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Introduction

Let Ω be an open polygon in IR 2 , we consider the problem

-∆u + λ|u| 2p u = f in Ω, (1.1) 
u = 0 on ∂Ω, (1.2) 
where λ and p are two positive real numbers. The right-hand side f belongs to the dual space H -1 (Ω) of the Sobolev space H 1 0 (Ω). The a posteriori error analysis of finite element approximations of the present model problem has been studied by Bernardi, Dakroub, Mansour and Sayah, see [START_REF] Bernardi | A posteriori analysis of iterative algorithms for a nonlinear problem[END_REF]. In fact, let V h ⊂ H 1 0 (Ω) be the P 1 finite element space associated with a regular family of triangulations of Ω, denoted by T h . Using P 1 Lagrange finite elements, the discrete variational problem obtained by the Galerkin method amounts to (from now on, we denote by (•, •) the scalar product of L 2 (Ω))

Find u h ∈ V h such that ∀v h ∈ V h , ∇u h , ∇v h + λ |u h | 2p u h , v h = f, v h . (1.3) 
In order to solve the discrete nonlinear problem (1.3), we introduced in [START_REF] Bernardi | A posteriori analysis of iterative algorithms for a nonlinear problem[END_REF] the following linear numerical scheme, called fixed-point algorithm:

Find u i+1 h ∈ V h such that ∀v h ∈ V h , ∇u i+1 h , ∇v h + λ |u i h | 2p u i+1 h , v h = f, v h .
(1.4)

First numerical scheme.

Find u i+1 h ∈ V h such that ∀v h ∈ V h , α u i+1 h -u i h , v h + ∇u i+1 h , ∇v h + λ |u i h | 2p u i+1 h , v h = f, v h , (1.5) 
Second numerical scheme.

Find u i+1 h ∈ V h such that ∀v h ∈ V h , α ∇u i+1 h -∇u i h , ∇v h + ∇u i+1 h , ∇v h + λ |u i h | 2p u i+1 h , v h = f, v h , (1.6) 
For a parameter α bigger than a specific constant that depends on λ, p and the data f , problem (1.5) and (1.6) always converge. Moreover, our objective is to derive an a posteriori error estimate distinguishing linearization and discretization errors.

In practice, the present problem (1.1) -(1.2) is solved using an iterative method involving a linearization process and approximated by the finite element method. Thus, two sources of error appear, namely linearization and discretization. The main result in [START_REF] Bernardi | A posteriori analysis of iterative algorithms for a nonlinear problem[END_REF] is a two-sided bound of the error distinguishing linearization and discretization errors in the context of an adaptive procedure. This type of analysis was introduced by A.-L. Chaillou and M. Suri [START_REF] Chaillou | Computable error estimators for the approximation of nonlinear problems by linearized models[END_REF][START_REF] Chaillou | A posteriori estimation of the linearization error for strongly monotone nonlinear operators[END_REF] for a general class of problems characterized by strongly monotone operators and developed by L. El Alaoui, A. Ern and M. Vohralík [START_REF] Alaoui | Guaranteed and robust a posteriori error estimate and balancing discretization and linearization errore for monotone nonlinear problems[END_REF] for a class of secondorder monotone quasi-linear diffusion-type problems approximated by piecewise affine, continuous finite elements. We wish to extend these results to the problem that we consider and prove optimal estimates.

The paper is organized as follows:

• Section 2 describes the model problem.

• Section 3 is devoted to the study of the convergence of the schemes.

• Section 4 provides the a posteriori estimates for both problems.

• Section 5 is devoted to the numerical results.

Preliminaries

In this section, we describe the variational formulation associated with the nonlinear problem (1.1)-(1.2) and introduce and recall some corresponding properties which will be used later. We denote by L p (Ω) the space of measurable functions summable with power p, and for all v ∈ L p (Ω), the corresponding norm is defined by

v L p (Ω) = Ω |v(x)| p dx 1/p .
In the case p = 2, we also denote this norm by • 0,Ω . Throughout this paper, we constantly use the classical Sobolev space

H 1 (Ω) = v ∈ L 2 (Ω); ∂v ∂x 1 , ∂v ∂x 2 ∈ L 2 (Ω) ,
which is equipped respectively with the semi-norm and norm

|v| 1,Ω = Ω (| ∂v ∂x 1 | 2 + | ∂v ∂x 2 | 2 )dx 1/2 and v 1,Ω = ||v|| 2 0,Ω + |v| 2 1,Ω ) 1/2 .
In particular, we consider the following space

H 1 0 (Ω) = {v ∈ H 1 (Ω), v | ∂Ω = 0}
, and its dual space H -1 (Ω). We recall the Sobolev imbeddings (see Adams [START_REF] Adams | Sobolev Spaces[END_REF], Chapter 3). Lemma 2.1. For any domain Ω in IR 2 , for all j, 1 ≤ j < ∞, there exists a positive constant

S j such that ∀v ∈ H 1 0 (Ω), v L j (Ω) ≤ S j |v| 1,Ω . (2.1)
Remark 2.2. For domains Ω in IR 3 , inequality (2.1) with standard definition of H 1 0 (Ω) remains valid only for j ≤ 6, whence the interest of working in dimension d = 2.

Setting X = H 1 0 (Ω), the model problem (1.1)-(1.
2) admits the equivalent variational formulation:

Find u ∈ X such that ∀v ∈ X, Ω ∇u∇vdx + Ω λ|u| 2p uvdx = f, v , (2.2) 
Theorem 2.3. [2] Problem (2.
2) admits a unique solution u ∈ X.

We now introduce the following technical lemmas:

Lemma 2.4. Let a, b and p be three real numbers. We have the following relation

|a| p -|b| p ≤ p|a -b| |a| p-1 + |b| p-1 .
Proof. The result follows from applying the mean value theorem to f (x) = x p with x > 0.

Lemma 2.5. For all x, y ∈ IR and p ∈ IR, we have

(|x| 2p x -|y| 2p y)(x -y) ≥ 0.
Remark 2.6. In the sequel, we denote by C, C ,... generic constants that can vary from line to line but are always independent of all discretization parameters.

Finite element discretization and convergence

In this section, we begin to collect some useful notation concerning the discrete setting and the a priori estimate. Then, we show the convergence of the schemes (1.5) and (1.6).

Let (T h ) h be a regular family of triangulations of Ω, in the sense that, for each h:

• The union of all elements of T h is equal to Ω.

• The intersection of two different elements of T h , if not empty, is a vertex or a whole edge of both triangles.

• The ratio of the diameter h K of any element K of T h to the diameter of its inscribed circle is smaller than a constant independent of h. As usual, h stands for the maximum of the diameters h K , K ∈ T h . Let V h ⊂ H 1 0 (Ω) be the Lagrange P finite element space associated with T h , more precisely

V h = v h ∈ H 1 0 (Ω); ∀K ∈ T h , v h |K ∈ P (K) ,
where P (K) stands for the space of restrictions to K of polynomial functions of degree ≤ on IR 2 .

Remark 3.1. (Inverse inequality) There exists a constant S I > 0 such that for all v h ∈ V h and K ∈ T h , we have 

|v h | 1,K ≤ S I h -1 K ||v h || 0,K . ( 3 
u h -u 1,Ω ≤ Ch u 2,Ω .
In the following, we investigate the convergence of the schemes (1.5) and (1.6).

Theorem 3.3. Problem (1.5) admits a unique solution. Furthermore, if the initial value u 0 h satisfies the condition

||u 0 h || 0,Ω ≤ S 2 ||f || -1,Ω , (3.2) 
then the solution of the problem (1.5) satisfies the estimates

||u i+1 h || 0,Ω ≤ S 2 ||f || -1,Ω and |u i+1 h | 1,Ω ≤ 1 + αS 2 2 ||f || -1,Ω . (3.3)
Proof. It is readily checked that problem (1.5) has a unique solution as a consequence of the coercivity of the bilinear form. We consider the equation (1.5) with v h = u i+1 h and we obtain :

α 2 ||u i+1 h || 2 0,Ω - α 2 ||u i h || 2 0,Ω + α 2 ||u i+1 h -u i h || 2 0,Ω + |u i+1 h | 2 1,Ω + λ(|u i h | 2p u i+1 h , u i+1 h ) = (f, u i+1 h )
. By using the inequality and we deduce the inequality

(f, u i+1 h ) ≤ 1 2 ||f || 2 -1,Ω + 1 2 |u i+1 h | 2 1,Ω , we deduce the relation α 2 ||u i+1 h || 2 0,Ω - α 2 ||u i h || 2 0,Ω + α 2 ||u i+1 h -u i h || 2 0,Ω + 1 2 |u i+1 h | 2 1,Ω + λ(|u i h | 2p u i+1 h , u i+1 h ) ≤ 1 2 ||f ||
||u i+1 h || 2 0,Ω ≤ S 2 2 |u i+1 h | 2 1,Ω ≤ S 2 2 ||f || 2 -1
,Ω . This gives the first part of (3.3). We now check the second part. We have from (3.4)

|u i+1 h | 2 1,Ω ≤ ||f || 2 -1,Ω + α||u i h || 2 0,Ω ≤ (1 + αS 2 2 )||f || 2 -1
,Ω , whence the desired result.

Theorem 3.4. Problem (1.6) admits a unique solution. Furthermore, if the initial value u 0 h verify the condition

|u 0 h | 1,Ω ≤ ||f || -1,Ω , (3.5) 
then the solution of Problem (1.6) satisfies the estimate

|u i+1 h | 1,Ω ≤ ||f || -1,Ω . (3.6) 
Proof. We follow the same proof as for Theorem 3.3. It is readily checked that problem (1.6) has a unique solution as a consequence of the coercivity of the bilinear form. We consider the equation (1.6) with v h = u i+1 h and we obtain :

α 2 |u i+1 h | 2 1,Ω - α 2 |u i h | 2 1,Ω + α 2 |u i+1 h -u i h | 2 1,Ω + |u i+1 h | 2 1,Ω + λ(|u i h | 2p u i+1 h , u i+1 h ) = (f, u i+1 h ). We deduce the relation α 2 |u i+1 h | 2 1,Ω - α 2 |u i h | 2 1,Ω + α 2 |u i+1 h -u i h | 2 1,Ω + 1 2 |u i+1 h | 2 1,Ω + λ(|u i h | 2p u i+1 h , u i+1 h ) ≤ 1 2 ||f || 2 -1,Ω . (3.7) 
We prove the relation (3.6) recursively. Starting with (3.5), we suppose that we have

|u i h | 1,Ω ≤ ||f || -1,Ω .
We are in one of the following two situations :

• We have |u i+1 h | 1,Ω ≤ |u i h | 1,Ω . We deduce the bound |u i+1 h | 1,Ω ≤ ||f || -1,Ω . • We have |u i+1 h | 1,Ω ≥ |u i h | 1,Ω . It follows from (3.7) that |u i+1 h | 2 1,Ω ≤ ||f || 2 -1,Ω .
We conclude the proof of the theorem.

Unfortunately the proof of the next result is much more technical. Theorem 3.5. Assume that there exists β > 0 such that, for every element K ∈ T h , we have

h K ≥ βh,
(which means that the family of triangulations is uniformly regular). Under the assumptions of Theorem

and for

α > C 2 p 2 λ 2 h -4p (3.8) where C = 4S 4 S 8 S 2p-1 8(2p-1) S 2p I β 2p S 2p 2 ||f || 2p -1,Ω , the sequence of solutions (u i h ) of Problem (1.5) converges in H 1 0 (Ω) to the solution u h of Problem (1.
3). Proof. We take the difference between the equations (1.5) and ( 1

.3) with v h = u i+1 h -u h and we obtain the equation α 2 ||u i+1 h -u h || 2 0,Ω - α 2 ||u i h -u h || 2 0,Ω + α 2 ||u i+1 h -u i h || 2 0,Ω + |u i+1 h -u h | 2 1,Ω +λ(|u i h | 2p u i+1 h -|u h | 2p u h , u i+1 h -u h ) = 0.
The last term in the previous equation, denoted by T , can be decomposed as

T = λ((|u i h | 2p -|u i+1 h | 2p )u i+1 h , u i+1 h -u h ) + λ(|u i+1 h | 2p u i+1 h -|u h | 2p u h , u i+1 h -u h ).
We denote by T 1 and T 2 , respectively, the first and the second terms in the right-hand side of the last equation. Using Lemma 2.5, we have T 2 ≥ 0. Then we derive by using Lemma 2.4 (with p replaced by 2p)

α 2 ||u i+1 h -u h || 2 0,Ω - α 2 ||u i h -u h || 2 0,Ω + α 2 ||u i+1 h -u i h || 2 0,Ω + |u i+1 h -u h | 2 1,Ω + T 2 = -T 1 ≤ 2pλ Ω (|u i+1 h | 2p-1 + |u i h | 2p-1 )|u i+1 h -u i h | |u i+1 h | |u i+1 h -u h |dx ≤ 2pλ||u i+1 h -u i h || 0,Ω |||u i+1 h | 2p-1 + |u i h | 2p-1 || L 8 (Ω) ||u i+1 h || L 8 (Ω) ||u i+1 h -u h || L 4 (Ω) ≤ 2pλS 4 S 8 S 2p-1 8(2p-1) (|u i+1 h | 2p-1 1,Ω + |u i h | 2p-1 1,Ω )|u i+1 h | 1,Ω ||u i+1 h -u i h || 0,Ω |u i+1 h -u h | 1,Ω ≤ 2pλS 4 S 8 S 2p-1 8(2p-1) S 2p I β 2p h -2p ||u i+1 h || 2p-1 0,Ω + ||u i h || 2p-1 0,Ω ||u i+1 h || 0,Ω ||u i+1 h -u i h || 0,Ω |u i+1 h -u h | 1,Ω ≤ 4pλS 4 S 8 S 2p-1 8(2p-1) S 2p I β 2p S 2p 2 h -2p ||f || 2p -1,Ω ||u i+1 h -u i h || 0,Ω |u i+1 h -u h | 1,Ω We denote by C = 4S 4 S 8 S 2p-1 8(2p-1) S 2p I β 2p S 2p 2 ||f || 2p -1,Ω , use the decomposition ab ≤ 1 2ε a 2 + ε 2 b 2 , take ε = 1 Cpλh -2p and obtain the following bound α 2 ||u i+1 h -u h || 2 0,Ω - α 2 ||u i h -u h || 2 0,Ω + α 2 ||u i+1 h -u i h || 2 0,Ω + 1 2 |u i+1 h -u h | 2 1,Ω +T 2 ≤ C 2 p 2 λ 2 2 h -4p ||u i+1 h -u i h || 2 0,Ω . We choice α > C 2 p 2 λ 2 h -4p , denote by C 1 = α -C 2 p 2 λ 2 h -4p 2 and obtain α 2 ||u i+1 h -u h || 2 0,Ω - α 2 ||u i h -u h || 2 0,Ω + C 1 ||u i+1 h -u i h || 2 0,Ω + 1 2 |u i+1 h -u h | 2 1,Ω + T 2 ≤ 0. (3.9)
We deduce that, for all i ≥ 1, we have (if

||u i h -u h || 0,Ω = 0) ||u i+1 h -u h || 0,Ω < ||u i h -u h || 0,Ω ,
and we deduce the convergence of the sequence (u i+1 h -u h ) in L 2 (Ω). By taking the limit of (3.9) we deduce that |u i+1 h -u h | 1,Ω converges to 0 and u i+1 h converges to u h in H 1 0 (Ω). Theorem 3.6. Under the assumptions of Theorem 3.4 and for

α > 4S 2 S 4 S 8 S 2p-1 8(2p-1) ||f || 2p -1,Ω 2 p 2 λ 2 , (3.10)
the sequence of solutions (u i h ) of Problem (1.6) converges in H 1 0 (Ω) to the solution u h of Problem (1.3). Proof. We take the difference between the equations (1.6) and (1.3) with v h = u i+1 h -u h and we obtain the equation

α 2 |u i+1 h -u h | 2 1,Ω - α 2 |u i h -u h | 2 1,Ω + α 2 |u i+1 h -u i h | 2 1,Ω + |u i+1 h -u h | 2 1,Ω +λ(|u i h | 2p u i+1 h -|u h | 2p u h , u i+1 h -u h ) = 0.
The last term in the previous equation, denoted by T , can be decomposed as

T = λ((|u i h | 2p -|u i+1 h | 2p )u i+1 h , u i+1 h -u h ) + λ(|u i+1 h | 2p u i+1 h -|u h | 2p u h , u i+1 h -u h ).
We denote by T 1 and T 2 respectively the first and the second terms in the right-hand side of the last equation. Using Lemma 2.5, we have T 2 ≥ 0. Then we have by using Lemma 2.4

α 2 |u i+1 h -u h | 2 1,Ω - α 2 |u i h -u h | 2 1,Ω + α 2 |u i+1 h -u i h | 2 1,Ω + |u i+1 h -u h | 2 1,Ω + T 2 = -T 1 ≤ 2pλ (|u i+1 h | 2p-1 + |u i h | 2p-1 ), |u i+1 h -u i h | |u i+1 h | |u i+1 h -u h | ≤ 2pλ||u i+1 h -u i h || 0,Ω ||(|u i+1 h | 2p-1 + |u i h | 2p-1 )|| L 8 (Ω) ||u i+1 h || L 8 (Ω) ||u i+1 h -u h || L 4 (Ω) ≤ 4pλS 2 S 4 S 8 S 2p-1 8(2p-1) ||f || 2p -1,Ω |u i+1 h -u i h | 1,Ω |u i+1 h -u h | 1,Ω .
We denote by

C = 4S 2 S 4 S 8 S 2p-1 8(2p-1) ||f || 2p -1,Ω , use the decomposition ab ≤ 1 2ε a 2 + ε 2 b 2 , take ε = 1 Cpλ and
obtain the following bound

α 2 |u i+1 h -u h | 2 1,Ω - α 2 |u i h -u h | 2 1,Ω + α 2 |u i+1 h -u i h | 2 1,Ω + 1 2 |u i+1 h -u h | 2 1,Ω + T 2 ≤ C 2 p 2 λ 2 2 |u i+1 h -u i h | 2 1,Ω .
We choose α > C 2 p 2 λ 2 , denote by

C 1 = α -C 2 p 2 λ 2 2
and obtain

α 2 |u i+1 h -u h | 2 1,Ω - α 2 |u i h -u h | 2 1,Ω + C 1 |u i+1 h -u i h | 2 1,Ω + 1 2 |u i+1 h -u h | 2 1,Ω + T 2 ≤ 0. (3.11) 
We derive that, for all i ≥ 1, we have

|u i+1 h -u h | 1,Ω < |u i h -u h | 1,Ω , we obtain the convergence of the sequence (u i+1 h -u h ) in H 1 (Ω)
and, by taking the limit of (3.11) we deduce that u i+1 h converges to u h in H 1 0 (Ω). Remark 3.7. The conditions (3.2) and (3.5) suppose that the initial values of the algorithms are small related to the data f . We can always take u 0 h = 0. Remark 3.8. The previous two theorems bring to light a first difference between the two schemes (1.5) and (1.6): in opposite to (1.5), the convergence of (1.6) is proved when α is larger than a constant independent of h (and does not require the uniform regularity of the family of triangulations).

A posteriori error analysis

We start this section by introducing some additional notation which is needed for constructing and analyzing the error indicators in the sequel.

For any triangle K ∈ T h we denote by E(K) and N (K) the set of its edges and vertices, respectively, and we set

E h = K∈T h E(K) and N h = K∈T h N (K).
With any edge e ∈ E h we associate a unit vector n such that n is orthogonal to e. We split E h and N h in the form

E h = E h,Ω ∪ E h,∂Ω and N h = N h,Ω ∪ N h,∂Ω
where E h,∂Ω is the set of edges in E h that lie on ∂Ω and E h,Ω = E h \ E h,∂Ω . The same goes for N h,∂Ω . Furthermore, for K ∈ T h and e ∈ E h , let h K and h e be their diameter and length, respectively. An important tool in the construction of an upper bound for the total error is Clément's interpolation operator R h with values in V h . The operator R h satisfies, for all v ∈ H 1 0 (Ω), the following local approximation properties (see R. Verfürth, [START_REF] Verfürth | A Posteriori Error Estimation Techniques For Finite Element Methods[END_REF], Chapter 1):

v -R h v L 2 (K) ≤ Ch K |v| 1,∆ K , v -R h v L 2 (e) ≤ Ch 1/2
e |v| 1,∆e , where ∆ K and ∆ e are the following sets:

∆ K = K ∈ T h ; K ∩ K = ∅ and ∆ e = K ∈ T h ; K ∩ e = ∅ .
We now recall the following properties (see R. Verfürth, [START_REF] Verfürth | A Posteriori Error Estimation Techniques For Finite Element Methods[END_REF], Chapter 1):

Proposition 4.1. Let r be a positive integer. For all v ∈ P r (K), the following properties hold

C v L 2 (K) ≤ vψ 1/2 K L 2 (K) ≤ v L 2 (K) , (4.1 
)

|v| 1,K ≤ Ch -1 K v L 2 (K) . (4. 
2) where ψ K is the triangle-bubble function (equal to the product of the barycentric coordinates associated with the vertices of K).

We also introduce a lifting operator: For each K ∈ T h and any edge e of K, L e,K maps polynomials of fixed degree on e vanishing on ∂e into polynomials on K vanishing on ∂K \ e and is constructed by affine transformation from a fixed lifting operator on the reference triangle. Proposition 4.2. Let r be a positive integer. For all v ∈ P r (e), we have the following property

C v L 2 (e) ≤ vψ 1/2 e L 2 (e) ≤ v L 2 (e) , (4.3) 
where ψ e is the bubble function on the edge e, and for all v ∈ P r (e) vanishing on ∂e, we have

||L e,κ v|| L 2 (κ) + h e |L e,κ v| 1,κ ≤ Ch 1/2 e v L 2 (e) , (4.4) 
where κ is a triangle of edge e.

Finally, we denote by [v h ] the jump of v h across the common edge e of two adjacent elements K, K ∈ T h .

We have now provided all prerequisites to establish an upper bound and lower bound for the total error. Let u i+1 h and u be the solution of the iterative problem (1.5) or (1.6) and the continuous problem, respectively. They satisfy the identity

Ω ∇(u i+1 h -u)∇vdx = Ω ∇u i+1 h ∇vdx + λ Ω |u| 2p uvdx - Ω f vdx. (4.5) 
We now start the a posteriori analysis of our algorithms.

Algorithm (1.5).

In order to prove an upper bound of the error, we introduce an approximation f h of the data f which is constant on each element K of T h . We first write the residual equation

Ω ∇u∇vdx + λ Ω |u| 2p uvdx - Ω ∇u i+1 h ∇vdx -λ Ω |u i h | 2p u i+1 h vdx = Ω (f -f h )(v -v h )dx + K∈T h K (f h + ∆u i+1 h -λ|u i h | 2p u i+1 h -α(u i+1 h -u i h ))(v -v h )dx - 1 2 e∈E(K) e [ ∂u i+1 h ∂n ](v -v h )dτ + α K∈T h K (u i+1 h -u i h )vdx. (4.6) 
By adding and subtracting λ K,i at each iteration i by:

Ω |u i+1 h | 2p u i+1 h vdx, we obtain Ω ∇u∇vdx + λ Ω |u| 2p uvdx - Ω ∇u i+1 h ∇vdx -λ Ω |u i+1 h | 2p u i+1 h vdx = Ω (f -f h )(v -v h )dx + K∈T h K (f h + ∆u i+1 h -λ|u i h | 2p u i+1 h -α(u i+1 h -u i h ))(v -v h )dx - 1 2 e∈E(K) e [ ∂u i+1 h ∂n ](v -v h )dτ + λ Ω |u i h | 2p -|u i+1 h | 2p u i+1 h vdx + α K∈T h K (u i+1 h -u i h )vdx.
η (L) K,i = ||u i+1 h -u i h || 1,K , η (D) K,i 2 = h 2 K f h + ∆u i+1 h -λ|u i h | 2p u i+1 h -α(u i+1 h -u i h ) 2 L 2 (K) + e∈E(K) h e [ ∂u i+1 h ∂n ] 2 L 2 (e) .
We are in a position to state the first result of this section:

Theorem 4.3. Upper bound. Let u i+1 h
and u be the solution of the iterative problem (1.5) and the exact problem (2.2) respectively. We have the following a posteriori error estimate

|u i+1 h -u| 1,Ω ≤ C K∈T h ( η (D) K,i 2 + h 2 K f -f h 2 L 2 (K) ) 1/2 + K∈T h η (L) K,i 2 1/2 . 
Proof. We consider equation (4.7) with v = u -u i+1 h and we obtain

Ω ∇(u -u i+1 h ) 2 dx + λ Ω (|u| 2p u -|u i+1 h | 2p u i+1 h )(u -u i+1 h )dx = K∈T h K (f -f h )(v -v h )dx + K∈T h K (f h + ∆u i+1 h -λ|u i h | 2p u i+1 h -α(u i+1 h -u i h ))(v -v h )dx - 1 2 e∈E(K) e [ ∂u i+1 h ∂n ](v -v h )dτ + λ Ω |u i h | 2p -|u i+1 h | 2p u i+1 h vdx + α K∈T h K (u i+1 h -u i h )vdx.
(4.8) Then we have by using Lemmas 2.4 and 2.5

|u -u i+1 h | 2 1,Ω ≤ K∈T h ||f -f h || L 2 (K) ||v -v h || L 2 (K) + K∈T h (||f h + ∆u i+1 h -λ|u i h | 2p u i+1 h -α(u i+1 h -u i h )|| L 2 (K) ||v -v h || L 2 (K) + 1 2 e∈E(K) ||[ ∂u i+1 h ∂n ]|| L 2 (e) ||v -v h || L 2 (e ) + λ Ω 2p u i h -u i+1 h | |u i h | 2p-1 + |u i+1 h | 2p-1 )|u i+1 h ||v|dx +α K∈T h ||u i+1 h -u i h || L 2 (K) ||v|| L 2 (K)
We choose v h = R h v, the image of v by the Clément operator and we obtain

|u -u i+1 h | 2 1,Ω ≤ C K∈T h h K ||f -f h || L 2 (K) |v| 1,∆ K + K∈T h (Ch K ||f h + ∆u i+1 h -λ|u i h | 2p u i+1 h -α(u i+1 h -u i h )|| L 2 (K) |v| 1,∆ K + C 2 e∈E(K) h 1 2 e ||[ ∂u i+1 h ∂n ]|| L 2 (e) |v| 1,∆e ) +λ Ω 2p u i h -u i+1 h | |u i h | 2p-1 + |u i+1 h | 2p-1 )|u i+1 h ||v|dx + α K∈T h ||u i+1 h -u i h || L 2 (K) ||v|| L 2 (K)
We begin by bounding the second term of the right-hand side of the last inequality and we obtain by using Theorem 3.3

λ Ω 2p u i h -u i+1 h | |u i h | 2p-1 + |u i+1 h | 2p-1 )|u i+1 h ||v|dx ≤ 2λp|| |u i h | 2p-1 + |u i+1 h | 2p-1 || L 8 (Ω) |u i h -u i+1 h || L 8 (Ω) ||u i+1 h || L 4 (Ω) ||v|| L 2 (Ω) ≤ 2λpS 2 S 4 S 8 || |u i h | 2p-1 || L 8 (Ω) + || |u i+1 h | 2p-1 || L 8 (Ω) |u i h -u i+1 h | 1,Ω |u i+1 h | 1,Ω |v| 1,Ω ≤ 2λpS 2 S 4 S 8 S 2p-1 8(2p-1) (|u i h | 2p-1 1,Ω + |u i+1 h | 2p-1 1,Ω ) u i h -u i+1 h | 1,Ω |u i+1 h | 1,Ω |v| 1,Ω ≤ 4λp(1 + αS 2 2 ) p S 2 S 4 S 8 S 2p-1 8(2p-1) ||f || 2p -1,Ω u i h -u i+1 h | 1,Ω |v| 1,Ω . Let S = 4λp(1 + αS 2 2 ) p S 2 S 4 S 8 S 2p-1 8(2p-1) ||f || 2p -1,Ω , then we have |u -u i+1 h | 2 1,Ω ≤ C K∈T h h K ||f -f h || L 2 (K) |v| 1,∆ K + K∈T h (Ch K ||f h + ∆u i+1 h -λ|u i h | 2p u i+1 h -α(u i+1 h -u i h )|| L 2 (K) |v| 1,∆ K + C 2 e∈E (K) h 1 2
e ||[

∂u i+1 h ∂n ]|| L 2 (e) |v| 1,∆e ) +S|u i h -u i+1 h | 1,Ω |v| 1,Ω + α K∈T h ||u i+1 h -u i h || L 2 (K) ||v|| L 2 (K) .
By using the formula ab ≤ 1 2ε

a 2 + ε 2 b 2 , we obtain |u -u i+1 h | 2 1,Ω ≤ Cε 1 2 K∈T h h 2 K ||f -f h || 2 L 2 (K) + C 1 2ε 1 K∈T h |v| 2 1,K + Cε 2 2 K∈T h h 2 K ||f h + ∆u i+1 h -λ|u i h | 2p u i+1 h -α(u i+1 h -u i h )|| 2 L 2 (K) + C 2 2ε 2 K∈T h |v| 2 1,K + Cε 3 4 K∈T h E∈E (K) h E ||[ ∂u i+1 h ∂n ]|| 2 L 2 (E) + C 3 4ε 3 K∈T h |v| 2 1,K + Sε 4 2 K∈T h ||u i h -u i+1 h || 2 1,K + S 2ε 4 K∈T h |v| 2 1,K + αε 5 2 K∈T h ||u i+1 h -u i h || 2 1,K + α 2ε 5 ||v|| 2 L 2 (Ω)
We choose

ε 1 = 8C 1 , ε 2 = 8C 2 , ε 3 = 4C 3 , ε 4 = 8S et ε 5 = 8αS 2 2 to obtain |u -u i+1 h | 2 1,Ω ≤ C K∈T h h 2 K ||f -f h || 2 L 2 (K) + K∈T h e∈E (K) h e ||[ ∂u i+1 h ∂n ]|| 2 L 2 (e) + K∈T h h 2 K ||f h + ∆u i+1 h -λ|u i h | 2p u i+1 h -α(u i+1 h -u i h )|| 2 L 2 (K) + K∈T h ||u i h -u i+1 h || 2 1,K + K∈T h ||u i+1 h -u i h || 2 1,K + 5 16 |v| 2 1,Ω ,
and then

|u i+1 h -u| 1,Ω ≤ C(( K∈T h ( η (D) K,i 2 + h 2 K ||f -f h || 2 L 2 (K) )) 1 2 + ( K∈T h η (L) K,i 2 ) 1 2 ).
We conclude the proof of the theorem.

We address now the efficiency of the previous indicators.

Theorem 4.4. Lower bound. For each K ∈ T h , there holds

η (L) K,i ≤ u i h -u 1,K + u i+1 h -u 1,K , η (D) K,i ≤ C κ⊂ω K ||u -u i+1 h || 1,κ + η (L) κ,i + h κ f -f h L 2 (κ) ,
where ω K is the union of the triangles sharing at least one edge with K.

Proof. The estimation of the linearization indicator follows easily from the triangle inequality by introducing u in η (L) K,i . We now estimate the discretization indicator η

(D)
K,i . We proceed in two steps:

(i) We start by adding and subtracting λ

Ω |u i+1 h | 2p u i+1 h vdx in (4.

6).

Taking v h = 0, we derive

K∈T h K (f h + ∆u i+1 h -λ|u i h | 2p u i+1 h -α(u i+1 h -u i h ))vdx = Ω ∇(u -u i+1 h )∇vdx - K∈T h K (f -f h )vdx + 1 2 K∈T h e∈E(K) e [ ∂u i+1 h ∂n ]vdτ + λ Ω (|u| 2p u -|u i+1 h | 2p u i+1 h )vdx +λ Ω u i+1 h (|u i+1 h | 2p -|u i h | 2p )vdx -α K∈T h K (u i+1 h -u i h )vdx. (4.9) 
We choose v = v K such that

v K = (f h + ∆u i+1 h -λ|u i h | 2p u i+1 h -α(u i+1 h -u i h ))ψ K in K 0 in Ω \ K
where ψ K is the triangle-bubble function.

Using Cauchy-Schwarz inequality, (2.1), (4.1) and (4.2) we obtain

f h + ∆u i+1 h -λ|u i h | 2p u i+1 h -α(u i+1 h -u i h ) 2 L 2 (K) ≤ (1 + λC f 2p -1,Ω ) u -u i+1 h 1,K |v K | 1,K + f -f h L 2 (K) v K L 2 (K) +λC u i h -u i+1 h 1,K |v K | 1,K + α||u i+1 h -u i h || L 2 (K) ||v K || L 2 (K) .
Therefore, we derive the following estimate of the first term of the local discretization estimator η

(D) K,i h K f h + ∆u i+1 h -λ|u i h | 2p u i+1 h -α(u i+1 h -u i h ) L 2 (K) ≤ C( u -u i+1 h 1,K +h K f -f h L 2 (K) ) + C η (L) K,i .
(4.10) (ii) Now we estimate the second term of η (D) K,i . Similarly, using (4.9) we infer

1 2 K∈T h e∈E(K) e [ ∂u i+1 h ∂n ]v dτ = Ω ∇(u i+1 h -u)∇vdx + K∈T h K (f h + ∆u i+1 h -λ|u i h | 2p u i+1 h -α(u i+1 h -u i h ))vdx + Ω (f -f h )vdx -λ Ω (|u i+1 h | 2p u i+1 h -|u i h | 2p u i+1 h )vdx -λ Ω (|u| 2p u -|u i+1 h | 2p u i+1 h )vdx + α K∈T h K (u i+1 h -u i h )vdx. (4.11) We choose v = v e such that v e =      L e,κ ∂u i+1 h ∂n ψ e κ ∈ {K, K } 0 in Ω \ (K ∪ K )
where ψ e is the edge-bubble function, K denotes the other element of T h that share e with K (the operator L e,K was introduced above Proposition 4.2).

Using Cauchy-Schwarz inequality, (2.1), (4.3) and (4.4) we derive

h 1/2 e ∂u i+1 h ∂n 2 L 2 (e) ≤ (1 + λC f 2p -1,Ω ) u -u i+1 h 1,K∪K v e L 2 (e) +h e f -f h L 2 (K∪K ) v e L 2 (e) +h e f h + ∆u i+1 h -λ|u i h | 2p u i+1 h -α(u i+1 h -u i h ) L 2 (K∪K ) v e L 2 (e) +C (eta (L) K,ß + η (L) K ,i )||v e || L 2 (e) .
(4.12) Collecting the two bounds above leads to the following estimation

η (D) K,i ≤ C κ⊂ω K ||u -u i+1 h || 1,κ + η (L) κ,i + h κ f -f h L 2 (κ)
These estimates of the local linearization and discretization indicators are fully optimal.

4.2. Algorithm (1.6). The same calculation is followed as before but in (4.6) and (4.7) we have

α K∈T h K ∇(u i+1 h -u i h )∇v instead of α K∈T h K (u i+1 h -u i h )v.
We are led to define the modified discretization error indicator η(D) K,i by

η(D) K,i ) 2 = h 2 K ||f h + ∆u i+1 h -λ|u i h | 2p u i+1 h + α∆(u i+1 h -u i h )|| 2 L 2 (K) + e∈E(K) h e ||[ ∂u i+1 h ∂n -α ∂(u i+1 h -u i h ) ∂n ]|| 2 L 2 (e) .
The rest of the calculation is similar. We skip the proofs since they are exactly the same as for Theorems 4.3 and 4.4.

Theorem 4.5. Upper bound. Let u i+1 h and u be the solution of the iterative problem (1.6) and the exact problem (2.2) respectively. We have the following a posteriori error estimate

|u i+1 h -u| 1,Ω ≤ C K∈T h ( η(D) K,i 2 + h 2 K f -f h 2 L 2 (K) ) 1/2 + K∈T h η (L) K,i 2 1/2 .
Theorem 4.6. Lower bound. For each K ∈ T h , there holds

η (L) K,i ≤ u i h -u 1,K + u i+1 h -u 1,K , η(D) K,i ≤ C κ⊂ω K ||u -u i+1 h || 1,κ + η (L) κ,i + h κ f -f h L 2 (κ) ,
where ω K is the union of the triangles sharing at least one edge with K.

Numerical results

In this section, we present numerical experiments for our nonlinear problem. These simulations have been performed using the code FreeFem++ due to F. Hecht and O. Pironneau, see [START_REF] Hecht | New development in FreeFem++[END_REF]. For all the numerical investigations and for simplicity, we use the finite element of degree = 1.

5.1.

A priori estimation. We consider the domain Ω =] -1, 1[ 2 , each edge is divided into N equal segments so that Ω is divided into N 2 equal squares and finally into 2N 2 equal traingles . We consider the theoretical solution u = e -5(x 2 +y 2 ) .

For the convergence, we use the classical stopping criterion err L ≤ 10 -5 , where err L is defined by

err L = |u i+1 h -u i h | 1,Ω |u i+1 h | 1,Ω . 
We consider λ = 10, p = 50 and N = 50. 

A posteriori analysis.

In this section, we test our a posteriori error estimates on our model problem. We consider the same domain Ω with the theoretical solution now given by u = e -100(x 2 +y 2 ) . and we choose λ = 10 and p = 50.

In [START_REF] Bernardi | A posteriori analysis of iterative algorithms for a nonlinear problem[END_REF] and for the adaptive strategy, we define the global indicators (introduced in [START_REF] Alaoui | Guaranteed and robust a posteriori error estimate and balancing discretization and linearization errore for monotone nonlinear problems[END_REF]):

η (D) i = K∈T h η (D) K,i 2 1/2 and η (L) i = K∈T h η (L) K,i 2 1/2 
, and we introduce two kinds of stopping criteria :

η (L) i ≤ 10 -5 Classical stopping criterion , (5.1) and η 
(L) i ≤ γη (D) i New stopping criterion , (5.2) 
where γ is a parameter which balances the discretization and linearization errors. We studied in [START_REF] Bernardi | A posteriori analysis of iterative algorithms for a nonlinear problem[END_REF] the comparison between these two types of stopping criterion and we showed the efficiency of the new one which is considered in this paper with γ = 0.001.

For our numerical investigations, we follow the algorithm described in [START_REF] Bernardi | A posteriori analysis of iterative algorithms for a nonlinear problem[END_REF]. The evolution of the meshes with the new stopping criterion looks like the figures 3 and 4 in [START_REF] Bernardi | A posteriori analysis of iterative algorithms for a nonlinear problem[END_REF]. We note that for λ = 10 and p = 50, the algorithm (1.4) diverges.

Figure 2 gives a comparison in logarithmic scale of the error between the uniform and adaptive methods using the algorithms (1.5) and (1.6) with respect of the number of vertices. We can easily see that the algorithms (1.5) and (1.6) give comparable results but the adaptive method is more powerful than the uniform one.

Table 3 shows comparisons, for approximatively the same precision, of the CPU time between the algorithm (1.5) and (1.6) with respect of α. We remark that algorithm (1.5) is faster than (1.6).

In order to have an idea of the constant on the upper bound in theorem 4.3, Table 4 shows the repartition of the error Err and the sum of the indicators err I = ((η

(D) i ) 2 + (η (L) i ) 2 ) 1/2 |u| 1,Ω η (D) i |u| 1,Ω
, during the refinement level and after the convergence on each one. Even if the errors regularly decrease (for instance from 1 to 0.14 for err I ) with respect to the number of adaptive refinement levels which is consistent with adapted mesh method, the constant remains stable and can be approximated by 2.85.

(4. 7 )

 7 We now define the local linearization indicator η (L) K,i and the local discretization indicator η (D)

2 .

 2 and a fixed α = 22 in our algorithms. In fact, for big values of λ and p, the algorithm (1.4) diverges. We mention that for λ and p where (1.5) and (1.6) diverge, we must take a bigger values of α to obtain the convergence. Figure1shows in logarithmic scale the error Err with respect to h (algorithm 1.5 in the left Algo (1.4) 0.0581392 0.0580725 div div div Algo (1.5) 0.0580467 0.058072 0.0581392 0.0581284 0.0582106 Algo (1.6) 0.0580458 0.0580717 0.0581399 0.0581292 0.0582111 Comparison of the convergence of algorithms (1.5), (1.6) (for α = 22) with (1.4). and algorithm 1.6 in the right). The slope of the error corresponding to (1.5) and (1.6) are respectively 0.92 and 0.96, which validates Theorem 3.2.

Figure 1 .

 1 Figure 1. A priori error with respect of h = 1/N : left (algo 1.5) and right (algo 1.6).

Figure 2 .

 2 Figure 2. Error versus number of vertices in logarithmic scale for adaptive and uniform methods with algorithms (1.5) and (1.6).

Table 1

 1 

		shows the error
	Err =	|u i h -u| 1,Ω |u| 1,Ω	,

Table 1 .

 1 Convergence of algorithms (1.5) and (1.6) with respect of α.

Table 3 .

 3 ). Comparison of the precision and the CPU time between the algorithm (1.5) and (1.6) with respect of α.

	α		22		30	40		50
	Algo (1.5) time=5.186 s	time=4.952 s	time=5.505 s	time=5.51 s
			error=0.0487858 error=0.0484306 error=0.048256 error=0.0478781
	Algo (1.6) time=56.625 s	time=59.499 s	time=66.231 s	time=61.268 s
			error=0.0475732 error=0.0486143 error=0.0469877 error=0.0494427
	Itn Err	err I	C =	err I Err	Itn Err	err I	C =	err I Err
	1	0.426417 1.31249 3.07796	1	0.443195 1.29673 2.92587
	2	0.169927 0.524469 3.08644	2	0.175596 0.536429 3.05491
	3	0.138091 0.372655 2.69862	3	0.143715 0.38263 2.66242
	4	0.093948 0.278664 2.96615	4	0.0959932 0.290036 3.02142
	5	0.0806374 0.222064 2.75386	5	0.0848493 0.229053 2.69953
	6	0.063787 0.186245 2.91979	6	0.0643159 0.191061 2.97066
	7	0.0583991 0.160167 2.74262	7	0.0577646 0.157273 2.72265
	8	0.049479 0.14235 2.87698	8	0.0474228 0.137726 2.90422

Table 4 .

 4 Repartition of errors and indicators during the refinement levels (Itn) : Left (algorithm (1.5)) and right (algorithm (1.6)).