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Abstract. We assume that a message may be delivered by packets through multiple hops and inves-
tigate the feasibility and efficiency of an implementation of the Omega Failure Detector under such
assumption.

We prove that the existence and sustainability of a leader is exponentially more probable in a
multi-hop Omega implementation than in a single-hop one.

An implementation is: message efficient if all but finitely many messages are sent by a single
process; packet efficient if the number of packets used to transmit a message in all but finitely many
messages is linear w.r.t the number of processes, packets of different messages may potentially use
different channels, thus the number of used channels is not limited; super packet efficient if the number
of channels used by packets to transmit all but finitely many messages is linear.

With deterministic assumption, we prove the following. If reliability and timeliness of one mes-
sage does not correlate with another, i.e., there are no channel reliability properties, then a packet
efficient implementation of Omega is impossible. If eventually timely and eventually reliable channels
are allowed, we establish necessary and sufficient conditions for the existence of a message and packet
efficient implementation of Omega. We also prove that the eventuality of timeliness of reliability of
channels makes a super packet efficient implementation of Omega impossible.

On the constructive side, we present and prove correct a deterministic packet efficient algorithm in
a weaker model that allows eventually timely and fair-lossy channels.

1 Introduction

The asynchronous system model places no assumptions on message propagation delay or
relative process speeds. This makes the model attractive for distributed algorithm study
as the results obtained in the model are applicable to an arbitrary network and computer
architecture. However, the fully asynchronous system model is not well suited for fault
tolerance studies. An elementary problem of consensus, where processes have to agree
on a single value, is unsolvable even if only one process may crash [9]: the asynchrony of
the model precludes processes from differentiating a crashed and a slow process.

A failure detector [6] is a construct that enables the solution to consensus or related
problems in the asynchronous system model. Potentially, a failure detector may be very
powerful and, therefore, hide the solution to the problem within its specification. The
weakest failure detector specifies the least amount of synchrony required to implement
consensus [5]. One such detector is Omega4.

Naturally, a failure detector may not be implemented in the asynchronous model itself.
Hence, a lot of research is focused on providing the implementation of a detector, espe-
cially Omega, in the least restrictive communication model. These restrictions deal with

4 In literature, the detector is usually denoted by the Greek letter. However, we use the letter to denote low complexity
bound. To avoid confusion, we spell out the name of the failure detector in English.



timeliness and reliability of message delivery. Aguilera et al. [1] provide a remarkable
Omega implementation which requires only a single process to have eventually timely
channels to the other processes and a single process to have so called fair-lossy channels
to and from all other processes. Aguilera et al. present what they call an efficient im-
plementation where only a single process sends infinitely many messages. In their work,
Aguilera et al. consider a direct channel as the sole means of message delivery from one
process to another. In this paper, we consider a more general setting where a message may
arrive to a particular process through several intermediate processes.

Our contribution. We study Omega implementation under the assumption that a message
may come to its destination through other processes.

To motivate this multi-hop Omega implementation approach, we consider fixed prob-
ability of channel timeliness and study the probability of leader existence in a classic
single-hop and in multi-hop implementations. We prove that leader existence tends to
zero for single-hop implementations and to one for multi-hop ones as network size grows.
Moreover, the time of leader persisting across channel timeliness changes tends to zero
for single-hop and to infinity for multi-hop implementations.

In a deterministic setting, we consider three classes of Omega implementations: mes-
sage efficient, packet efficient and super packet efficient. In a message efficient imple-
mentation all but finitely many messages are sent by a single process. In a packet efficient
implementation, the number of packets in all but finitely many transmitted messages is
linear w.r.t. the number of processes in the network. However, in a (simple) packet effi-
cient implementation, packets of different messages may use different channels such that
potentially all channels in the system are periodically used. In a super packet efficient im-
plementation, the number of channels used in all but finitely many messages is also linear
w.r.t. to the number of processes.

Our major results are as follows. If timeliness of one message does not correlate with
the timeliness of another, i.e., there are no timely channels, we prove that any implementa-
tion of Omega has to send infinitely many messages whose number of packets is quadratic
w.r.t to the number of processes in the network. This precludes a packet efficient imple-
mentation of Omega. If eventually timely and reliable channels are allowed, we establish
necessary and sufficient conditions for the existence of a packet efficient implementation
of Omega. We then prove that this eventuality of timely and reliable channels precludes
the existence of a super packet efficient implementation of Omega.

On the constructive side, we present an algorithm that provides a message and packet
efficient implementation of Omega in an even weaker model than our necessary results
established: eventually timely and fair-lossy channels.

Related work. The implementation of failure detectors is a well-researched area [2, 3, 8,
11, 13, 12, 15, 16, 14, 17]. Refer to [1, 2] for detailed comparisons of work related to the
kind of Omega implementation we are proposing. We are limiting our literature review to
the most recent and closest to ours studies.

Delporte-Gallet et al. [8] describe algorithms for recognizing timely channel graphs.
Their algorithms are super packet efficient and may potentially be used to implement



Omega. However, their solutions assume non-constant size messages and perpetually reli-
able channels. That is, their algorithms will not operate correctly under eventually reliable
and eventually timely channel assumption.

Hutle et al. [11] implement Omega assuming a send-to-all message transmission prim-
itive where f processes are guaranteed to receive the message timely. Fernandez and Ray-
nal [2] assume a process that is able to timely deliver its message to a quorum of processes
over direct channels. This quorum and channels may change with each message. A sim-
ilar rotating set of timely channels is used by Malkhi et al. [14]. Larrea et al. [13] give
an efficient implementation of Omega but assume that all channels are eventually timely.
In their Omega implementation, Mostefaoui et al. [15] rely on a particular order of mes-
sage interleaving rather than on timeliness of messages. Biely and Widder [3] consider
message-driven (i.e., non-timer based) model and provide an efficient Omega implemen-
tation.

There are several recent papers on timely solutions to problems related to Omega im-
plementation. Charron-Bost et al. [7] use a timely spanning tree to solve approximate con-
sensus. Lafuente et al. [12] implement eventually perfect failure detector using a timely
cycle of processes.

2 Notation and Definitions

Model specifics. To simplify the presentation, we use a more general model than what
is often used in Omega implementation literature (cf., for example, [1]). The major dif-
ferences are as follows. Omega implementation code is expressed in terms of guarded
commands, rather than the usual more procedural description. The operation of the algo-
rithm is a computation which is a sequence of these command executions. We express
timeouts directly in terms of computation steps rather than abstract or concrete time. This
simplifies reasoning about them.

We do not differentiate between a slow process and a slow channel since slow channels
may simulate both. We use infinite capacity non-FIFO channels rather than traditionally
used single packet capacity channels. Our channel construct makes us explicitly state
the packet fairness propagation assumptions that are obscured somewhat by the single
capacity channels.

Despite the differences, the models are close enough such that all of the results in this
paper are immediately applicable to the traditional Omega implementation model.

Processes and computations. A computer network consists of a set N of processes. The
cardinality of this set is n. Each process has a unique identifier from 0 to n−1. Processes in-
teract by passing messages through non-FIFO unbounded communication channels. Each
process has a channel to all other processes. That is, the network is fully connected. A
message is constant size if the data it carries is in O(log n). For example, a constant size
message may carry several process identifiers but not a complete network spanning tree.

Each process has variables and actions. The action has a guard: a predicate over the
local variables and incoming channels of the process. An action is enabled if its guard
evaluates to true. A computation is a potentially infinite sequence of global network states



such that each subsequent state is obtained by executing an action enabled in the previous
state. This execution is a computation step. Processes may crash. Crashed process stops
executing its actions. Correct process does not crash.

Messages and packets. We distinguish between a packet and a message. Message is par-
ticular content to be distributed to processes in the network. Origin is the process that
initiates the message. Origin identifier is included in the message. Messages are sent via
packets. Packet is a portion of data transmitted over a particular channel. A message is
the payload of a packet. A process may receive a packet and either forward the message
it contains or not. A process may not modify it: if a process needs to send additional in-
formation, the process may send a separate message. A process may forward the same
message at most once. In effect, a message is transmitted to processes of the network us-
ing packets. A particular process may receive a message either directly from the origin,
or indirectly possibly through multiple hops.

Scheduling and fairness. We express process synchronization in terms of an adversar-
ial scheduler. The scheduler restrictions are as follows. We do not distinguish slow pro-
cesses and slow packet propagation. A scheduler may express these phenomena through
scheduling process action execution in a particular way. A packet transmission imme-
diately enables the packet receipt action in the recipient process. A packet is lost if the
receipt action is never executed. A packet is not lost if it is eventually received.

Reliable and timely messages and packets. A packet is reliable if it is received. A message
is reliable if it is received by every correct process. A channel is reliable if every packet
transmitted over this channel is reliable. A channel is eventually reliable if the number of
packets it loses is finite. Note that a channel that has a finite number of packets to transmit
is always eventually reliable.

Less strict assumptions than eventual reliability may be placed on a channel. A chan-
nel is fair-lossy if it has the following properties. If there is an infinite number of packet
transmissions over a particular fair-lossy channel of a particular message type and origin,
then infinitely many are received. If there is an infinite number of message transmissions
of a particular message type and origin over paths that are fair-lossy, then infinitely many
succeed. Note that an eventually reliable channel is fair-lossy.

A packet is timely if it is received within a bounded number of computation steps.
Specifically, there is a finite integer B such that the packet is received within B steps.
Naturally, a timely packet is a reliable packet. A message is timely if it is received by
every process via a path of timely packets. A channel is timely if every packet transmitted
over this channel is timely. A channel is eventually timely if the number of non-timely
packets it transmits is finite. Note that a channel that transmits a finite number of packets
is always eventually timely.

The timely channel definition is relatively clear. The opposite, non-timely channel, is
a bit more involved. A channel that occasionally misses a few packets is not non-timely as
the algorithm may just ignore the missed packets with a large enough timeout. Hence, the
following definition. A channel is non-timely if the following holds. If there is an infinite



number of packet transmissions of a particular type and origin over a particular non-timely
channel, then for any fixed integer, there are infinitely many computation segments of this
length such that none of the packets are delivered inside any of the segments.

Similarly, the non-timeliness has to be preserved across multiple channels, a message
may not gain timeliness by finding a parallel timely path, then, for example, the two paths
may alternate delivering timely messages. Therefore, we add an additional condition for
non-timeliness. A path is non-timely if it contains at least one non-timely channel. If there
is an infinite number of message transmission of a particular type and origin over non-
timely paths, then for any finite integer B, there are infinitely many computation segments
of this length such that none of the packets are delivered inside any of the segments.

Communication models. To make it easier to address the variety of possible communica-
tion restrictions, we define several models. The dependable (channel) model allows reli-
able or timely channels. In the dependable model, an algorithm may potentially discover
the dependable channels by observing packet propagation. The eventually dependable
model allows eventually reliable and eventually timely channels. The fair-lossy model al-
lows fair-lossy channels. The general propagation model does not allow either reliable or
timely channels. Thus, one message propagation is not related to another message propa-
gation.

We introduced the communication models in the order of diminishing strength. If
an impossibility result applies to a stronger model, it also applies to a weaker model.
Conversely, if an algorithm solves a problem in a weaker model, it solves it in a stronger
model as well.

Timers. Timer is a construct with the following properties. A timer can be reset, stopped
and increased. It can also be checked whether the timer is on or off. It has a timeout
integer value and a timeout action associated with it. A timer is either a receiver timer or
a sender timer. If a sender timer is on, timeout action is executed once the computation
has at most the timeout integer steps without executing the timer reset. If a receiver timer
is on, the timeout action is executed once the computation has at least the timeout integer
steps without executing the timer reset. Increasing the timer, adds an arbitrary positive
integer value to the timeout integer. An off timer can be set to on by resetting it.

Message propagation graph. Message propagation graph is a directed graph over net-
work processes and channels that determines whether packet propagation over a particular
channel would be successful. This graph is connected and has a single source: the origin
process. This concept is a way to reason about scheduling of the packets of a particular
message.

Each message has two propagation graphs. In reliable propagation graph R, each edge
indicates whether the packet is received if transmitted over this channel. In timely propa-
gation graph T each edge indicates whether the packet is timely if transmitted over this
channel. Since a timely packet is a reliable packet, for the same message, the timely prop-
agation graph is a subgraph of the reliable propagation graph. In general, a propagation
graph for each message is unique. That is, even for the same source process, the graphs



for two messages may differ. This indicates that different messages may take divergent
routes.

If a channel from process x to process y is reliable, then edge (x, y) is present in the
reliable propagation graph for every message where process x is present. In other words,
if the message reaches x and x sends it to y, then y receives it. A similar discussion applies
to a timely channel and corresponding edges in timely propagation graphs.

Propagation graphs are determined by the scheduler in advance of the message trans-
mission. That is, the recipient process, depending on the algorithm, may or may not for-
ward the received message along a particular outgoing channel. However, if the process
forwards the message, the presence of an edge in the propagation graph determines the
success of the message transmission. Note that the process forwards a particular message
at most once. Hence, the propagation graph captures the complete possible message prop-
agation pattern. A process may crash during message transmission. This crash does not
alter propagation graphs.

Proposition 1. A message is reliable only if its reliable propagation graph R is such that
every correct process is reachable from the origin through non-crashed processes.

Proposition 2. A message is timely only if its timely propagation graph T is such that
every correct process is reachable from the origin through non-crashed processes.

Omega implementation and its efficiency. An algorithm that implements the Omega Fail-
ure Detector (or just Omega) is such that in a suffix of every computation, each correct
process outputs the identifier of the same correct process. This process is the leader.

An implementation of Omega is message efficient if the origin of all but finitely many
messages is a single correct process and all but finitely many messages are constant size.
An implementation of Omega is packet efficient if all but finitely many messages are
transmitted using O(n) packets.

An omega implementation is super packet efficient if it is packet efficient and the
packets of all but finitely many messages are using the same channels. In other words, if a
packet of message m1 is forwarded over some channel, then a packet of another message
m2 is also forwarded over this channel. The intent of a super packet efficient algorithm is
to only use a limited number of channels infinitely often.

3 Probabilistic Properties

In this section, we contrast a multi-hop implementation of Omega and a classic single-
hop, also called direct channel, implementation. We assume each network channel is
timely with probability p. The probability of timeliness of each channel is independent.

Leader existence. The leader exists only if there is a process that has timely paths to all
processes in the network. In case of a single-hop implementation, each path’s length must
be one.

As n grows, Omega implementations behave radically differently. Theorems 1 and 2
show that the probability of leader existence exponentially fast approaches zero for direct



channel implementation and exponentially fast approaches one for multi-hop implemen-
tation. In practical terms, a multi-hop omega implementation is far more likely to succeed
establishing a leader.

Theorem 1. If the probability of each channel to be timely is p < 1, then the proba-
bility of leader existence in any direct channel Omega implementation approaches zero
exponentially fast as n grows.

Proof: Let Dx be the probability that some process x does not have direct timely chan-
nels to all processes in the network. This probability is P(Dx) = 1 − pn−1. For two distinct
processes x and y, Dx and Dy are disjoint since channels are oriented. Thus, if p < 1, the
probability that no leader exists is P(

⋂
x∈V Dx) = (1 − pn−1)n n→+∞

→ 1. �

Theorem 2. If the probability of each channel to be timely is p < 1, then the probability
of leader existence in any multi-hop Omega implementation approaches 1 exponentially
fast as n grows.

Proof: A channel is bitimely if it is timely in both directions. The probability that there
exists at least one process such that there exist timely paths from this process to all other
processes is greater than the probability to reach them through bitimely paths. We use the
probability of the latter as a lower bound for our result. If p is the probability of a channel
to be timely, p̃ = p2 is the probability that it is bitimely. Consider graph G where the
edges represent bitimely channels. It is an Erdos-Renyi graph where an edge exists with
probability p̃. It was shown (see [10]) that P(G is connected) ∼ 1 − n(1 − p̃)n−1 n→+∞

→ 1. �

Leader stability. Assume the leader has timely paths to all other processes in the net-
work. If channel timeliness changes, this process may not have timely paths to all other
processes anymore. Leader stability time is the expected number of rounds of such chan-
nel timeliness change where a particular process remains the leader.

Again, direct channel and multi-hop implementations of Omega behave differently.
Direct channel leader stability time approaches 0 as n increases and cannot be limited
from below by fixing a particular value of channel timeliness probability. Multi-hop leader
stability goes to infinity exponentially quickly. In a practical setting, a leader is signifi-
cantly more stable in a multi-hop Omega implementation than in a direct channel one.

Theorem 3. In any direct channel Omega implementation, if the probability of each
channel to be timely is p < 1, leader stability time goes exponentially fast to 0 as n
grows. If leader stability time is to remain above a fixed constant E > 0, then the channel
timeliness probability p must converge to 1 exponentially fast as n grows.

Proof: At a given time, a given process has timely channels to all other processes with
probability pn−1. The number of rounds X a given process retains timely paths to all other
processes follows a geometric distribution P(X = r) = qr(1 − q), where q = pn−1. Thus,
the expected number of rounds a process retains timely channels to all other processes is

q
1−q =

pn−1

1−pn−1 ∼ pn−1, which tends exponentially fast toward 0 if p is a constant less than 1.



Assume E(X) converges towards a given fixed number E as n tends towards infinity.
That is, we need limn→∞ P(G is connected) = 1

E+1 . Then, pn−1 tends to 1
E+2 , which implies

that p converges towards 1 exponentially fast. �

Theorem 4. In any multi-hop Omega implementation, if the probability of each channel
to be timely is p < 1, leader stability time goes to infinity exponentially fast as n grows.
If leader stability time is to remain above a fixed constant E > 0, then channel timeliness
probability may converge to 0 exponentially fast as n grows.

Proof: If we fix p̃, 0 < p̃ < 1, we have P(G is connected) ∼ 1 − n(1 − p̃)n−1 (see [10]).
Then, the expected number of rounds a given process retains timely paths to all other
processes is asymptotically n−1

(
1

1−p̃

)n
, which increases exponentially fast.

Assume E(X) converges towards a given fixed number E as n tends to infinity. This
means that

lim
n→∞
P(G is connected) =

1
E + 1

= e−e−c

Using well-known results of random graph theory [4], we can take

p̃(n) =
ln n
n

+
c
n

=
ln n
n
−

ln ln (1 + E)
n

�

4 Necessity and Sufficiency Properties

Properties applicable to all communication models.

Theorem 5. In an implementation of Omega, at least one correct process needs to send
infinitely many timely messages.

Proof: AssumeA is an implementation of Omega where every correct process sends a
finite number of timely messages. Start with a network where all but two processes x and
y crash, wait till all timely messages are sent. Since A is an implementation of Omega,
eventually x and y need to agree on the leader. Let it be x. Since all timely messages are
sent, the remaining messages may be delayed arbitrarily. If x now crashes, process y must
eventually elect itself the leader. Instead, we delay message from x to y. The crash and
the delay are indistinguishable to y so it elects itself the leader. We now deliver messages
in an arbitrary manner. Again, since A implements Omega, x and y should agree on the
leader. Let it be y. The argument for x is similar. We then delay messages from y to x
forcing x to select itself the leader. We continue this procedure indefinitely. The resultant
sequence is a computation ofA. However at least one process, either x or y, oscillates in
its leader selection infinitely many times. To put another way, this process never elects the
leader. This means that, contrary to the initial assumption,A is not an implementation of
Omega. This proves the theorem. �

By definition, only a single process sends an infinite number of messages in a message
efficient implementation of Omega. This process must be the leader. Otherwise processes
are not able to recognize the crash of the leader. Hence, the corollary of Theorem 5.



Corollary 1. In a message efficient implementation of Omega, the leader must send in-
finitely many timely messages.

Theorem 6. In any message efficient implementation of Omega, each correct process
must be able to send infinitely many reliable messages.

Proof: Assume there is a message-efficient implementation A of Omega where there
is a correct process x that sends only finitely many reliable messages. According to Corol-
lary 1, x may not be elected the leader.

Assume there is a computation σ1 of A where process y , x is elected the leader.
Consider another computation σ2 of A which shares a prefix with σ1 until x sends the
last of its reliable messages. Assume that every message from y to x is lost after this
prefix. Possibly, another process is capable of communicating with all processes including
x. However, since A is an efficient implementation of Omega, no other process sends
messages.

Since x is unable to send reliable messages, the two computations are indistinguish-
able to the correct processes other than x. Therefore, they elect y as the leader. However, x
receives no messages from any other process. To x, this is similar to a computation where
all other processes crash. Therefore, x elects itself the leader. However, this means that
in A correct processes output different leaders. That is, A is not an implementation of
Omega. �

General propagation model properties.

Lemma 1. To timely deliver a message in the general propagation model, each recipient
process needs to send it across every outgoing channel, except for possibly the channels
leading to the origin.

Proof: Assume the opposite. There exists an algorithmA that timely delivers message
m from the origin x to all processes in the network such that some process y receives it
timely yet does not forward it to some process z , x.

Consider the propagation graph T for m to be as follows.

x→ y→ z→ rest of the processes

That is, the timely paths to all processes lead from x to y then to z. If A is such that x
sends m to y, then, by assumption, y does not forward m to z. Therefore, no process except
for y gets m through timely packets. By definition of the timely message, m is not timely
received by these processes. If x does not send m to y, then none of the processes receive
a timely message. In either case, contrary to the initial assumption, A does not timely
deliver m to all processes in the network. �

The below corollary follows from Lemma 1.

Corollary 2. It requires Ω(n2) packets to timely deliver a message in the general propa-
gation model.

Combining Corollary 2 and Theorem 5 we obtain Corollary 3.



Corollary 3. In the general propagation model, there does not exist a message and packet
efficient implementation of Omega.

Proposition 3. There exists a message efficient implementation of Omega in the general
propagation model where each correct process is capable of sending reliable messages.

The algorithm that proves the above proposition is a straightforward extension of the
second algorithm in Aguilera et al. [1] where every process re-sends received messages
to every outgoing channel.

Dependable and eventually dependable channel model properties. In the dependable
channel model, a source is a process that does not have incoming timely channels.

Lemma 2. To timely deliver a message in the dependable channel model, each recipi-
ent needs to send it across every outgoing channel to a source, except for possibly the
channels leading to the origin.

The proof of the above lemma is similar to the proof of Lemma 1. Observe that
Lemma 2 states that the timely delivery of a packet requires n messages per source. If
the number of sources is proportional to the number of processes in the network, we
obtain the following corollary.

Corollary 4. It requires Ω(n2) packets to timely deliver a message in the dependable
channel model where the number of sources is proportional to n.

Theorem 7. In the eventually dependable channel model, the following conditions are
necessary and sufficient for the existence of a packet and message efficient implementation
of Omega: (i) there is at least one process l that has an eventually timely path to every
correct process (ii) every correct process can send infinitely many reliable messages.

Proof: We demonstrate sufficiency by presenting, in the next section, an algorithm that
implements Omega in the fair-lossy channel communication model and the conditions
of the theorem. The fair-lossy model is weaker than the eventually dependable channel
model. Hence, the existence of the algorithm in the fair-lossy model demonstrates suffi-
ciency in the dependable channel model.

We now focus on proving necessity. Let us address the first condition of the theo-
rem. Assume there is a message and packet efficient implementation A of Omega in the
eventually reliable channel model even though no process has eventually timely paths to
every correct process. Let there be a computation of A where some process x is elected
the leader even though x does not have a timely path to some processes. According to
Corollary 1, x needs to send infinitely many timely messages. According to Corollary 4,
each such message requires Ω(n2) packets. That is,A may not be message and packet ef-
ficient. This proves the first condition of the theorem. The second condition follows from
Theorem 6. �

Theorem 8. There does not exist a message and super packet efficient implementation
of Omega in the eventually dependable communication model even if there is a process l
with an eventually timely path to every correct process and every correct process is able
to eventually send reliable messages to l.



Proof: Assume the opposite. Suppose there exists a super packet efficient algorithm
A that implements Omega in the network where some process l has an eventually timely
path to all correct processes and every correct process can reliably pass messages to l.

Without loss of generality, assume the number of processes in the network is even.
Divide the processes into two sets S 1 and S 2 such that the cardinality of both sets is n/2.
Refer to Figure 1 for illustration. S 1 is completely connected by timely channels. Simi-
larly, S 2 is also completely connected by timely channels. The dependability of channels
between S 1 and S 2 is immaterial at this point.

S1

yl1
l2

x

S2

wz

timely
component

timely 
component

leader
leader

eventually
timely channel

eventually
reliable channel

Fig. 1. Network for σ3 computation of Theorem 8.

Consider a computation σ1 of A on this network where all processes in S 1 are cor-
rect and all processes in S 2 crashed in the beginning of the computation. Since A is an
implementation of Omega, one process l1 ∈ S 1 is elected the leader. Since A is message
efficient, only l1 sends messages infinitely often. Since A is super packet efficient, only
O(n) channels carry theses messages infinitely often. Since the network is completely
connected, there are (n/2)2 channels leading from S 1 to S 2. This is in O(n2). Thus, there
is least one channel (x, y) such that x ∈ S 1 and y ∈ S 2 that does not carry messages from
l1 infinitely often.

Let us consider a computation σ2 of A where all processes S 2 are correct and all
processes in S 1 crash in the beginning of the computation. Similar to σ1, there is a process
l2 ∈ S 2 that is elected the leader in σ2, and there is a channel (z,w) such that z ∈ S 2 and
w ∈ S 1 that carries only finitely many messages of l2.

We construct a computation σ3 of A as follows. All processes are correct. Channel
dependability inside S 1 and S 2 is as described above. All channels between S 1 and S 2

are completely lossy, i.e., they lose every transmitted message. An exception is channel
(x, y) that becomes timely as soon as it loses the last message it is supposed to transmit.
Similarly, channel (z,w) becomes reliable as soon as it loses the last message.

To construct σ3, we interleave the actions of σ1 and σ2 in an arbitrary manner. Ob-
serve that to processes in S 1 computations σ1 and σ3 are indistinguishable. Similarly, to
processes in S 2, the computations σ2 and σ3 are indistinguishable.

Let us examine the constructed computation closely. Sets S 1 and S 2 are completely
connected by timely channels, and (x, y), connecting S 1 and S 2 is eventually timely. This
means that l1 has an eventually timely path to every correct process in the network. More-



over, due to channel (z,w), every process has a reliable path to l1. That is, the conditions
of the theorem are satisfied. However, the processes of S 1 elect l1 as their leader while the
processes of S 2 elect l2. This means that the processes do not agree on the single leader.
That is, contrary to the initial assumption A is not an implementation of Omega. The
theorem follows. �

5 Message and Packet Efficient Implementation of Omega

In this section we present an algorithm we callMPO that implements Omega in the fair-
lossy channel communication model. As per Theorem 7, we assume that there is at least
one process that has an eventually timely path to every correct process in the network and
every correct process has a fair-lossy path to this process.

Algorithm outline. The code of the algorithm is shown in Figure 2. The main idea of
MPO is for processes to attempt to claim the leadership of the network while discover-
ing the reliability of its channels. Each process weighs each channel by the number of
messages that fail to come across it. The lighter channel is considered more reliable. If a
process determines that it has the lightest paths to all processes in the network, the process
tries to claim leadership of the network.

The leadership is obtained in phases. First, the leader candidate sends startPhase mes-
sage. Then, the candidate periodically sends alive message. In case an alive fails to reach
one of the processes on time, the recipient replies with failed. The size of startPhase
depends on the network size. The size of the other message types is constant.

The routes of the messages vary. Messages that are only sent finitely many times
are broadcast: sent across every channel in the network. Once one process receives such
a message for the first time, the process re-sends it along all of its outgoing channels.
Specifically, startPhase, stopPhase and failed are broadcast. The leader sends alive in-
finitely often. Hence, for the algorithm to be packet efficient, alive has to be sent only
along selected channels. Message alive is routed through the channels that the origin be-
lieves to be the most reliable.

Specifically, alive is routed along the channels of a minimum weight arborescence: a
directed tree rooted in the origin reaching all other processes. The arborescence is com-
puted by the origin once it claims leadership. It is sent in the startPhase that starts a
phase. Once each process receives the arborescence, the process stores it in the arbs array
element for the corresponding origin. After receiving alive from a particular origin, the
recipient consults the respective arborescence and forwards the message to the channels
stated there.

In addition to routing alive along the arborescence, each process takes turns sending
the leader’s alive to all its neighbors. The reason for this is rather subtle: see Theorem 8
for details. Due to crashes and message losses, arbs for the leader at various processes
may not reach every correct process. For example, it may lead to a crashed process. Thus,
some processes may potentially not receive alive and, therefore, not send failed. Since
failed are not sent, the leader may not be able to distinguish such a state from a state with
correct arbs.



constants
p // process identifier
N // set of network process identifiers, cardinality is n
timers[p] length is TO

variables
leader, initially ⊥ // local leader
phases[n], initially zero // current phase number
edges[n][n], initially zero // edge fault weights
arbs[n], initially arbitrary // arborescences
timers[n], initially timers[p] on, others off

length of timers[x] : x , p is arbitrary // timer to send/receive a message
shout, initially zero // process id to send alive to all neighbors

actions
timeout(timers[q]) −→

if p = q then // own/sender timeout
newArb = arborescence(edges, p) // compute arb rooted in p based on edges
newLeader := minWeight((arbs[r] : r , p : on(timers[r])), newArb))
if leader , newLeader then // leadership changes

if newLeader = p then // p gains leadership
arbs[p] := newArb
send startPhase(p, phases[p], arbs[p]) to N/p

if leader = p then // p loses leadership
phases[p] := phases[p] + 1
send stopPhase(p, phases[p]) to N/p

leader := newLeader

else // leadership persists
if leader = p then

shout := shout + 1 mod n
if shout , p then

send alive(p, phases[p], shout) to arbs[p](p.children)
else // my turn to shout

send alive(p, phases[p], shout) to N/p
reset(timers[p]) // own timer never off

else // neighbor timeout/receiver timeout, assume failed, increase, do not reset
send f ailed(q, p, arbs[q](p.parent)) to N/p
increase(timers[q])

receive startPhase(q, phase, arb) for the first time −→
if p , q ∧ phases[q] ≤ phase then // if new phase, propagate message, reset timer

arbs[q] := arb
phases[q] := phase
send startPhase(q, phase, arb) to N/p
reset(timers[q])

receive stopPhase(q, phase) for the first time −→
if p , q ∧ phase[q] < phase then

phases[q] := phase
send stopPhase(q, phase) to N/p
stop(timers[q])

receive alive(q, phase, sh) for the first time from r −→
if p , q ∧ phase[q] = phase then

if r = arbs[q](p.parent) then // received through arborescence
if sh , p then

send alive(q, phase, sh) to arbs[q](p.children)
else // my turn to shout

send alive(q, phase, sh) to N/p
reset(timers[q])

else // received from elsewhere
if off (timers[q]) then

reset(timers[q])

receive f ailed(q, r, s) for the first time −→
if p = q then // if p’s alive failed

edges[s][r] := edges[s][r] + 1 // increase weight of edge from parent
else

send f ailed(q, r, s) to N/p

Fig. 2. Message and packet efficient implementation of OmegaMPO.



To ensure that every process receives alive, each process, in turn, sends alive to its
every neighbor rather than along most reliable channels. Since only a single process sends
to all neighbors a particular alive message, the packet complexity remains O(n).

Message failed is sent if a process does not receive a timely alive. This message carries
the parent of the process which was supposed to send the alive. That is, the sender of failed
blames the immediate ancestor in the arborescence. Once the origin of the missing alive,
receives failed, it increments the weight of the appropriate edge in edges that stores the
weights of all channels. If a process has timely outgoing paths to all processes in the
network, its arborescence in edges convergences to these paths.

Action specifics. The algorithm is organized in five actions. The first is a timeout action,
the other four are message-receipt actions.

The timeout action handles two types of timers: sender and receiver. Process p’s own
timer (q = p) is a sender timer. It is rather involved. This timer is always on since the
process resets it after processing. First, the process computes the minimum weight of the
arborescence for each leader candidate. A process is considered a leader candidate if its
timer is on. Note that since p’s own timer is always on, it is always considered.

The process with the minimum weight arborescence is the new leader. If the lead-
ership changes (leader , newLeader), further selection is made. If p gains leadership
(newLeader = p), then p starts a new phase by updating its own minimum-weight ar-
borescence and broadcasting startPhase. If p loses leadership, it increments its phase and
broadcasts stopPhase bearing the new phase number.

If the leadership persists (leader = newLeader) and p is the leader, it sends alive.
Process p keeps track of whose turn it is to send alive to all its neighbors in the shout
variable. The variable’s value rotates among the ids of all processes in the network.

The neighbor timer (q , p) is a receiver timer. If the process does not get alive on
time from q, then p sends failed. In case the process sends failed, it also increases the
timeout value for the timer of q thus attempting to estimate the channel delay.

For our algorithm, the timer integers are as follows. The sender timer is an arbitrary
constant integer value TO. This value controls how often alive is sent. It does not affect
the correctness of the algorithm. Receiver timers initially hold an arbitrary value. The
timer integer is increased every time there is a timeout. Thus, for an eventually timely
channel, the process is able to estimate the propagation delay and set the timer integer
large enough that the timeout does not occur. For untimely channels, the timeout value
may increase without bound.

The next four actions are message receipt handling. Note that a single process may
receive packets carrying the same message multiple times across different paths. However,
every process handles the message at most once: when it encounters it for the first time.
Later duplicate packets are discarded.

The second action is startPhase handling. The process copies the arborescence and
phase carried by the message, rebroadcasts it and then resets the alive receiver timer
associated with the origin process. The third action is the receipt of stopPhase which
causes the recipient to stop the appropriate timer.



The forth action is alive handling. If alive is the matching phase, it is further con-
sidered. If alive comes through the origin’s arborescence, the receiver sends alive to its
children in the origin’s arborescence or broadcasts it. The process then resets the timer
to wait for the next alive. If alive comes from elsewhere, that is, it was the sender’s turn
to send alive to all its neighbors, then p just resets the timeout and waits for an alive to
arrive from the proper channel. This forces the process to send failed if alive does not
arrive from the channel of the arborescence.

The last action is failed handling. If failed is in response to an alive originated by this
process (p = q) then the origin process increments the weight of the edge from the parent
of the reporting process to the process itself according to the message arborescence. If
failed is not destined to this process, p rebroadcasts it.

Correctness proof definitions. Throughout this section, l is the identifier of the process
that has eventually timely paths to all other processes. For simplicity, we assume that l is
the single such process. Denote B as the maximum number of steps in any timely channel
propagation delay. Process p is a local leader if leaderp = p, i.e., the process elected itself
the leader. A process may be a local leader but not the global leader. That is, several pro-
cesses may be local leaders in the same state. Let realArbs(x) for the origin process x be
the relation defined by arbs[x](y.children) at every process y. That is, realArbs(x) is the
distributed relation that determines how alive messages are routed if they are originated
by x.

Lemma 3. For any local leader process x and another correct process y such that y is not
reachable from x through timely channels over correct processes in realArbs(x), either (i)
realArbs(x) changes or (ii) x loses leadership, changes phase or receives infinitely many
failed messages.

Proof: To prove the lemma, it is sufficient to show that if realArbs(x) does not change
and x does not lose the leadership or change phase, then x receives infinitely many failed.

Let S be a set of correct processes that are reachable from x through timely channels
and through correct processes in realArbs(x). Since y is not reachable from x, S , N.
Recall that every process has fair-lossy paths to all processes in the network. Therefore,
there is such a path from x to y. This means that there is a process z ∈ S such that it has a
fair-lossy channel to w < S .

Let us examine process w closer. The network is completely connected. Therefore,
all other processes from S have channels to w. Note that at least one channel, from z is
fair-lossy. Moreover, since w does not belong to S , if realArbs(x) reaches w, the path to
w is not timely.

Since x is a local leader and does not lose its leadership, it sends infinitely many alive
messages. Other processes forward these alive along realArbs(x). Also, by the design of
the algorithm, every process takes turn sending alive to all of its neighbors rather than
forwarding it along realArbs(x). Let us examine the receipt of these messages by w.

Process z belongs to S . That is, the path from x to z in realArbs(x) is timely. This
means that it receives and sends infinitely many alive originated by x. Since the channel
from z to w is fair-lossy, infinitely many of these alive are delivered to w. In addition, w



possibly receives alive from other processes of S . Since, none of these channels are part
of realArbs(x), when w receives alive from processes in S , it resets the corresponding
receive timer only when the timer is off. The timer is turned off only when the timeout is
executed and failed is broadcast.

The only possible way this receive timer is reset without the timeout action execu-
tion is when w receives alive through realArbs(x). However, the path from x to w in
realArbs(x) is not timely. By the definition of non-timely paths, there are infinitely many
computation segments of arbitrary fixed length where no alive from x is delivered to w.
This means that, regardless of the timeout variable value at w, the alive messages gener-
ate receiver timeouts. That is, infinitely many timeouts are executed at w. Each timeout
generates a failed message broadcast by w. Since there are infinitely many broadcasts,
infinitely many succeed in reaching x. Hence, the lemma. �

Lemma 4. If each process x , l is a local leader in infinitely many states then it receives
infinitely many failed messages.

Proof: Let x , l be a local leader in infinitely many states of a particular computation
of the algorithm. Once a process assumes local leadership, it may lose it either by (i) in-
creasing the weight of its minimum weight arborescence (ii) by recording an arborescence
arbs[y] for a process y with lower weight than arbs[x].

A process increases the weight of its arborescence only when it gets a failed message.
Thus, to prove the lemma we need to consider the second case only.

Since x is a local leader in infinitely many states, it must gain local leadership back
after losing it to another process y. By the design of the algorithm, the weight of the ar-
borescence of any process in arbs may only increase. This means that once x gains the
leadership back from y, x may not lose it to y again without increasing the weight of its
own minimum weight arborescence. Thus, either x increases the weight of its arbores-
cence or, eventually, it has the lightest arborescence among the leader candidates.

In case x has the lightest arborescence, it either becomes heavier than some other
leader candidate’s or x gets an infinitely many failed. However, only the latter part of the
statement needs to be proven since x gains leadership infinitely often.

If x is a local leader, it does not send startPhase or stopPhase. Let us consider the
state where all startPhase packets are delivered. In this case realArbs(x) does not change.
Since x , l, even if all correct processes are reachable from x in realArbs(x), some links
in realArbs(x) are not timely. Then, according to Lemma 3, x gets infinitely many failed.

To summarize, if x , l is a local leader in infinitely many states, it receives infinitely
many failed. �

Lemma 5. Process l is a local leader in infinitely many states.

Proof: According to Lemma 4 either each process x , l stops gaining local leadership
or the weight of its minimum arborescence grows infinitely high. If the latter is the case,
x has to gain and lose local leadership infinitely often. In this case, it sends startPhase
infinitely may times. Message startPhase is broadcast. Since every process x has fair-
lossy paths to l, by the definition of fair-lossy paths, infinitely many broadcasts succeed.



This means that the weight of arbs[x] at l grows without bound. Therefore, if l loses local
leadership, it gains it back infinitely often. �

The below lemma follows immediately from the operation of the algorithm.

Lemma 6. The timer length of timers[l] at every process either stops increasing or it
reaches TO + B ∗ (n − 1)

And the below lemma follows from the assumption that the leader has an eventually
timely path to every correct process.

Lemma 7. In every computation, there is a suffix where each broadcast message sent by
l is timely delivered to every correct process.

Lemma 8. An edge leading to process x in a timely path in realArbs(l) at l generates
only finitely many failed.

Proof: The origin starts every phase with startPhase, then periodically sends zero or
more alive and then possibly ends the phase with a stopPhase that carries the phase num-
ber greater than alive and startPhase.

Message failed is generated only when the timer expires at the receiving process. The
timer is reset by startPhase and alive. The timer is stopped by stopPhase.

We prove the lemma by showing that the timer reset by messages of a particular
phase expires only finitely many times. We start our consideration from the point of the
computation where the conditions of Lemmas 6 and 7 hold.

Only alive and startPhase may reset the timeout. Since the conditions of Lemma 7
hold, startPhase is delivered within B(n− 1) computation steps to all processes. Message
alive may be received earlier than startPhase. However, since such alive carries a phase
number that differs from the number stored at the recipient process, the message is ig-
nored. If alive arrives after startPhase, the reasoning is similar to the case where alive is
sent after startPhase which is to be considered next.

Every alive sent after startPhase delivery, travels over the timely path in realArbs(l).
At most every TO number of steps, either another alive or stopPhase is sent. Since the
path in realArbs(l) is timely, alive arrives at most after TO + B(n − 1) steps. Due to
Lemma 7, the same is true of stopPhase. That is, after alive is received, either another
alive or stopPhase is received within TO + B(n − 1) steps. The receipt of alive resets the
timeout. The receipt of stopPhase stops it. Due to Lemma 6, the timer does not expire.

Moreover, after the receipt of stopPhase, the subsequent alive messages are ignored
since stopPhase carries a greater phase number. That is, after stopPhase is received, the
timer is never reset or expires due to the messages of this phase. �

Lemma 9. Every untimely edge in realArbs(l) leading to a correct process either gets
removed or l gets infinitely many failed messages.

Proof: Due to Lemma 5, process l is a local leader in infinitely many states. Through
the argument similar to that of Lemma 4, we can show that eventually either l gets failed



and increases the weight of its minimum arborescence or its minimum arborescence be-
comes the lightest among the leader candidates. Then, l can lose leadership only if it gets
failed.

In this case, according to Lemma 3 l receives infinitely many failed messages or ei-
ther loses leadership, changes phase or changes realArbs(l). Observe that l may change
phase only when it receives failed. It loses leadership only if it gets failed. The change of
realArbs(l) happens only when l broadcasts startPhase after changing phase and, there-
fore, getting failed. Due to Lemma 5, it gains the leadership back infinitely often.

That is, in any case, as long as realArbs(l) contains an untimely edge leading to a
correct process, l gets infinitely many failed. �

The below lemma follows from Lemmas 8 and 9.

Lemma 10. Every computation ofMPO contains a suffix where each channel of realArbs(l)
is timely.

Lemma 11. Every computation ofMPO contains a suffix where realArbs(l) is the same
as arbs[l] in process l.

Proof: We start our consideration from the point where the conditions of Lemma 10
hold. Suppose realArbs(l) and arbs[l] differ for some process x. By the design of the
algorithm, this may happen only if arbs[l] in process x has an earlier phase than in l.
However, since phases differ, alive sent by l are ignored by x. This leads to either x
sending fail to l or claiming leadership. In either case, l sends startPhase. According to
Lemma 7, this broadcasts succeeds which synchronizes arbs[l] and realArbs(l). �

Theorem 9. AlgorithmMPO is a message and packet efficient implementation of Omega
in the fair-lossy channel model.

Proof: First, we prove thatMPO implements Omega. Indeed, lemma 5 shows that l
is a local leader in infinitely many states. Lemmas 8 and 9 show that l gets finitely many
failed. According to Lemma 4, every process x , l either stops being a local leader or gets
infinitely many failed. This means that at any process the arborescence of l will eventually
be lighter than any other leader contender.

According to Lemma 5, l sends infinitely many alive messages along realArbs(l).
Due to Lemma 9, realArbs(l) eventually has no untimely channels. Since l, according to
Lemma 9, receives only finitely many failed, due to Lemma 3, realArbs(l) eventually has
timely paths from l to every correct process. According to Lemma 11, realArbs(l) and
arbs[l] are eventually the same.

This means that l will be a leader contender in every correct process. Since it has
the lightest arborescence, it becomes the leader at every correct process. In other words,
MPO is a correct implementation of Omega.

By the design of the algorithm, once l has the lightest arborescence and all correct pro-
cesses drop out of leadership contention, l is the only process that sends alive messages.
By definition,MPO is message efficient.



The messages are routed along arbs[l]. It is an arborescence. Hence, the number of
such messages is in O(n). In addition, each process takes a turn sending alive to its neigh-
bors. This is another O(n) packets. Therefore, the packet complexity ofMPO is in O(n).
�

6 Algorithm Extensions

We conclude the paper with several observations about MPO. The algorithm trivially
works in a non-completely connected network provided that the rest of the assumptions
used in the algorithm design, such as eventually timely paths from the leader to all correct
processes, are satisfied. Similarly, the algorithm works correctly if the channel reliability
and timeliness is origin-related. That is, a channel may be timely for some, not necessarily
incident, process x, but not for another process y.

AlgorithmMPO may be modified to use only constant-size messages. The only non-
constant size message is startPhase. However, the message type is supposed to be timely.
So, instead of sending a single large message, the modified MPO may instead send a
sequence of fixed-size messages with the content to be re-assembled by the receivers.
If one of the constituent messages does not arrive on time, the whole large message is
considered lost.
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