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there exists M0 > 0 such that p
m,0 :=

m

m� 1
(⇢

m,0)
m�1  M0, (1.14)

and, as m ! 1,
(

⇢
m,0 ! ⇢0 uniformly, where ⇢0 : ⌦ ! [0, 1] is continuous and

⌦0 := {⇢0 = 1} is bounded domain with locally Lipschitz boundary.
(1.15)

and, in addition, if ⌦ = Rn that

⇢0 2 L1(Rn). (1.16)

The main result of the paper is:

Theorem 1.1. Let ⇢
m

solve (1.1) with data satisfying (1.3), (1.14), (1.15), and (1.16), if ⌦ = Rn,
and define u0(x) := �w�⌦0 + ⌫(1 � ⇢0)�⌦c

0
, where w be the unique solution of ��w = G(w) in

⌦0 and w = 0 on @⌦0. Then, for all T > 0 and as m ! 1, the ⇢
m

’s converge to 1 � ⌫�1b(u)
uniformly in Q

T

, where u is the unique viscosity solution of (1.12), with the initial and boundary data
u0 and ⌫(1� ⇢

L

) respectively.

We remark that the p
m

’s converge uniformly to u� as long as u� is continuous. It turns out, however,
that u� may be discontinuous in time. This is due to the fact that (the positive part) b(u) solves a
parabolic equation with a sink term, which means that b(u) can decrease to zero in the interior of its
positive phase and nucleate a negative phase. Once the negative phase is created, the elliptic equation
that needs to be satisfied in the negative phase leads to the jump discontinuity of u� over time. We
refer to Section 5 for a discussion about the propagation of the elliptic and parabolic phases. The
Figure 1 illustrate the time discontinuities in p

m

, and Figure 2 shows and additional discontinuity in
the ⇢

m

’s when viscosity is neglected (Hele-Shaw problem).
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Figure 1. Snapshots of the evolution of the density ⇢
m

(blue solid line) and pressure
p
m

(black discontinuous line). The parameters are m = 20, ⌫ = .5. These figures
illustrate how the pressure profile is building up when density approaches one. Be-
tween the last two pictures, the density has continuously reached ⇢ = 1 in the center,
while p has jumped discontinuously.

Theorem 1.1 is proved by showing first that the u
m

’s converge to u as m ! 1 (see Corollary 4.4). The
convergence results for the ⇢

m

’s then follow from the definition of u
m

and the continuity properties
of b(u).

As already mentioned above we use viscosity solutions which are based on appropriate choices of test
functions. In the problem at hand these will be radial smooth solutions which are defined in Section 2.
The main step in the proof of Theorem 1.1 is the following:

Theorem 1.2. Assume that � is a classical radial solution of (1.12). Then there exists a family of
radial sub- and solutions super-solutions of (1.8) converging, as m ! 1, to �.


