management). Apart from evolution that

is triggered and implemented directly by developers,

they might also propose changes to the MDE setting

that are then implemented by the tool vendor. For ex-

ample, in Cap2b the use of HTML generation to gain

a new possibility for navigating through the model was

an idea of developers that use the MDE setting.

There are also introductions of automation steps

that are not triggered by developers. For example, the

first evolution step in case study VCat and the first

and fifth evolution step in the case study Cap1 were re-

quested by the management or customers, respectively.

However, it seems that developers have relevant insights

into potentials for further automation of development.

More importantly, it seems that developers even have

an own interest in automating parts of the development.

Manage the MDE Setting: The motivation of some

evolution steps is to reduce the complexity of MDE

settings, which can be considered as “refactoring”.

An example of this is the introduction of the new

repository (MDRS) in business object development (evo-

lution step S5 in case study BO). This refactoring was

completed in evolution step S6, were also the status and

action management was integrated into the MDRS.

In case study Cap1 a less obvious clean-up occurs.

Here the evolution steps S3 and S5 succeed changes in

the MDE setting of the customer, which can be rated as

clean-up. In both cases development activities that are

performed by the customer were moved to the develop-
ment tool that is used at Capgemini. Consequently a

better integration of both MDE settings was achieved.

5.3 Threats to Validity

As in Section 3.4 validity of this study part is discussed

for the three categories construction validity, external

validity, and conclusion validity introduced by Wohlin

et al. [39].

Construction Validity A social threat is that intervie-

wees might omit information due to the fear of being

evaluated (evaluation apprehension [39]). This might

concern change motivations that lay in disadvantages

of or problems with the preceding MDE setting. While

that cannot be ruled out in general, incompleteness can

be accepted. Nonetheless, the collected data provide

valuable insights into existing motivations for evolution.

External Validity As mentioned above a selection bias

towards case studies with long evolution histories can-

not be excluded. It is possible that motivations and

triggers for evolution are different in projects where

MDE settings often change compared to projects where

MDE settings rarely change. Consequently, motivations

might be different for MDE settings that change rarely.

Finally, all case studies stem from companies within

the same country (Germany). Thus, it is possible that

the observations, such as the observation on pragmatic

developer’s decision, cannot be generalized to countries

with very different culture.

Conclusion Validity The data on the 32 evolution steps

stems from four different companies (SAP, Capgemini,

Carmeq, and VCat). To ensure that the made observa-

tions are not company specific, we only included them,

if they based on examples of at least two companies.

6 Related work

This section focuses on related work on evolution in

context of MDE.

Case studies on MDE settings: First, this in-

cludes on the one hand the papers that have been iden-

tified and discussed in the literature study ([29] (CsTe),

[10] (CsBA), [36] (CsFO), [20] (CsFBL), [3] (CsMo),

the case studies of the printer company (CsPC) and

the car company (CsCC) [17], see Sections 3.1.2 and

3.2.2 for more details). These papers include reports on

MDE usage in practice and, thereby, partly also doc-

umented hints on structural evolution. However, none

of these papers targeted at the systematic documenta-

tion of evolution or even structural evolution of MDE

settings.

Studies on evolution occurrence in practice:
For specific forms of non-structural evolution, studies

exist that describe their occurrence and relevance in

practice. For example, Herrmannsdoerfer et. al studies

forms of evolution that happen to modeling languages

(metamodel evolution) [16]. Unfortunately, we are not

aware of similar studies discussing occurrences of struc-

tural evolution in practice.

Categorizations and surveys on types of MDE
evolution: There are several categorizations and sur-

veys on evolution (summarized in Table 9):

There are different surveys and research agendas

that classify types of changes in model-driven software

evolution or in software evolution in general. For ex-

ample, Stammel et al. provide an extensive survey on

techniques and approaches in software engineering that

enable flexibility and evolution of software [37]. The



On the Complex Nature of MDE Evolution and its Impact on Changeability 21

spectrum of approaches reaching from agile methods

via model-driven software development to architectural

patterns is discussed on a high level of abstraction.

A collection of possibilities to support software evo-

lution with models is presented by Karanam and Ake-

pogu in [21]. However, within MDE approaches models

are also part of the implementation of the software and

need to be evolved when the software evolves. Khalil

and Dingel present in [22] a survey on techniques that

support the evolution of UML models. They consider

model evolution as a subset of software evolution. Thus,

the discussed approaches deal with evolution of the dif-

ferent models that are used for the specification of a

software system. Discussed evolution tasks concern for

example the change propagation between different mod-

els.

That evolution in MDE can be more than evolution

of the software is summarized by van Deursen et al. in

[8]. Here, challenges in supporting the different forms of

evolution are discussed. Considered forms of evolution

are “regular evolution”, which is software evolution,

“meta-model evolution”, which is a form of language

evolution (discussed as change type A2 ), “platform evo-

lution”, which means the evolution of code generators

and tools (discussed as change types A1 and A3 ), and

“abstraction evolution”, which means the introduction

of an additional modeling language to the set of lan-

guages (which is one part of change type A5 ). “Ab-

straction evolution” as is introduced by van Deursen et

al. is a special case of structural evolution and has po-

tential side effects on other change types, which are not

further described in [8]. For example, A4 and A7 can

be affected, when the introduced additional language is

used to express additional artifacts (and does not only

substitutes the language that is used for an already ex-

isting artifact). Mens et al. supplement the challenges

listed by van Deursen et al. with a stronger focus on

the evolution of models [26].

Meyers et al. subdivide metamodel- and model evo-

lution into four primitive scenarios, describing how evo-

lution of models, metamodels, or transformations en-

forces co-evolution among each other [28,27]. The re-

sulting scenarios are combinations of the change types

A1 and A2 .

Finally, Corrêa et al. classified change types in con-

text of to software product lines [6]. The categories in-

clude the change of the meta-model (summarized as

language evolution A2 ), changes of features and changes

of models, which are both forms of software evolution,

and changes within a transformation (discussed in our

classification as change type A1 ).

Subsuming, most categorizations have a central view

on software evolution, which is as such not part of our

categorization. Further, non-structural changes are con-

sidered in most categories, while only in [8] a very spe-

cific case of structural changes is considered.

Discussion of evolution impacts: Finally, we

could not find related work that discussed the impacts

of MDE evolution, especially structural MDE evolution,

on productivity aspects.

Evolution in other contexts: Besides the con-

text of MDE, evolution has a long history in data base

research. Here the co-evolution of data during schema

evolution was studied. As summarized by Roddick in

1992 in an annotated bibliography, much research was

done on schema evolution [32]. Schema evolution can be

compared to co-evolution of meta-models and models

(or language evolution). For example, Lerner presents

a framework for the automated creation of transfor-

mations for migrating data from one schema to a new

one [23]. Noy and Klein discuss in [30] the difference

between ontologies and database schemata in order to

identify additional challenges for the evolution of on-

tologies and corresponding co-evolution of data. From

the viewpoint of the types of MDE evolution that are

discussed in this paper, research on schema evolution fo-

cuses on the non-structural change type A2 . The schema

can be seen as the language, while the data can be com-

pared to instances of this language.

Summary: To sum up, related work on evolution

mainly focuses on non-structural forms of evolution. In

contrast, this paper introduced a classification of struc-

tural evolution and goes further by studying the the

impacts of these changes on an MDE setting’s influence

on productivity dimensions, such as changeability.

7 Conclusion and Implications

In this paper, we investigated the nature of structural

evolution of MDE settings and its impact on change-

ability. The presented investigation consisted of three

steps (see Figure 2). First, we classified possible types of

atomic changes in MDE settings and discussed the po-

tential of these different changes to affect productivity-

related aspects of an MDE setting. As a result we iden-

tified that structural and especially substantial struc-

tural evolution can have strong impacts and might even

change how an MDE setting supports changeability.

As a second step, we used two different data sources,

namely a set of 6 MDE settings capture at SAP and

a set of literature reports on MDE, to study whether

structural evolution is relevant in practice. The results

support the hypothesis that structural evolution and

substantial structural evolution occur in practice and

occur for more than 25% of the MDE settings in prac-

tice (i.e. are common).



22 Regina Hebig, Holger Giese

Table 9 Change types covered by existing categories in other categorizations of changes in context of MDE (• = covered by
categorization; • = only specific situations covered by a category; ◦ = side effects of changes in other categories possible but
not specified; )

Kind of Changes\Categorization Stammel
et al.
[37]

Karanam
et al.
[21]

Khalil et
al. [22]

Mens et
al. [26]

Meyers
et al.
[28] [27]

Corrêa
et al. [6]

van
Deursen
et al. [8]

Software Evolution • • • • • • •

Atomic Non-Structural Changes

A1 exchange automated activity • • •

A2 exchange language • • •

A3 exchange tool •

Atomic Structural Changes

A4 change number of artifacts ◦

A5 change number of languages •

A6 change number of tools ◦

A7 change number of manual activities ◦

A8 change number of automated activ-
ities

◦

Complex Changes

C1 change order of manual / automated
activities

◦

In a third step, we investigated whether there are ac-

tual examples of evolution steps that did affect change-

ability. Therefore, we collected 6 MDE settings and

their evolution histories from 4 different companies.

For the collect 32 evolution steps, we rated the ap-

plied change types. Subsequently, we used a pattern-

based analysis technique to localize causes for change-

ability problems within an MDE setting. We applied

this analysis technique to the 6 captured MDE settings

and rated whether one of the evolution steps introduced

the identified parts of the MDE setting. As result we

identified 7 evolution steps that actually led to the in-

troduction of anti-pattern matches and with it risks and

partly manifested problems on changeability.

In addition, we present 4 observations on motiva-

tions and triggers behind structural evolution steps in

detail. The results give a first insight on the mechanisms

behind structural evolution.

To sum up, this paper shows for the first time, that

structural evolution occurs in practice and that it has

impact on the changeability of the evolving MDE set-

tings.

7.1 Future Studies on Structural Evolution

To better understand the degree of generality of our re-

sults and to improve the accuracy of knowledge, some

future studies might be highly of interest. In general

holds that the main challenge for performing these fu-

ture studies will be to gain the required data.

For example, the estimation of frequency so far bases

on a very small data set and thus allows us only to in-

vestigate a lower limit for the probably frequency of

structural evolution. Here future studies that base on

bigger data sets can help to gain more precise informa-

tion about this frequency.

Further, gaining additional data on structural evo-

lution from other countries than Germany and from

further domains can help in future work to learn more

about the possibility to generalize the results of the first

and second study step, as well as the made observation.

So far we focused on the evolution of “real” MDE

settings, i.e. MDE settings that actually include mod-

eling and/or generation activities. However, as the first

evolution step of case study BO shows structural evolu-

tion might also affect non-MDE development settings.

However, it seems that there are two tendencies that

differentiate most MDE settings from most non-MDE

settings: First, programming languages are in most cases

backwards compatible, while this is does often not suc-

ceed for modeling languages. Second, MDE settings, as

many of the examples in this paper, base often on tools

that are build or adapted within the company where

they are used, which is probably rather seldom for non-



On the Complex Nature of MDE Evolution and its Impact on Changeability 23

MDE settings. These two tendencies might cause that

structural evolution plays a different role in non-MDE

settings than in MDE settings. Thus, while the theoret-

ical definition of MDE setting is defined widely enough

to cover these cases, it would be interesting to study

whether structural evolution actually occurs in non-

MDE programming environments and whether it has

similar impacts to changeability.

An intuitive understanding of structural changes would

be that they occur during the specific phase short af-

ter MDE introduction until the MDE setting reaches a

stable state, only. However, it is difficult, and in con-

text of this paper not possible, to gain enough data to

really prove the opposite. Nonetheless, our data about

the evolution histories of the second empirical study is

not supporting that idea. In contrast, in some of our

case studies structural evolution steps occurred during

a phase of 5, 7, or even 8 years. It might be interest-

ing to investigate in future studies whether most MDE

settings do reach a stable state after which structural

evolution can be excluded, or not.

To gain in future more knowledge about the im-

pact of evolution on the two changeability anti-pattern

subsequent adjustment and creation dependence, future

studies can target on two improvements, compared to

the study at hand. First, the a data set with a big-

ger size and no selection bias might be collected and

used to learn about the percentage with which struc-

tural evolution steps lead to changes in the occurrence

of changeability anti-pattern. Also a correlation anal-

ysis might this way become possible. Second, it might

be interesting to collect data sets with complete (an-

alyzable) documentation of each historical version of

an MDE setting. This way it will become possible to

learn more about the degree to which structural evo-

lution steps lead to the improvement of changeability

(i.e., to the removal of anti-pattern).

Finally, the empirical study of actual impacts, so far

could only cover the impact of structural evolution on a

specific aspect of changeability (the two so far discussed

changeability risks). Future studies on the impact of

structural evolution, similar to our second study step

might be performed, when techniques become available

that allow the analysis of the impact of an MDE setting

for additional aspects of changeability and also other

productivity aspects.

7.2 Consequences on Future Research and Practice

In the following we discussed consequences of the pre-

sented results on future research and practice:

7.2.1 Predicting Consequences of Evolution Decisions

Research often focuses on designing and introducing in-

novative and specialized MDE settings or single MDE

techniques. These approaches are sometimes evaluated

empirically by reporting on success or by experiments

(e.g. as in [25]). However, when MDE settings are the

result of structural evolution, results from empirical

evaluations that have been performed on the initial

MDE setting are no longer helpful to predict the qual-

ity or risks of the new MDE setting. There will be no

time to perform a new empirical study on the new pro-

ductive MDE setting. Consequently, more well-founded

knowledge is required about the causality of an MDE

setting’s structure and the observable benefits. Based

on such knowledge, techniques to statically analyze and

predict benefits and different characteristics of an MDE

setting could be developed. Such techniques can then be

used by practitioners to balance trade-offs when plan-

ning the next evolution step.

Apart from such overall analysis techniques, support

for evolution decisions might also be provided with re-

spect to concrete evolution steps. Best practices of evo-

lution steps might be collected and shared.

Finally, we need to learn more about the impact of

MDE evolution, during running software projects. For

example, is there a mutual impact between evolution

of the MDE setting and evolution that happens to the

software that is build with the MDE setting?

7.2.2 Shifting Trade-Offs

Trade-off plays an important role during evolution deci-

sions. In combination with the fact that different forms

of evolution lead to diverse changes in the character-

istics of an MDE setting, this leads to the implication

that trade-offs need to be better understood.

It is possible to reach the same goals with different

MDE settings and thus also by different evolution steps

on MDE settings. Therefore, it is necessary to learn

when and why practitioners choose specific forms of

evolution to reach a given goal. Researchers might pro-

vide techniques and tools that shift the involved trade-

offs, such that less risky evolution steps become advan-

tageous. For example, frameworks for combining and

extending DSLs, like the one presented in [19] might be

a first step in this direction.

In this context, the question arises about how much

effort is required to apply an evolution step to an MDE

setting. To estimate the costs associated with an evo-

lution step itself, techniques to assess and evaluate the

“evolvability” of MDE settings are required.



24 Regina Hebig, Holger Giese

7.2.3 Refactoring

Beyond single evolution steps, there is the question of

the extent to which a strategic planning of evolution

can be used to reach long term goals. This includes

the option and task to plan refactoring of MDE set-

tings. During periods when requirements on the created

software are stable and resources are available, such a

refactoring can be used to correct negative side effects

of former evolution steps. For example, a goal might

be to improve the integration of different tools or to

decrease complexity for the developers.

7.2.4 Change Management

Finally, the observations on structural evolution not

only have implications for research, but also for prac-

tice. For example, the observations indicate that some-

times developers trigger and implement evolution steps

on MDE settings on their own initiative. Considering

the risks and potential that are associated with struc-

tural evolution, it might be a meaningful step to estab-

lish a management of change requests for MDE settings

within a company. Such a change management would

allow developers to contribute to the improvement of

the MDE settings, while the risk of uncoordinated evo-

lution of MDE settings can be reduced.

Acknowledgements First of all the authors appreciate the
valuable feedback of Florian Stallmann and Andreas Seibel,
who co-authored the conference paper [14]. We are also grate-
ful to the participants of our studies with SAP, Carmeq, VCat
and Capgemini and especially Axel Uhl, Cafer Tosun, Gregor
Engels, and Marion Kremer for their support in choosing the
case studies and for making this research possible. We are
thankful to Hannelore Liero and Hilmar Buchholz for hints
and feedback on the statistical analysis. Further we thank
the HPI Research School on Service-Oriented Systems Engi-
neering for funding parts of this research. Last but not least,
we want to thank the anonymous reviewers of this article for
their constructive feedback, which helped us to improve the
paper.

References

1. Appleton, B.: Patterns and Software: Essential Concepts
and Terminology. Object Magazine Online 3(9) (1997).
URL citeseer.ist.psu.edu/247320.html

2. Aschauer, T., Dauenhauer, G., Pree, W.: A modeling
language’s evolution driven by tight interaction between
academia and industry. In: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engi-
neering - Volume 2, ICSE ’10, pp. 49–58. ACM, New
York, NY, USA (2010)

3. Baker, P., Loh, S., Weil, F.: Model-Driven Engineering in
a Large Industrial Context – Motorola Case Study. In:
L. Briand, C. Williams (eds.) Model Driven Engineering

Languages and Systems, LNCS, vol. 3713, pp. 476–491.
Springer (2005)

4. Basili, V.R.: The role of experimentation in software en-
gineering: past, current, and future. In: Proceedings of
the 18th international conference on Software engineer-
ing, ICSE ’96. IEEE Computer Society, Washington, DC,
USA (1996)

5. Brown, W.H., Malveau, R.C., Mowbray, T.J.: AntiPat-
terns: refactoring software, architectures, and projects in
crisis. Wiley (1998)

6. Corrêa, C.K.F., Oliveira, T.C., Werner, C.M.L.: An anal-
ysis of change operations to achieve consistency in model-
driven software product lines. In: Proceedings of the 15th
International Software Product Line Conference, Volume
2, SPLC ’11, pp. 24:1–24:4. ACM, New York, NY, USA
(2011)

7. Deng, G., Lu, T., Turkay, E., Gokhale, A., Schmidt, D.C.,
Nechypurenko, A.: Model Driven Development of Inven-
tory Tracking System. In: Proceedings of the ACM OOP-
SLA Workshop on Domain-Specific Modeling Languages
(2003)

8. van Deursen, A., Visser, E., Warmer, J.: Model-Driven
Software Evolution: A Research Agenda. In: D. Tamzalit
(ed.) Proceedings 1st International Workshop on Model-
Driven Software Evolution (MoDSE), pp. 41–49. Uni-
versity of Nantes (2007). URL http://www.sciences.

univ-nantes.fr/MoDSE2007/

9. Favre, J.M.: Languages evolve too! Changing the Soft-
ware Time Scale. In: Proceedings of the Eighth Inter-
national Workshop on Principles of Software Evolution,
IWPSE ’05, pp. 33–44. IEEE Computer Society, Wash-
ington, DC, USA (2005)

10. Fleurey, F., Breton, E., Baudry, B., Nicolas, A., Jézéquel,
J.M.: Model-Driven Engineering for Software Migration
in a Large Industrial Context. In: G. Engels, B. Opdyke,
D. Schmidt, F. Weil (eds.) Model Driven Engineering
Languages and Systems, LNCS, vol. 4735, pp. 482–497.
Springer (2007)

11. Hebig, R., Gabrysiak, G., Giese, H.: Towards Patterns for
MDE-Related Processes to Detect and Handle Change-
ability Risks. In: 2012 International Conference on Soft-
ware and Systems Process (2012)

12. Hebig, R., Gabrysiak, G., Giese, H.: Towards Patterns for
MDE-Related Processes to Detect and Handle Change-
ability Risks. In: Proceedings of the 2012 International
Conference on on Software and Systems Process (2012)

13. Hebig, R., Giese, H.: MDE Settings in SAP. A Descrip-
tive Field Study . Tech. Rep. 58, Hasso-Plattner Institut
at the University of Potsdam (2012)

14. Hebig, R., Giese, H., Stallmann, F., Seibel, A.: On the
Complex Nature of MDE Evolution. In: A. Moreira,
B. Schaetz (eds.) Model Driven Engineering Languages
and Systems, 16th International Conference, MODELS
2013, LNCS. Springer, Miami, USA (2013)

15. Hebig, R., Seibel, A., Giese, H.: Toward a Comparable
Characterization for Software Development Activities in
Context of MDE. In: Proceedings of the 2011 Interna-
tional Conference on Software and Systems Process, IC-
SSP ’11, pp. 33–42. ACM, New York, NY, USA (2011).
URL http://doi.acm.org/10.1145/1987875.1987884

16. Herrmannsdoerfer, M., Vermolen, S.D., Wachsmuth, G.:
An extensive catalog of operators for the coupled evolu-
tion of metamodels and models. In: Software Language
Engineering, pp. 163–182. Springer (2011)

17. Hutchinson, J., Rouncefield, M., Whittle, J.: Model-
driven engineering practices in industry. In: Proceeding



On the Complex Nature of MDE Evolution and its Impact on Changeability 25

of the 33rd international conference on Software engineer-
ing, ICSE ’11, pp. 633–642. ACM, Waikiki, Honolulu, HI,
USA (2011)

18. Hutchinson, J., Whittle, J., Rouncefield, M., Kristof-
fersen, S.: Empirical assessment of MDE in industry.
In: Proceeding of the 33rd international conference on
Software engineering, ICSE ’11, pp. 471–480. ACM, New
York, NY, USA (2011). URL http://doi.acm.org/10.

1145/1985793.1985858

19. Johannes, J., Fernandez, M.: Adding Abstraction and
Reuse to a Network Modelling Tool Using the Reuseware
Composition Framework. In: T. Kühne, B. Selic, M.P.
Gervais, F. Terrier (eds.) Modelling Foundations and Ap-
plications, LNCS, vol. 6138, pp. 132–143. Springer (2010)

20. Karaila, M.: Evolution of a Domain Specific Language
and its engineering environment – Lehman’s laws revis-
ited. In: Proceedings of the 9th OOPSLA Workshop on
Domain-Specific Modeling (2009)

21. Karanam, M., Akepogu, A.: Model-Driven Software Evo-
lution: The Multiple Views. In: Proceedings of the In-
ternational MultiConference of Engineers and Computer
Scientists, vol. 1 (2009)

22. Khalil, A., Dingel, J.: Supporting the Evolution of UML
Models in Model Driven Software Development: A Sur-
vey. Tech. rep., School of Computing, Queen’s University
Kingston, Ontario, Canada (2013)

23. Lerner, B.S.: A model for compound type changes en-
countered in schema evolution. ACM Transactions on
Database Systems (TODS) 25(1), 83–127 (2000)

24. Mansurov, N., Campara, D.: Managed Architecture of
Existing Code as a Practical Transition Towards MDA.
In: N. Jardim Nunes, B. Selic, A. Rodrigues da Silva,
A. Toval Alvarez (eds.) UML Modeling Languages and
Applications, LNCS, vol. 3297, pp. 219–233. Springer
(2005)

25. Mart́ınez, Y., Cachero, C., Matera, M., Abrahao, S.,
Luján, S.: Impact of MDE approaches on the maintain-
ability of web applications: an experimental evaluation.
In: M. Jeusfeld, L. Delcambre, T.W. Ling (eds.) Proceed-
ings of the 30th international conference on Conceptual
modeling, ER’11, pp. 233–246. Springer-Verlag, Berlin,
Heidelberg (2011)

26. Mens, T., Blanc, X., Mens, K.: Model-Driven Software
Evolution: An alternative Research Agenda. In: The
6th BElgian-NEtherlands software eVOLution workshop
(BENEVOL 2007) (2007)

27. Meyers, B., Mannadiar, R., Vangheluwe, H.: Evolution
of Modelling Languages. In: 8th BElgian-NEtherlands
software eVOLution seminar (BENEVOL) (2009)

28. Meyers, B., Vangheluwe, H.: A framework for evolution of
modelling languages. Science of Computer Programming,
Special Issue on Software Evolution, Adaptability and
Variability 76(12), 1223 – 1246 (2011)

29. Mohagheghi, P., Gilani, W., Stefanescu, A., Fernandez,
M., Nordmoen, B., Fritzsche, M.: Where does model-
driven engineering help? Experiences from three indus-
trial cases. Software and Systems Modeling (2013)

30. Noy, N.F., Klein, M.: Ontology evolution: Not the same
as schema evolution. Knowledge and information systems
6(4), 428–440 (2004)

31. OMG: UML 2.0 Superstructure Specification. (2004)
32. Roddick, J.F.: Schema Evolution in Database Systems

- An Annotated Bibliography. SIGMOD record 21(4),
35–40 (1992)

33. Sadovykh, A., Vigier, L., Gomez, E., Hoffmann, A.,
Grossmann, J., Estekhin, O.: On Study Results: Round

Trip Engineering of Space Systems. In: R. Paige, A. Hart-
man, A. Rensink (eds.) Model Driven Architecture -
Foundations and Applications, LNCS, vol. 5562, pp. 265–
276. Springer (2009)

34. Seaman, C.: Qualitative methods in empirical studies of
software engineering. Software Engineering, IEEE Trans-
actions on, title=Qualitative methods in empirical stud-
ies of software engineering 25(4), 557–572 (1999)

35. Selic, B.: The Pragmatics of Model-Driven Development.
IEEE Software 20(5), 19–25 (2003). URL http://csdl.

computer.org/dl/mags/so/2003/05/s5019.pdf

36. Shirtz, D., Kazakov, M., Shaham-Gafni, Y.: Adopting
model driven development in a large financial organi-
zation. In: Proceedings of the 3rd European confer-
ence on Model driven architecture-foundations and ap-
plications, ECMDA-FA’07, pp. 172–183. Springer-Verlag,
Berlin, Heidelberg (2007)

37. Stammel, J., Durdik, Z., Krogmann, K., Weiss, R., Kozi-
olek, H.: Software Evolution for Industrial Automation
Systems: Literature Overview. Tech. rep., KIT, Fakultät
für Informatik (2011)

38. Vogel, R.: Practical case study of MDD infusion in a
SME: Final Results. In: D. Tamzalit, D. Deridder,
B. Schätz (eds.) Models and Evolution Joint MOD-
ELS09 Workshop on Model-Driven Software Evolution
(MoDSE) and Model Co-Evolution and Consistency
Management (MCCM),, pp. 68–78 (2009)

39. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Reg-
nell, B., Wesslén, A.: Experimentation in Software Engi-
neering : An Introduction. Kluwer Academic Publishers
(1999)

40. Yie, A., Casallas, R., Wagelaar, D., Deridder, D.: An
Approach for Evolving Transformation Chains. In:
A. Schürr, B. Selic (eds.) Model Driven Engineering
Languages and Systems, LNCS, vol. 5795, pp. 551–555.
Springer (2009)


