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Abstract

Background: This article provides an overview of the first BIOASQ challenge, a competition on large-scale biomedical
semantic indexing and question answering (QA), which took place between March and September 2013. BIOASQ
assesses the ability of systems to semantically index very large numbers of biomedical scientific articles, and to return
concise and user-understandable answers to given natural language questions by combining information from
biomedical articles and ontologies.

Results: The 2013 BIOASQ competition comprised two tasks, Task 1a and Task 1b. In Task 1a participants were asked
to automatically annotate new PUBMED documents with MESH headings. Twelve teams participated in Task 1a, with a
total of 46 system runs submitted, and one of the teams performing consistently better than the MTI indexer used by
NLM to suggest MESH headings to curators. Task 1b used benchmark datasets containing 29 development and 282
test English questions, along with gold standard (reference) answers, prepared by a team of biomedical experts from
around Europe and participants had to automatically produce answers. Three teams participated in Task 1b, with 11
system runs. The BIOASQ infrastructure, including benchmark datasets, evaluation mechanisms, and the results of the
participants and baseline methods, is publicly available.

Conclusions: A publicly available evaluation infrastructure for biomedical semantic indexing and QA has been
developed, which includes benchmark datasets, and can be used to evaluate systems that: assign MESH headings to
published articles or to English questions; retrieve relevant RDF triples from ontologies, relevant articles and snippets
from PUBMED Central; produce “exact” and paragraph-sized “ideal” answers (summaries). The results of the systems
that participated in the 2013 BIOASQ competition are promising. In Task 1a one of the systems performed consistently
better from the NLM’s MTI indexer. In Task 1b the systems received high scores in the manual evaluation of the “ideal”
answers; hence, they produced high quality summaries as answers. Overall, BIOASQ helped obtain a unified view of
how techniques from text classification, semantic indexing, document and passage retrieval, question answering, and
text summarization can be combined to allow biomedical experts to obtain concise, user-understandable answers to
questions reflecting their real information needs.
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retrieval, Question answering, Multi-document text summarization
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Background
BIOASQ is an EU-funded support action [1] to set up a
challenge on biomedical semantic indexing and question
answering (QA). Participants are required to semantically
index documents from large-scale biomedical repositories
(e.g., MEDLINE) and to assemble information frommulti-
ple heterogeneous sources (e.g., scientific articles, ontolo-
gies) in order to compose answers to real-life biomedical
English questions. BIOASQ addresses a central problem
biomedical knowledge workers face: to synthesise and fil-
ter information frommultiple, large, fast-growing sources.
Existing search engines (e.g., PUBMED, GOPUBMED [2,3])
only partially address this need. They focus on a limited
range of resources (e.g., only MEDLINE articles and con-
cepts from GENE ONTOLOGY or MESH), whereas multi-
ple sources (e.g., including specialised drug databases and
ontologies) often need to be combined. Furthermore, they
mostly retrieve possibly relevant texts or structured infor-
mation, which the users then have to study, filter, and
combine by themselves to obtain the answers they seek.
By contrast, QA systems aim to directly produce answers
[4]. Semantic indexing, i.e., annotating documents with
concepts from established semantic taxonomies or, more
generally, ontologies, provides a means to combine multi-
ple sources and facilitates matching questions to answers.
In recent years, many methods have been developed that
utilize existing ontology structures and concepts to index
documents and perform semantic search [5]. Current
semantic indexing, however, in the biomedical domain is
largely performed manually, and needs to be automated
to cope with the vast amount of new information that
becomes available daily. At the same time, current seman-
tic indexing and QA methods require more research to
reach a level of effectiveness and efficiency acceptable by
biomedical experts. BIOASQ sets up ambitious, yet feasi-
ble and clearly defined challenge tasks, intended to lead
to integrated, efficient, and effective semantic indexing
and QA methods for the biomedical domain. In addition,
BIOASQ helps in the direction of establishing an evalua-
tion framework for biomedical semantic indexing and QA
systems. It does so by developing realistic, high-quality
benchmark datasets and adopting (or refining) existing
evaluation measures for its challenge tasks.
Figure 1 provides a general overview of biomedical

semantic indexing and QA in BIOASQ. Other recent
approaches also follow a similar approach [4,6]. Starting
with a variety of data sources (lower right corner of the
figure), semantic indexing and integration brings the data
into a form that can be used to respond effectively to
domain-specific questions. A semantic QA system asso-
ciates ontology concepts with each question and uses
the semantic index to retrieve relevant texts (documents
or abstracts, e.g., from PUBMED or PUBMED CENTRAL)
to retrieve pieces of structured information (e.g., Linked

Open Data triples) and relevant documents (or abstracts,
e.g., from PUBMED). This is depicted in the middle of
the figure, by the processes included in the Question Pro-
cessing and Semantic Indexing and Integration boxes. The
retrieved information is then turned into a concise, user-
understandable form, whichmay be, for example, a ranked
list of candidate answers (e.g., in factoid questions, like
“What are the physiologicalmanifestations of disorder Y?”)
or a collection of text snippets (ideally forming a coher-
ent summary) jointly providing the requested information
(e.g., in “What is known about the metabolism of drug
Z?”). More precisely, the BIOASQ challenge evaluates the
ability of systems to perform: (1) large-scale classifica-
tion of biomedical documents onto ontology concepts, in
order to automate semantic indexing, (2) classification of
biomedical questions on the same concepts, (3) integra-
tion of relevant document snippets, database records, and
information (possibly inferred) from knowledge bases,
and, (4) delivery of the retrieved information in a concise
and user-understandable form.
To realize the challenge, BIOASQ organized two tasks,

namely Task 1a (covering point number 1 from the afore-
mentioned list) and Task 1b (covering the rest of the
points from the aforementioned list). In Task 1a, named
“Large-scale online biomedical semantic indexing” , par-
ticipants were asked to classify new abstracts written in
English, as they became available online, before MED-
LINE curators annotated (in effect, classified) them man-
ually; at any point in time there was usually a backlog
of approximately 10,000 non-annotated abstracts. The
classes came from the MESH hierarchy, i.e., the subject
headings that are currently used to manually index the
abstracts. As new manual annotations became available,
they were used to evaluate the classification performance
of participating systems (that classified articles before they
were manually annotated), using standard information
retrieval (IR) measures (e.g., precision, recall, accuracy),
as well as hierarchical variants of these measures. In Task
1b, named “Introductory biomedical semantic QA” , par-
ticipants were asked to annotate input natural language
questions with biomedical concepts, and retrieve rele-
vant documents, snippets and triples (Phase A). Finally,
participants were asked to find and report the answers
to the questions (Phase B), given as additional input the
golden responses of the Phase A. The answers of the sys-
tems were compared against model answers in English
constructed by biomedical experts, using evaluation mea-
sures from QA and summarization. A running example
of a participating system that answers a natural language
question, progressing through the BIOASQ competition
tasks, in order to illustrate how the various steps of the
competition are combined to allow systems to address
natural language QA is provided in Additional file 1. The
benchmark datasets that contain the development and
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Figure 1 Overview of semantic indexing and question answering in the biomedical domain. The BIOASQ challenge focuses in pushing systems
towards implementing pipelines that can realize the workflow shown in the figure. Starting with a variety of data sources (lower right corner of the
figure), semantic indexing and integration brings the data into a form that can be used to respond effectively to domain specific questions. A
semantic QA system associates ontology concepts with each question and uses the semantic index of the data to retrieve the relevant pieces of
information. The retrieved information is then turned into a concise user-understandable form, which may be, for example, a ranked list of
candidate answers (e.g., in factoid questions, like “What are the physiological manifestations of disorder Y?”) or a collection of text snippets, ideally
forming a coherent summary (e.g., in “What is known about themetabolism of drug Z?”). The figure also illustrates how these steps are mapped to the
BIOASQ challenge tasks. With blue, Task 1a is depicted, while red depicts Task 1b.

evaluation questions, as well as the gold standard (ref-
erence) answers, are made publicly available. The gold
standard answers were produced by a team of biomedical
experts from research teams around Europe. Established
methodologies from QA, summarization, and classifi-
cation were followed to produce the benchmarks and
evaluate the participating systems.

Related NLP and QA evaluations
Since the late 1990s, QA research has benefited signif-
icantly from competitions organised in the context of
large conferences, such as the Text Retrieval Confer-
ence (TREC) [7]. TREC’s QA track [8] initially focused
mostly on factoid questions, while TREC’s Genomics
track focused on retrieval tasks for genomics data, includ-
ing gene sequences and supporting documentation, such
as research papers and lab reports [9]. More recent
research, however, has also explored questions that ide-
ally require a summary of the most important information

in a cluster of relevant documents, gradually bringing QA
for document collections closer to text summarization.
This trend is also evident in the more recent Text Analy-
sis Conference (TAC) series, which has included challenge
tasks such as query-focused (or topic-based) summariza-
tion [10]. QA systems for document collections typically
search for answers in clusters of documents returned by
information retrieval (or Web search) engines. Hence,
information retrieval (IR) tasks are also relevant to QA.
Non-English QA competitions have also been organised

in the past; for example, in the context of NTCIR [11].
Also, cross-lingual QA and document retrieval competi-
tions have been held in CLEF [12,13]. Apart from QA and
IR challenges for document collections, “semantic search”
challenges are also beginning to appear:

Semantic search challenge: Finding answers to keyword
queries in Linked Data (in the form of RDF triples). The
data originate from the 2009 Billion Triple Challenge.
(Ran in 2011.)
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As already noted, the semantic indexing task of BIOASQ
asks for documents and questions to be annotated with
concepts from biomedical hierarchies. The following hier-
archical classification challenges are, hence, also relevant:

LSHTC: The Large Scale Hierarchical Text Classification
Challenges [14], which were organised by members of
the BIOASQ consortium, provided benchmarks (based on
Wikipedia and the DMOZ Open Directory Project), as
well as a common evaluation framework for hierarchical
classifiers [15]. (Ran from 2010 to 2014.)
Joint Rough Sets (JRS) symposium’s special event:
Topical classification of biomedical articles, based on
MESH concepts automatically assigned to articles by a
tagger developed by the organisers [16]. (Ran in 2012.)

Finally, the Special Interest Group on Biomedical
Natural Language Processing (SIGBIOMED) of the
Association for Computational Linguistics (ACL) organ-
ises the BioNLP annual workshops, which focus mostly on
information extraction from biomedical documents (e.g.,
recognising named entities, particular relations between
named entities, or biological events mentioned in sci-
entific articles). The 2009 and 2011 BioNLP workshops
featured shared tasks in these areas [17]. Similar biomed-
ical information extraction and data mining challenges
have been (and continue to be) organised in the con-
text of BioCreative, with a recent additional emphasis on
helping curators of biomedical document collections (e.g.,
prioritising articles to be manually curated) [18].
Overall, although there have been several competitions

relevant to BIOASQ, which required searching large-scale
document collections or structured datasets, question
answering or text summarization, and hierarchical clas-
sification or semantic indexing, very few of them were
directly concerned with biomedical data. Furthermore,
none of them required the participants to answer biomed-
ical natural language questions by searching in both struc-
tured data (e.g., databases, ontologies, and the Linked
Open Data cloud) and unstructured data (e.g., biomedi-
cal articles), and none of them pushed at the same time
towards matching questions to answers at the concep-
tual level, i.e., by using concepts from domain ontologies
to annotate both questions and answers. Hence, BIOASQ
has a broader scope, incorporating hierarchical classifica-
tion, text and passage retrieval, retrieving RDF triples, QA
for exact answers, multi-document summarization, and
natural language generation.

Description of the BIOASQ Tasks
Description of Task 1a
Task 1a, titled “Large scale online biomedical semantic
indexing”, deals with large scale classification of biomedi-
cal documents into ontology concepts. The purpose is to

investigate the performance of the state of the art meth-
ods and the new methodologies proposed by participants
compared to the manual annotation that is widely used in
public databases.
As new articles are uploaded on a daily basis in MED-

LINE and are annotated manually with concepts from the
MESH hierarchy, MEDLINE offers the means to assess the
performance in a real large scale setting. Task 1a takes
advantage of two observations of the PUBMED workflow:
a large number of uploaded articles (approximately 4,000
on a daily basis), and from them a sufficient fraction
are annotated in a relatively short time suitable for the
BIOASQ challenge (approximately 10% within two weeks,
and more than 50% within 12 weeks). Similar observa-
tions have also been reported in the past [19,20]. On this
basis, the time frame between the first appearance of an
article in PUBMED and its indexing with MESH terms is
used by the BIOASQ team in order to prepare test sets
that consist of non-annotated articles. Many recently pub-
lished approaches are applicable to this BIOASQ task, e.g.,
[20-22].
During the challenge period, test sets are released reg-

ularly, i.e., once per week. This allows participants to
improve their systems by taking into account the partial
evaluation results that become available, and allows the
participants to enter the challenge at any stage. The arti-
cles that are selected for each test set are filtered based
on the journal average annotation time to ensure a short
annotation period. Participants have 21 hours from the
release of the test set to submit their system’s estimations
of MESH terms for the released articles. The evaluation of
the participating systems is performed incrementally each
time new annotations become available from MEDLINE
by human curators. As training data, the participants are
given all of the previously annotated PUBMED articles
with their respective MESH annotations, so that the par-
ticipating teams could tune their annotation methods to
the specific task.

Creation of benchmark datasets for Task 1a
In Task 1a the data that are available to the partici-
pants consist of biomedical articles published in MED-
LINE. Specifically, for each article in the training data,
BIOASQ provides its title and abstract as it appears in
MEDLINE and the MESH labels assigned to it. In the
testing phase of the challenge the data contain only the
title, the abstract, the journal and the year of the cor-
responding article without any further information. The
articles are provided in their raw format (plain text) as
well as in a pre-processed one (bag of words with weights).
The subsection ‘An extract from the training data of
Task1a’ presents an example of two articles extracted from
the BIOASQ benchmark training data. The format used
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for the distribution of the data is the JavaScript Object
Notation [23] (JSON).

An extract from the training data of Task1a
{

"abstractText":"From the above it is seen

that the [...]

scientific guidance of which lies wholly

in the hands of scientists.",

"journal":"Science (New York, N.Y.)",

"meshMajor":["Biomedical Research"],

"pmid":"17772322",

"title":"New Horizons in Medical

Research.",

"year":"1946"

}, {

"abstractText":"1. T antigens of group A

hemolytic streptococci have been [...] T

antigen in the intact streptococcus from

which it was derived.",

"journal":"The Journal of experimental

medicine",

"meshMajor":["Antibodies","Antigens",

"Immunity","Streptococcal Infections",

"Streptococcus"],

"pmid":"19871581",

"title":"THE PROPERTIES OF T ANTIGENS

EXTRACTED

FROM GROUP A HEMOLYTIC STREPTOCOCCI.",

"year":"1946"

}

For the creation of the training data, all of the MED-
LINE articles that were assigned MESH labels were col-
lected and distributed to the authors. There were only two
requirements regarding the collection of the articles: (1)
that the articles had a title, an abstract and MESH labels
assigned, and, (2) that their indexing with MEDLINE was
made before the beginning of the Task 1a, i.e., in our case
this date was set to March 1st, 2013. Table 1 presents the
statistics of the training data set for Task 1a.
For the creation of the test data three batches were

designed, each containing 6 test datasets. Each week a
test dataset was distributed to the participants. Thus, each
batch was 6 weeks long. The following requirements were
used for the creation of the test datasets: (1) that the arti-
cles should have a title, an abstract, but noMESH headings

Table 1 Basic statistics about the training data for Task1a

Number of articles 10,876,004

Number of uniqueMESH labels 26,563

Average number of MESH labels per article 12.55

Size in GB 22

assigned to them yet, (2) that the articles should have
MESH headings assigned in few weeks time after their
release, (3) the articles that have been released in a pre-
vious dataset should not be released in any other future
test set. To fulfil all three requirements, a web service was
set up to automatically fetch from MEDLINE the articles
of this kind. Requirements (1) and (3) are easy to satisfy
with a PUBMED query. For requirement (2) we analyzed
the average time it takes to assign MESH labels to arti-
cles, per journal, for all of theMEDLINE indexed journals.
From this analysis, only the journals for which the average
assignment of MESH labels took up to 90 days were kept.
In total, 1,993 such journals were used. This list of selected
journals can be found in Additional file 2. Hence, require-
ment (2) was now reduced to the selection of articles that
are published in one of the journals in the list. An example
of a PUBMED query that is used by the BIOASQ web ser-
vice to create test datasets can be found in Additional file
3. In collaboration with NLM we used a set of additional
filters that excluded articles that are editorials, comments,
reviews, letters, and news from the resulting article list.
With the satisfaction of all three requirements, the test

datasets would comprise unique articles for which the
MESH terms were not known at the time of the release,
but would become known on average up to 90 days after
their release date, thus, allowing the BIOASQ consortium
to evaluate Task 1a on time before the end of the chal-
lenge. In Table 2 we present the number of articles of each
test dataset in each batch of the evaluation procedure.
The numbers in parentheses are those articles of the cor-
responding test dataset that were annotated with MESH
labels by the NLM curators by the time that the Task 1a
results were frozen (September 2013).

Evaluationmeasures for Task 1a
For the evaluation of the participating systems in Task 1a,
two measures, a flat and a hierarchical, are considered.
The main difference between them is that the latter takes

Table 2 Number of articles for each test dataset in each
batch

Week Batch 1 Batch 2 Batch 3

1 1,942 (1,553) 4,869 (3,414) 7,578 (2,616)

2 830 (726) 5,551 (3,802) 10,139 (3,918)

3 790 (761) 7,144 (3,983) 8,722 (2,969)

4 2,233 (586) 4,623 (2,360) 1,976 (1,318)

5 6,562 (5,165) 8,233 (3,310) 1,744 (1,209)

6 4,414 (3,530) 8,381 (3,156) 1,357 (696)

Total 16,763 (12,321) 38,801 (20,025) 31,570 (12,726)

In parentheses the articles that have been annotated by the curators by the time
of the Task 1a evaluation (September 2013).
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into account the relations in the given hierarchy, penaliz-
ing more heavily misclassifications in distant branches of
the hierarchy. Both measures are applicable for the evalu-
ation of all types of classifier. The flat measure that is used
is the micro-F1 measure, which is a label-based measure
[24]. The hierarchical measure is the LCaF [25]. In Figure
2 we illustrate the basic concept of the measure. All the
details of the evaluationmeasures for Task 1a can be found
in Appendix A.

Baseline systems for Task 1a
For the purposes of BIOASQ Task 1a, three baselines
were utilized, namely the BIOASQ_BASELINE, the MTI,
and its special design, the MTIFL. The first baseline, the
BIOASQ_BASELINE, is the Attribute Alignment Annotator
developed by Doms [26]. It is an unsupervised method,
based on the Smith-Waterman sequence alignment algo-
rithm [27] and can recognize terms fromMESH andGENE
ONTOLOGY in a given text passage. The annotator first
pre-processes both the ontology terms and the text by tok-
enizing them, removing the stop words and stemming the
remaining termsa. Then the term stems are mapped onto

the text stems using the local sequence alignment algo-
rithms [27]. Insertions, deletions and gaps are penalized.
The information value of terms calculated over the whole
ontology is also taken into account during the alignment
process of ontology terms with text terms, in a similar
manner as the inverse document frequency score is used
for the TF-IDF weighting of terms.
The second baseline for Task 1a is the NLM’s Med-

ical Text Indexer [28] (MTI). MTI has been providing
indexing recommendations for PUBMED based on the
MESH vocabulary since 2002. MTI produces both semi-
and fully-automated indexing recommendations based on
MESH. MEDLINE indexers and revisers consult MTI rec-
ommendations for approximately 58% of the articles they
index. MTI provides an ordered list of MESH main head-
ings, subheadings and check tags. For the purposes of
BIOASQ Task 1a, only the suggested MESH main head-
ings are used. Its main components are: (1) the MetaMap
Indexing, which applies a ranking function to concepts
found by MetaMap in the input text, (2) the identifica-
tion of PUBMED related citations, which finds the closest
documents to the input text, (3) the identification of the

Figure 2 Interesting cases when evaluating hierarchical classifiers: (a) over-specialization, (b) under-specialization, (c) alternative problems,
(d) pairing problem, (e) long distance problem. Nodes surrounded by circles are the true classes while the nodes surrounded by rectangles are the
predicted classes. LCaF ia based on the notion of adding all ancestors of the predicted (rectangles) and true (circles) classes. However, adding all the
ancestors has the undesirable effect of over-penalizing errors that happen to nodes with many ancestors. Thus, LCaF uses the notion of the Lowest
Common Ancestor to limit the addition of ancestors.
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closest MESH headings to the identified UMLS concepts,
(4) the extraction of MESH descriptors, (5) the clustering
and ranking of the extracted MESH headings, and, (6) the
post-processing, which is mostly related to the inclusion
of check tags.
In 2011 MTI’s role was expanded by designating it as

the first-line indexer (MTIFL) for a few journals; today the
MTIFL workflow includes about 100 journals and con-
tinues to increase. For MTIFL journals, MTI indexing
is treated like human indexing, i.e., being used instead
of human indexing. The MTIFL comprises the third
BIOASQ Task 1a baseline, and its main difference to the
MTI indexer is the level of filtering it applies for the final
recommendation of MESH headings. MTIFL is based on
a Balanced Recall/Precision Filtering, which looks at the
compatibility and context of the recommendation based
on what path(s) made the recommendation and provides
a good balance between number of recommendations and
the filtering out of good recommendations, whileMTI uti-
lizes the High Recall Filtering, and tends to provide a list
of approximately 25 recommendations with most of the
good recommendations near the top of the list.

Description of Task 1b
Task 1b, titled “Biomedical Semantic Question Answering”,
examines systems’ ability to annotate questions with con-
cepts from relevant ontologies and depending on the type
of the question, return “exact” or paragraph-sized “ideal”
answers. The benchmark dataset comprises the ques-
tions, their answers, and the related documents, concepts,
triples, and statements from designated repositories. It
was created by the BIOASQ biomedical expert team, using
the BIOASQ annotation tool that will be described later.
The task was organised in two phases; (a) Phase A:

The BIOASQ team released questions from the bench-
mark datasets. The participating systems had to respond
with relevant concepts from designated terminologies and
ontologies, relevant articles in English from designated
article repositories, relevant snippets from the relevant
articles, and relevant RDF triples (statements) from desig-
nated ontologies. The participating systems were allowed
to return at most 100 concepts, 100 documents, 100
snippets and 1,000 RDF triples per question; (b) Phase
B: The BIOASQ team released questions and gold (cor-
rect) relevant concepts, articles, snippets, and RDF triples
(statements) from the benchmark datasets. The partici-
pating systems had to respond with “exact” answers, i.e.,
“yes” or “no” in the case of yes/no questions, named enti-
ties in the case of factoid questions, list of named entities
in the case of list questions and nothing in the case of sum-
mary questions, and “ideal” answers (i.e., paragraph-sized
summaries) for all types of questions. We call them “ideal”
because it is what a human would expect as an answer by a
peer biomedical scientist. For the synthesis of the answers,

the systems were allowed to use the provided gold doc-
uments, concepts, snippets and statements which were
found related by the experts. Systems were also allowed to
use the annotations their systems suggested in Phase A, or
apply their Phase A systems to produce annotations from
any additional resources.

Creation of benchmark datasets for Task 1b
In Task 1b, the benchmark datasets contain development
and test questions, in English, along with golden stan-
dard (reference) answers. The benchmark datasets have
been constructed by the BIOASQ team of biomedical
experts. As in Task 1a, the datasets follow the JSON for-
mat. More specifically, each dataset (development and test
sets) contains an array of questions where each question
(represented as an object in the JSON format) is con-
structed as shown in ‘The format of the training data of
Task1b’ subsection.

The format of the training data of Task1b
{ "questions": [

{

"id": "the ID",

"body": "the question?",

"type": "the type of the question",

"concepts": [

"c1",

"c2",

...

"cn"

],

"documents": [

"d1",

"d2",

...

"dn"

],

"exact_answer": [

"ea1",

"ea2",

...

],

"ideal_answer": "the ideal answer",

"snippets":[

{

"document": "dk",

"beginSection": "sections. #b",

"endSection": "sections.#e",

"offsetInBeginSection": number,

"offsetInEndSection": number,

"text": "the snippet"

}

],

"triples": [
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{

"o": "object",

"p": "predicate",

"s": "subject"

},

...

]

},

...

] }

The distributed questions can be of four types: (1)
“Yes/No”, (2) factoid, (3) list, and, (4) “summary”. For each
of the question types, there can be both “ideal” and “exact”
answers expected, besides the “summary” questions,

where only “ideal” answers are expected. Examples of the
four question types, along with description of what is
expected and the golden answers that are provided by the
experts are presented in Table 3. In all cases, the ideal
answers are restricted to a length of 200 words. A length
restriction also applies in the case of the “exact” answers,
where each of the returned entities within the answer can
be up to 100 characters long.
In both phases of Task 1b, the question type is always

distributed along with the actual natural language ques-
tion. The development set of questions contains both the
“ideal” and “exact” answers for the 29 development ques-
tions, so that the participants can train on how to answer
each type of questions. In Table 4 we present the statistics
of the released development (training) and test questions,
in the framework of BIOASQ Task 1b.

Table 3 Types of questions in Task 1b and respective examples along with the golden answers in each case

Question Required Example Golden exact Golden Ideal
type answer question answer answer

Yes/No Exact + Ideal Is miR-21 related to
carcinogenesis?

Yes Yes. It has been demonstrated
in several experimental
studies that miR-21 has
oncogenic potential, and is
significantly disregulated in
numerous types of cancer.
Therefore, miR-21 is closely
related to carcinogenesis.

Factoid Exact + Ideal Which is the most common
disease attributed to
malfunction or absence of
primary cilia?

“autosomal recessive
polycystic kidney
disease”

When ciliary function is
perturbed, photoreceptors may die,
kidney tubules develop
cysts, limb digits multiply and
brains form improperly.
Malformation of primary cilia
in the collecting ducts of
kidney tubules is accompanied by
development of autosomal
recessive polycystic kidney disease.

List Exact + Ideal Which human genes are
more commonly related to
craniosynostosis?

[“MSX2”, “RECQL4”,
“SOX6”, “FGFR1”,
“FGFR2”, “FGFR”]

The genes that are most commonly
linked to craniosynostoses are the
members of the Fibroblast Growth
Factor Receptor family FGFR3 and
to a lesser extent FGFR1 and FGFR2.
Some variants of the disease
have been associated with the
triplication of the MSX2 gene
and mutations in NELL-1.

Summary Ideal What is the mechanism of
action of abiraterone?

- Abiraterone acts by inhibiting
cytochrome P450 170̆3b1-
hydroxylase (CYP17A1), a critical
step in androgen biosynthesis, thus
leading to inhibition of androgen
biosynthesis.
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Table 4 Statistics of the training and test data for Task 1b

Training Test set 1 Test set 2 Test set 3
data

Questions 29 100 100 82

Yes/No 8 25 26 26

Factoid 5 18 20 16

List 8 31 31 23

Summary 8 26 23 17

Avg #concepts 4.8 5.3 6.0 12.9

Avg #documents 10.3 11.4 12.1 5.4

Avg #snippets 14.0 17.1 17.4 15.9

Avg #triples 3.6 21.8 5.5 4.5

Evaluationmeasures for Task 1b
Evaluation process and measures for Task 1b Phase A
In Phase A, the participants were provided with English
questions. For each question, each participating system
was required to return a list of relevant concepts, a list of
relevant articles, a list of relevant text snippets, and a list
of relevant RDF triples. For each question, the biomedical
experts have produced the gold (correct) sets of concepts,
articles, snippets, and triples. Given this setup, for each
system, the lists of returned concepts, articles, snippets,
and triples of all the questions were evaluated using the
mean average precision (MAP) measure, which is widely
used in information retrieval to evaluate ranked lists of
retrieved items. In the case of snippets, however, a special
consideration took place for the evaluation, on the basis
that a returned snippet may overlap with one or more
golden snippets, without being identical to any of them.
Therefore, in the case of the snippets, the definition of
precision and recall was modified to consider a snippet
as a set of article-offset pairs. Figure 3 illustrates what we
mean by article-offset pairs. A snippet is determined by
the article it comes from and by the offsets (positions) in
the article of the first and last characters of the snippet.
The details of these modifications for the snippets, as well
as of MAP and other additional measures used for the
evaluation of the systems in Phase A of Task 1b can be
found in Appendix A.

Evaluation process and measures for Task 1b Phase
B In Phase B, the participants were provided with the
same questions as in Phase A, but this time they were
also given the golden (correct) lists of concepts, articles,
snippets, and triples of each question. For each ques-
tion, each participating system returned an “ideal” answer,
i.e., a paragraph-sized summary of relevant information.
In the case of “yes/no”, factoid, and list questions, the
systems also had to return “exact” answers. The evalua-
tion of the “exact” answers was conducted using accuracy
(ACC) for the “yes/no” and factoid questions, while for

the list questions precision (P), recall (R), and F-measure
(F1) was used. The “ideal” answers of the systems were
evaluated bothmanually (by the BIOASQ team of biomed-
ical experts) and automatically (by comparing them to the
golden “ideal” answers). The official scores were based on
the manual evaluation; the automatic evaluation was per-
formed mostly to explore how well automatic evaluation
measures (e.g., frommulti-document text summarization)
correlate with the scores of the biomedical experts. For
the automatic evaluation the ROUGE score was used [29].
The details of all measures used for the evaluation of the
systems in Phase B of Task 1b are explained in detail in
Appendix A.

Baseline systems for Task 1b
For the creation of a baseline approach in Task 1B Phase
A, two simple methods were considered. Given a ques-
tion, for each of the required type of returned info, i.e.,
documents, snippets, concepts and triples, the search ser-
vices that are made available to the participants were used
to query the underlying resources, and the top-50 and
top-100 results respectively were kept as baseline answers
for each type of results. Hence, the first baseline (Top-50)
returns (at maximum) the top-50 documents, snippets,
concepts and triples (e.g., maximum 50 for each type), and
the second baseline returns respectively (at maximum) the
top-100.

Figure 3 An illustration for the article-offset pairs. An article-offset
pair example. Article 1 has n characters and a golden snippet starting
at offset 3 and ending at offset 10.
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As baseline in Task 1B Phase B, different approaches
were created to produce “ideal” and “exact” answers
for the different types of questions (i.e., yes/no, factoid,
list, summary). Concerning “ideal” answers, two differ-
ent summarization approaches were used. The first one
greedily selects the content of the answer while the sec-
ond utilizes Integer Linear Programming for the same
purpose. They both employ a Support Vector Regression
model to evaluate the quality of the content [30]. The sum-
maries produced are then used to provide “exact” answers
for yes/no questions; each summary is scanned for ‘posi-
tive’ and ‘negative’ words (as listed in a sentiment lexicon),
and respond ‘yes’ or ‘no’ if the positive words are more
or fewer, respectively, than the negative ones. To produce
“exact” answers for list and factoid questions the baseline
approach combines a set of scoring schemes that attempt
to prioritize the concepts that answer the question by
assuming that the type of the answer aligns with the lexical
answer type (type coercion). The approach is described in
detail in the work of Weissenborn et al. [31].
Finally, as a summary, the roll-out of the challenge can

be found in Additional file 4, where the overall process of
the challenge organisation and execution is illustrated in a
single schema.

Results and discussion
In this section, the results of the participating systems
are presented. Overall, in Task 1a there was high par-
ticipation and the task was very successful. One of the
participating systems in Task 1a performed consistently
better than NLM’s MTI system [32]. As a result, NLM has
reported recently that theMTI indexer was enhanced with
ideas from the winners of Task 1a, and that the BIOASQ
challenge has been a tremendous benefit for NLM by
expanding their knowledge of other indexing systems [33].
In the case of Task 1b, the participation was low and the
performance of the systems was not very high, mostly due
to the complexity and the difficulty of the task. However,
the manual evaluation of the “ideal” answers of the par-
ticipating systems received relatively high scores, which is
a promising outcome, as it means that the participating
systems were able to produce high quality summaries that
could answer part, or in some cases the whole, of the given
natural language questions.
In the following, systems are referred by the name sub-

mitted when registering to the challenge. Contestants
participated through one or more systems. Prizes were
awarded to the winners of both tasks of the challenge; a
total of 12,000 Euros was distributed to the winners, and a
special prize was awarded to the teamwith the overall best
contributionb. A description of the system’s methodology
was not a requirement for participating. Table 5 presents
the correspondence of the BIOASQ system names with
system’s reference publications, when available. Systems

Table 5 Correspondence of reference and submitted
systems for Task1a

Reference Systems

[32] system1, system2, system3, system4, system5

[37] cole_hce1, cole_hce2, utai_rebayct, utai_rebayct_2

[45] mc1, mc2, mc3, mc4, mc5

[48] Wishart-*

[49] RMAI, RMAIP, RMAIR, RMAIN, RMAIA

Baselines ([28,31]) MTIFL, MTI, bioasq_baseline

that participated in less than 4 test sets in each batch are
not reportedc.

Timeline of the competition for the participants
The training data for Task 1a were officially released
on March 18th, 2013. On April 15th a dry-run set was
released to familiarize the participants with the down-
loading of the test sets and the uploading of the results.
A week after, the official test sets started to be released.
Hence, from April 22nd to August 26th, every week at a
specific day and time a test set was released, and the par-
ticipants had 21 hours to upload the results. In total there
were 18 test sets, split into three batches of 6. In the case of
Task 1b, the training data were released on June 6th, and
on June 26th the first of the three test sets was released for
phase A, and the next day, i.e., June 27th, for phase B. The
second test set was released on July 17th (phase A) and
July 18th (phase B) and the third on August 7th (phase A)
and August 8th (phase B). As in the case of Task 1a, the
participants had 21 hours to upload their results.

Results in Task 1a
According to [34] the appropriate way to compare multi-
ple classification systems over multiple datasets is based
on their average rank across all the datasets. On each
dataset the system with the best performance gets rank
1.0, the second best rank 2.0 and so on. In the case that
two or more systems tie, they all receive the average rank.
Table 6 presents the average rank (according to MiF

and LCaF) of each system over all the test sets for the
corresponding batches. For comparison, the MTIFL, MTI
and bioasq_baseline baseline systems used throughout the
challenge are shown as well. MTIFL and MTI refer to the
NLM Medical Text Indexer system [35]. Note, that the
average ranks are calculated for the 4 best results of each
system in the batch according to the rules of the challenge
[36]. The best ranked system is highlighted with bold type-
face.We can observe that during the first batch theMTIFL
baseline achieved the best performance in terms of the
MiF measure, but was matched to the performance of the
RMAIP system in terms of the LCaF measure. Interest-
ingly, the ranking of the RMAIP according to the LCaF
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Table 6 Average ranks for each system across the batches of Task 1a for themeasures MiF and LCaF

System Batch 1 Batch 2 Batch 3

MiF LCaF MiF LCaF MiF LCaF

MTIFL 1.25 1.75 2.75 2.75 4.0 4.0

system3 2.75 2.75 1.0 1.0 2.0 2.0

system2 - - 1.75 2.0 3.0 3.0

system1 - - - - 1.0 1.0

MTI - - - - 3.25 3.0

RMAIP 2.50 1.75 5.0 4.5 5.25 5.5

RMAI 3.25 3.0 5.0 4.5 8.5 7.25

RMAIR 6.25 6.0 4.5 3.25 6.25 6.25

RMAIA 5.75 5.5 4.0 5.25 7.25 5.75

RMAIN 4.50 3.25 6.0 5.0 6.5 6.25

Wishart-S3-NP 8.75 9.0 14.25 15.0 - -

Wishart-S1-KNN 8.75 9.25 12.25 12.5 - -

Wishart-S5-Ensemble 9.5 8.0 9.50 10.25 - -

mc4 14.75 14.25 21.0 21.0 21.5 21.25

mc3 11.0 11.25 19.75 19.75 22.0 21.5

mc5 11.25 10.0 15.0 14.75 17.0 17.0

cole_hce2 9.25 9.5 11.25 9.25 12.75 12.0

bioasq_baseline 14.0 14.0 17.75 16.75 20.75

cole_hce1 13.5 13.5 14.75 14.0 16.0 14.75

mc1 8.75 8.25 13.75 13.25 13.0 13.5

mc2 11.25 11.5 17.75 18.25 14.25 15.75

utai_rebayct 15.5 16.0 16.75 17.5 19.25 21.5

Wishart-S2-IR 9.75 10.75 8.5 9.25 - -

Wishart-S5-Ngram - - 10.5 9.75 - -

utai_rebayct_2 - - - - 18.25 18.5

TCAM-S1 - - - - 11.25 12.25

TCAM-S2 - - - - 12.25 12.25

TCAM-S3 - - - - 12.5 12.5

TCAM-S4 - - - - 12.0 12.75

TCAM-S5 - - - - 12.75 12.0

FU_System - - - - 24.0 23.25

A hyphenation symbol (-) is used whenever the system participated in less than 4 times in the batch. The 4 best runs in each batch for each system were considered
for its ranking.

measure is better than the one based on its MiF perfor-
mance, which shows that RMAIP is able to give answers in
the neighborhood (as designated by the hierarchical rela-
tions among the classes) of the correct ones. Overall, the
MTIFL performed best in the first batch, with RMAIP and
system3 following close.
In the other two batches the systems proposed in [32]

ranked as the best performing ones occupying the first
two places (system3 and system2 for the second batch and
system1 and system 2 for the third batch). These systems
follow a simple machine learning approach which uses

SVMs and the problem is treated as flat. We note here the
good performance of the learning to rank systems (RMAI,
RMAIP, RMAIR, RMAIN, RMAIA). Learning to rank
methods are mostly used in information retrieval tasks
for ranking the retrieved results. Typically such methods
make use of supervised machine learning techniques in
order to construct ranking models for the purposes of
retrieving documents. The aim of these models is to pro-
duce a permutated list of the ranked results that fits as
much as possible the ranking observed in the training
data.
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According to the available descriptions, the only sys-
tems that made use of the MeSH hierarchy were the ones
introduced by [37]. The top-down hierarchical systems,
cole_hce1 and cole_hce2, achieved mediocre results while
the utai_rebayct systems had poor performances. For the
systems based on a Bayesian network, this behavior was
expected as they cannot scale well to large problems. On
the other hand the question that arises is whether the use
of the MeSH hierarchy can be helpful for classification
systems as the labels that are assigned by the curators to
the PubMed articles do not follow the rule of themost spe-
cialized label. That is, an article may have been assigned a
specific label in a deeper level of the hierarchy and at the
same time a label in the upper hierarchy that is ancestor
of the most specific one. In this case the system that pre-
dicted the more specific label will be penalized by the flat
evaluation measures for not predicting the most general
label, which is implied by the hierarchical relations.

Results in Task 1b
Phase A
As in Task 1a the evaluation included three test batches.
For phase A of Task 1b the systems were allowed to submit
responses to any of the corresponding categories, that is
documents, concepts, snippets and RDF triples. For each
category, we ranked the systems according to the Mean
Average Precision (MAP) measure [38]. The final ranking
for each batch is calculated as the average of the individual
rankings in the different categories. The detailed results
for Task 1b phase A can be found in http://bioasq.lip6.fr/
results/1b/phaseA/.
Table 7 presents the average ranking of each system in

each batch of Task 1b phase A. It is evident from the
results that the participating systems did not manage to
perform better than the two baselines that were used in
phase A. Note also that the systems did not respond to
all the categories. For example, the MCTeam systems did
not submit snippets throughout the task. Focusing on the
specific categories, like concepts, for the Wishart system
we observe that it achieves to have a balanced behavior

Table 7 Average ranks for each system for each batch of
phase A of Task 1b

System Batch 1 Batch 2 Batch 3

Top 100 Baseline 1.0 1.875 1.25

Top 50 Baseline 2.5 2.375 1.75

MCTeamMM 3.625 4.5 3.5

MCTeamMM10 3.625 4.5 3.5

Wishart-S1 4.25 3.875 -

Wishart-S2 - 4.125 -

The MAPmeasure was used to rank the systems. A hyphen (symbol -) is used
whenever the system did not participate in the corresponding batch.

Table 8 Results for batch 1 for concepts in phase A of
Task1b

System Mean Mean Mean MAP GMAP
precision recall F-measure

Top 100 Baseline 0.080 0.858 0.123 0.472 0.275

Top 50 Baseline 0.121 0.759 0.172 0.458 0.203

Wishart-S1 0.464 0.429 0.366 0.342 0.063

MCTeamMM 0.000 0.000 0.000 0.000 0.000

MCTeamMM10 0.000 0.000 0.000 0.000 0.000

with respect to the baselines (Table 8). This is evident
from the F-measure which is superior to the values of
the two baselines. This can be explained by the fact that
the Wishart-S1 system responded with short lists while
the baselines returned always long lists (50 and 100 items
respectively). Similar observations hold also for the other
two batches.

Phase B
In phase B of Task 1b the systems were asked to report
exact and ideal answers. The systems were ranked accord-
ing to the manual evaluation of ideal answers by the
BioASQ experts [38]. For reasons of completeness, we
report also the results of the systems for the exact answers.
To do so, we average the individual rankings of the sys-
tems for the different types of questions, that is Yes/No,
factoids and list.
Table 9 presents the average ranks for each system for

the exact answers. In this phase we note that the Wishart
system was able to outperform the BioASQ baselines.
Table 10 presents the average scoresd of the biomedi-
cal experts for each system across the batches. Note that
the scores are between 1 and 5 and the higher it is the
better the performance. According to the results, the sys-
tems were able to provide comprehensible answers, and

Table 9 Average ranks for each system and each batch of
phase B of Task 1b, for the “exact” answers

System Batch 1 Batch 2 Batch 3

Wishart-S1 2.0 1.0 -

Wishart-S2 2.0 - -

Wishart-S3 2.0 - -

Baseline1 4.66 2.33 2.33

Baseline2 4.33 4.0 2.66

main system 6.0 4.33 3.0

system 2 - 5.33 3.33

system 3 - 5.5 3.66

system 4 - 5.5 -

The final rank is calculated across the individual ranks of the systems for the
different types of questions. A dash symbol (-) is used whenever the system did
not participate to the corresponding batch.

http://bioasq.lip6.fr/results/1b/phaseA/
http://bioasq.lip6.fr/results/1b/phaseA/
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Table 10 Average scores for each system and each batch
of phase B of Task 1b for the “ideal” answers

System Batch 1 Batch 2 Batch 3

Wishart-S1 3.95 4.23 -

Wishart-S2 3.95 - -

Wishart-S3 3.95 - -

Baseline1 2.86 3.02 3.19

Baseline2 2.73 2.87 3.17

main system 3.35 3.39 3.13

system 2 - 3.34 3.07

system 3 - 3.34 2.98

system 4 - 3.34 -

The final score is calculated as the average of the individual scores of the
systems for the different evaluation criteria. A hyphenation symbol (-) is used
whenever the system did not participate in the corresponding batch. The scores
are given by experts who read and evaluated the “ideal” answers, and they
range from 1 to 5, with 5 being the best score.

in some cases like in the second batch, highly readable
ones. For example Table 11 presents the answer of the
Wishart-S1 system along with the golden answer to the
question:Which drug should be used as an antidote in ben-
zodiazepine overdose? Of course the quality of the answer
depends on the difficulty of the question. This seems to
be the case in the last batch where the average scores are
lower with respect to the other batches. Also, the cal-
culated measures using ROUGE seem to be consistent
with the manual scores in the first two batches while the
situation is inverted in the third batch.

Discussion of results
Task 1a ran for 18 weeks with a large number of docu-
ments (88,628) provided for testing. A total of 12 teams
from various countries in three continents (Europe, North
America and Asia) participated, representing academic
(e.g., University of Alberta in Canada and Aristotle Uni-
versity of Thessaloniki in Greece), as well as industrial
research (e.g., Toyota Technological Institute in Japan and
Mayo Clinic in the USA). Competition was particularly
intense, with each team participating with more than one

systems (up to 5 were allowed). The MTI system of NLM
was used as one of the baseline systems and was particu-
larly hard to beat, as it is used to recommendMESH terms
to the MEDLINE curators, in order to speed up their
work. The evaluation of the systems was based on both
established measures used for flat classification, as well
as novel hierarchical measures, proposed by the BIOASQ
consortium. Separate winners were announced for each
batch and were awarded the corresponding prizes. The
winning teams used various advanced text mining tech-
niques and the positive surprise was that one of the
systems ([32]) consistently outperformed the highly opti-
mised MTI baseline. This finding suggests that there is
still room of improvement for the systems used to suggest
MESH headings to the professional indexers.
With regards to Task 1b, due to its complexity, both par-

ticipation and evaluation of the results was particularly
demanding. Three teams with long experience and infras-
tructure in question answering participated in the task,
representing again both academic (University of Alberta
in Canada) and industrial research (Toyota Technological
Institute in Japan and Mayo Clinic in the USA). Auto-
mated evaluation of the results were provided for all
aspects of the challenge, including intermediate and final
results e.g., mean average precision in Phase A; accu-
racy, mean reciprocal rank, mean F-measure for exact
answers to yes/no, factoid, and list questions in Phase B;
ROUGE for ideal answers. However, in addition to the
automated scores, the BIOASQ biomedical expert team
was asked to provide manual scores (for readability, infor-
mation recall and precision, lack of repetitions) on the
final “ideal” answer that each system produced in Phase
B. Despite the complexity of the task and the short time
that the participants had for preparing their systems, the
BIOASQ experts seemed particularly satisfied about the
result that the participants produced, judging from the
manual scores that they provided. Overall, the results of
Task 1b suggest that there are already existing technolo-
gies that can address biomedical question answering in a
manner which can be judged as satisfactory by experts.
However, judging from the results in both phases of Task
1b, we can conclude that the task is far from being solved;

Table 11 The “ideal” answers returned from the systemWishart-S1 along with the golden one

Wishart-S1 Golden answer

Benzodiazepine (BZD) overdose (OD) continues to cause significant
morbidity and mortality in the UK. Flumazenil is an effective
antidote but there is a risk of seizures, particularly in those who have
co-ingested tricyclic antidepressants. (PMID: 21785147) Flumazenil is a
benzodiazepine antagonist. It is widely used as an antidote in comatose
patients suspected of having ingested a benzodiazepine overdose.
(PMID: 19500521)

Flumazenil should be used in all patients presenting with suspected
benzodiazepine overdose. Flumazenil is a potent benzodiazepine
receptor antagonist that competitively blocks the central effects of
benzodiazepines and reverses behavioral, neurologic, and
electrophysiologic effects of benzodiazepine overdose. Clinical efficacy
and safety of flumazenil in treatment of benzodiazepine overdose has
been confirmed in a number of rigorous clinical trials. In addition,
flumazenil is also useful to reverse benzodiazepine induced sedation
and to diagnose benzodiazepine overdose.



Tsatsaronis et al. BMC Bioinformatics  (2015) 16:138 Page 14 of 28

a first important step was made though, through the
BIOASQ competition and its challenges.

Evaluation of the challenge and lessons learnt
In an effort to evaluate the BIOASQ challenge, we
designed quantitative and qualitative measures. The
quantitative evaluation was conducted by measuring the
number of participants both in the challenge and the
workshop that the results were presented, the number
of visitors in our websites, and the downloads of the
benchmark data. For the qualitative evaluation, we used
questionnaires distributed to the participants of the chal-
lenge and the workshop and to the team of biomedical
experts. As a summary, the analysis of the evaluation
showed satisfactory results. The participation was satis-
factory, especially in Task 1A, andmost of the participants
have already expressed interest to participate in the next
cycles of BIOASQ, but they also intend to recommend it to
other research groups. Finally, we had a very good cooper-
ation with the team of biomedical experts, providing them
with all the help and tools they needed for the creation
of the benchmark datasets for Task 1B and the evalua-
tion of the systems’ responses. The complete evaluation
of the challenge, including the distributed questionnaires
and the analysis of responses can be found in Deliverable
D5.2 of the BIOASQ project [39].e. In the remaining of
the section we present the highlights and discuss the main
problems faced.
With regards to the quantitative measures’ results, there

were 117 users registered on the BIOASQ’s participants
area, with a total of 697 benchmark dataset downloads.
In total, 11 different teams participated in the BIOASQ
challenge. Given that one important objective of the chal-
lenge is to establish BIOASQ as a reference point for
the biomedical community, these statistics constitute a
good basis that indicates that the challenge is in the right
direction.
The qualitative evaluation was conducted using ques-

tionnaires distributed to the participants and to the
biomedical experts that created the benchmark questions
and answers. The questionnaires distributed to the partic-
ipating teams included questions targeting several aspects
of the individual tasks, like the quality of the datasets, the
technical support etc. Additionally, more general ques-
tions were provided to capture the overall impression of
the participants for the BIOASQ challenge. The analy-
sis of the questionnaires from the participants showed
that they were satisfied with the challenge and as a con-
sequence, not only are they willing to participate in the
next cycle of the challenge, but they are willing to recom-
mend BIOASQ to other research groups as well. However,
there were some difficulties in the general understanding
of the challenge. To alleviate this problem we modified
the guidelines of the challenge for both tasks in order to

make them clearer for the potential participants. Another
problem we had to face was the low participation in Task
1b. For that we came up with two strategies. The first
one was to identify all the research areas that relate to
BIOASQ and modify the first page of our official web-
site to include this information. The second one was to
create a list of potential participants and invite them,
through personal contact, to participate in the challenge.
We hypothesize that in any future effort these problems
should be addressed from the beginning of the challenge,
in order to make the challenge even more attractive.
As far as the interaction with the team of the biomedi-

cal experts is concerned, the major problem that we faced
pertained to the coordination of the experts’ team and the
provision of tools and technical support that would help
them in the creation of the benchmarks. After the end of
the first cycle of the challenge, we distributed question-
naires to the biomedical experts, in order to assess the
quality of the tools and their interaction with the organiz-
ing team. The analysis of the answers to the questionnaires
showed that the experts were satisfied by the tools, and
they are also willing to use them again in the future
and even recommend them to others. Particularly for the
annotation tool they are willing to use it for their own
work. Overall, both the quantitative and the qualitative
analysis show that the BIOASQ challenge was successful,
leaving very good impression to the participants and the
biomedical experts that contributed to the creation of the
benchmarks.

Conclusions
In this paper we have presented the background, the
organisation and the results of the two tasks within
the 2013 BIOASQ challenge. The tasks included in the
BIOASQ challenge helped advance the state of the art in
two fields. First, the automatic classification of biomed-
ical documents using concepts from knowledge bases
such as the Medical Subject Headings (MESH). In this
task systems were required to tag large numbers of sci-
entific biomedical articles with terms from a predefined
biomedical vocabulary. Second, the automated question
answering in the biomedical domain. In this task the sys-
tems were evaluated on how well they could identify text
fragments in scientific articles, and related data in pub-
lic knowledge bases, in order to answer questions set
by the biomedical expert team of BIOASQ. In order to
support the challenge, BIOASQ has built powerful and
agile infrastructure for developing benchmark data sets
for biomedical semantic indexing and question answering,
as well as for using these data to evaluate participat-
ing systems, either automatically or manually. Most of
the software produced by BIOASQ is provided as open
source and the data are provided free of charge for future
research use. The basic tool provided for benchmark



Tsatsaronis et al. BMC Bioinformatics  (2015) 16:138 Page 15 of 28

data generation is the BIOASQ annotation tool, which
can be used by biomedical experts to create questions
and answering material of the form used in task 1b of
the first BIOASQ challenge. The tool is publicly available
as an open-source project at https://github.com/AKSW/
BioASQ-AT. In addition to the tools provided for the
biomedical experts, BIOASQ has constructed a platform
for setting up and managing the evaluation campaign.
The platform is available online at http://bioasq.lip6.fr/.
The functionality of the online platform includes: (i) the
unit that enables users to register in the platform, (ii) the
Web services and the Web interface that enable users to
upload/download data, (iii) the evaluation function that
calculates automatically the evaluation measures, (iv) the
discussion forum, (v) the detailed online documentation
and guidelines for both tasks, and, (vi) an e-mail help desk
that is publicly accessible. The source code of the platform
will be made openly available at the end of the project, in
order to be used in the future to set up new biomedical QA
challenges, possibly based on new benchmarks produced
by the BIOASQ expert network and/or with additional
challenge tasks.
With regards to the challenge results and the BIOASQ’s

expected impact, themain long-term goal of BIOASQ is to
push significantly the research in information systems and
methods that aim in turn at improved access to biomedical
information. The potential impact of such a development
is enormous and affects the biomedical experts, compa-
nies providing services in this industry, including informa-
tion technology providers, and eventually everyone who
will benefit from improved biomedical processes. On the
way to this big goal, the first BIOASQ challenge facilitated
a number of significant intermediate results. Primarily it
facilitated a better understanding of the current seman-
tic indexing and question answering technologies and
their limitations. In addition, it enabled improved aware-
ness of the biomedical community about the possibility
of significant improvement of their work, using intelligent
information systems. Furthermore, it established bridges
among information technologists and biomedical experts,
with the common goal of creating challenging tasks for
current information systems. Last but not least, BIOASQ
created a number of tools, infrastructure and benchmark
data that facilitate the organisation of BIOASQ challenges,
beyond the end of the project, and provide a very good
basis for future research work in the fields of biomedical
semantic indexing and question answering.

Methods
Formation of the BIOASQ biomedical experts team
The biomedical expert team was established during the
first two months of the BIOASQ project. Several experts
had been considered from a variety of institutions across
Europe. The final selection of ten experts was based on the

need to cover the broad biomedical scientific field, rep-
resenting as much as possible, medicine, biosciences and
bioinformatics. All the members of the biomedical team
hold senior positions in universities, hospitals or research
institutes in Europe. Their primary fields of research
interests are the following: cardiovascular endocrinol-
ogy, psychiatry, psychophysiology, pharmacology, drug
repositioning, cardiac remodelling, cardiovascular phar-
macology, computational genomics, pharmacogenomics,
comparative genomics, molecular evolution, proteomics,
mass-spectometry, and protein evolution.
The principal task of the biomedical expert team is the

composition of the Question/Answer benchmark dataset
which is used during the BIOASQ challenge Task 1b.
Moreover, it is envisaged to be further enriched in the
future mainly by voluntary contributions from the com-
munity. In this direction, the BIOASQ social network is
expected to serve that purpose. For the first year, the
benchmark dataset contains 29 development and 282 test
questions used in a dry-run test and in the challenge
respectively, along with gold standard (reference) answers.
For each benchmark question composed by a biomedical
expert, relevant material is also provided. This includes:
(a) documents from specific article and abstract reposi-
tories, (b) concepts from designated ontologies, and, (c)
statements (RDF triples), from selected life science triple
stores. Next, text snippets that include information rele-
vant to the composition of the answer are extracted from
the selected documents. The experts have been trained
to the needs of the annotation task during three phys-
ical meetings and by means of specifically composed
guidelines. In these meetings, opinions were exchanged
between the experts and members of the BIOASQ con-
sortium, which further contributed to the optimization
of the finally adopted QA composition methodology. In
total, 500 questions are expected to be composed for
the needs of the second year challenge, corresponding to
approximately 50 QAs per expert. The members of the
team are also assigned the task of the manual assessment
of the responses provided by the competitors. During
this step, they were given the opportunity to modify the
QA gold standard by incorporating original data from
the material returned by the participants. The bioexperts
also contribute to the overall challenge evaluation through
questionnaires and take part in the composition of the
BIOASQ roadmap.

Selection of data sources
For the task 1b the BIOASQ challenge aimed to cover a
wide range of biomedical concepts, through the use of
ontologies and linked data that describe several facets of
the domain. The selection of resources for these tasks
follows the triangle drug-target-disease which defines the
prime information axes for anymedical investigation. This

https://github.com/AKSW/BioASQ-AT
https://github.com/AKSW/BioASQ-AT
http://bioasq.lip6.fr/
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“knowledge-triangle” supports the conceptual linking of
biomedical knowledge databases and the processing of the
related resources. The idea behind the drug-target-disease
triangle is based on the tight links that exist between these
three entities. Any disease is associated with research on
prognosis, diagnosis, symptoms, co-morbidities and inci-
dence/prevalence. Towards investigating these aspects,
there is a tight relation between a disease and targets,
e.g., with regards to the development of animal models or
the research in diagnostics, that can help the researchers
understand better the disease. The research on targets
play a crucial role in turn for the study of sensitivity, selec-
tivity, mutations of genes and biological functions that are
connected to the disease. In parallel, the study of related
drugs is crucial, because it can provide information on
the pathways, mechanisms of action, efficacy and dos-
ing, as well as for the design of clinical guidelines and
clinical trials that aim at providing therapies to the dis-
ease. Hence, these three entities are tightly connected, and
their relation has also constituted the basis for research
on how automated systems may support the design of
clinical trial protocols and the validation of hypotheses,
e.g., as was the case of the PONTE European project
[40]. From this perspective, the selected resources were
the following: Jochem for drugs, GENE ONTOLOGY and
UNIPROT for targets, DISEASE ONTOLOGY for diseases,
MESH as a general purpose domain dictionary, PUBMED
and PUBMED CENTRAL for documents, and LINKED LIFE
DATA for triples (statements). An analytical description of
the selected resources, and a more detailed discussion on
the selection process can be found in Appendix B.

The BIOASQ annotation tool
The annotation tool was developed to support the cre-
ation of the benchmark data for the challenge Task 1b. It
was specifically designed to enable the biomedical experts
to create the gold standards for these tasks. In its current
version, the tool enables its users to:

• create evaluation questions or continue working on
existing questions,

• search for relevant concepts, documents and triples
that allow answering the questions,

• associate the evaluation questions with gold standard
answers,

• annotate them with concepts from designated
taxonomies or ontologies, and,

• associate the answers with relevant triples and
snippets from selected data sources.

The tool is publicly available [41], and in the following,
the basic functionalities of the tool are explained.
As a first step, the users of the annotation tool may login

and either create (formulate) a new question in which they

want to start working on, or continue working from an
existing question that has been stored from previous ses-
sions. The main screen of the annotation tool is shown in
Figure 4, where at the top the user can navigate among
the threemain functionalities using the respective tabs: (1)
create a new question, or select to continue working on an
existing one (Questions tab), (2) search for concepts, doc-
uments and triples for the selected question (Search tab),
and, (3) annotate relevant snippets from the selected doc-
uments and formulate and store the final answer to the
question (Answer tab).
In Figure 4 the search tab is selected and the user can

type a query to the search bar (top left) and retrieve
relevant concepts, documents and triples from the used
BioASQ resources. Any of the results can be added to
the list of the related items for the question, by using the
plus symbol, and an existing one can be removed with the
minus symbol. If there is any additional information for
any returned item, e.g., the full text of a returned docu-
ment, or the definition page of an ontology concept, this
is accessible directly via the tool. For the ranking and
ordering of the retrieved results, standard TF-IDF (Term
Frequency-Inverse Document Frequency) scoring is used
for the document terms, and the ontology concepts. For
the triple search, the triple store is indexed in a Lucene
index, and TF-IDF is also used for the ranking.
Finally, as illustrated in Figure 5, once the user navi-

gates to the Answer tab, he can formulate the answer to
the question. In this case the question is shown at the
top right: “Can sunflower seed dormancy be influenced
by cyanide?”. Any of the selected documents, concepts
or triples from the previous step (Search screen) are
listed here in the left of the user’s screen. Besides typ-
ing the ideal answer (top of the screen), the user can also
click on selected documents (left of the screen) to anno-
tate snippets from these documents that are relevant and
important for the formulation of the answer (middle of the
screen). The process is considered completed when the
user clicks on the “Save” button (top right of the screen),
in which case, both the answer to the question and all
of the associated annotations are stored in a back-end
database. This allows the users to continue working on
any questions they have started in any previous sessions.
The data storage implementation of the BIOASQ annota-
tion tool relies on the NoSQL database MongoDB [42]. To
aid the experts towards using the tool, a set of guidelines
for producing the benchmark questions was distributed to
them [43], which can also be used as general guidelines for
future usage of the tool. The guidelines give clear exam-
ples of how to use the annotation tool, what to avoid when
searching, and when formulating the questions, and how
to make the best use of the tool, i.e., in terms of familiariz-
ing the experts with the functionality and the behavior of
the tool.



Tsatsaronis et al. BMC Bioinformatics  (2015) 16:138 Page 17 of 28

Figure 4 Screenshot of the annotation tool’s search and data selection screen with the section for document results expanded. The search interface
accepts a number of keywords that are sent in parallel to each of the GOPUBMED services. Upon retrieval of the last response, results are combined
and returned to the frontend. The client creates one request for each of the result domains (concepts, documents, statements). Whenever results
are retrieved for a domain, the respective section of the GUI is updated immediately. Each search result displays the title of the result.

The BIOASQ participants area and evaluation platform
The series of the BIOASQ challenges require frequent
exchange of data between the challenge participants and
the organisers. The developed machanisms that cover
those needs are integrated in an online platformf, the
BIOASQ Participants Area. The BIOASQ Participants
Area provides mechanisms for the participants to find
information and support regarding the challenge and par-
ticipate in the tasks. On the other hand, the BIOASQ team
using the platform can administrate the challenge, release
the benchmark datasets and provide the necessary mech-
anisms that will allow the evaluation of the participating
systems.
The platform was designed to be user-friendly. A key

concept was to make it simple enough so that participants
would not need much time to exchange data, receive sup-
port or check the performance of their systems by brows-
ing the evaluation measures. Another key concept was
to provide ways to automate the process of downloading

and submitting results. For this reason, web services were
developed so that users could programmatically download
the test sets and submit results saving time and effort.
The platform provides a set of mechanisms to the reg-

istered users of the challenge. After subscribing to the
platform, they gain access to the following:

• the BIOASQ benchmark datasets; they consist of
training and test datasets which are available for
downloading after their release,

• detailed guidelines describing the BIOASQ tasks,
• tools that have been developed to help participants

process the datasets e.g. tokenizers for Task 1a,
• mechanisms for submitting results; they include:

– HTML forms available as long as there are
active tests, and

– Web services for submitting results in an
automated way,
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Figure 5 Screenshot of the answer formulation and annotation with document snippets. The process of formulating the answer to the selected
question and its annotation with document snippets by the domain expert is shown. The user can either dismiss items that were selected in the
previous step, or add snippets (i.e., document fragments) as annotations to the answer.

• tables for browsing the evaluation results,
• the “BioASQ Discussions Area”, which is a forum

about the BIOASQ challenge, and
• an e-mail help desk for contacting the organising

team.

Description of Task 1a systems
The participating systems in the semantic indexing task
of the BIOASQ challenge adopted a variety of approaches,
like hierarchical and flat methods or search-based systems
that rely on information retrieval techniques. In the rest of
this section we describe the proposed systems by focusing
on their key points.
In [37] the authors proposed two hierarchical

approaches (participating systems cole_hce1 and
cole_hce2). The first approach, referred to as Hierar-
chical Annotation and Categorization Engine (HACE),

follows a top-down hierarchical classification scheme [3]
where, for each node of the hierarchy, a binary classifier is
trained. For constructing the positive training examples
for each node, the authors employ a random method that
selects a fixed number of examples from the descendants
of the current node and a method that is based on k-
means to choose the k closest examples to the centroid of
the node. In both approaches the selected examples are
fixed in order to create manageable datasets especially
in the upper levels of the hierarchy. The second system
(Rebayct) that has participated in the challenge was based
on a Bayesian network which models the hierarchical
relations as well as the training data (that is the terms in
the abstracts and titles). A major drawback of this system
is that it cannot scale well to large classification problems
with thousands of classes and millions of documents. For
this reason, the authors reduced drastically the training
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data keeping only 10% of the data split in 5 disjoint parts
in order to train five different models. During the test-
ing phase, the models are aggregated through a simple
majority voting.
In [32] (AUTH) a flat classification approach has been

employed (participating systems system1-5) which trains
a binary SVM for each label in the training data [44]. In
order to reduce the complexity of the problem the authors
kept only the training data that belong to the journals
(1806 in total) from which the test sets were sampled dur-
ing the testing phase of the challenge. The journal filtering
reduced the training data to approximately 4 millions of
documents from the initial 11 millions documents. The
features that were used to represent each article were
unigrams and bigrams (word as unit) extracted from the
title and abstract of each article. The systems that were
introduced in the challenge use ameta-model (calledMet-
aLabeler [44]) for predicting the number of labels (N) of a
test instance. During the prediction all the SVM classifiers
are queried and the labels are sorted according to the cor-
responding confidence value. Finally, the system predicts
the N top labels. While the proposed approach is relative
simple, it requires processing power for both the training
and the testing procedure. Furthermore, it has large stor-
age requirements (as reported from the authors, the size
of the models for one of the systems was 406Gb).
In [45], the authors follow two different approaches

(participating systems mc1-5): (a) one that relies in the
results provided by the MetaMap tool described in [46],
and, (b) one that is based on the search engine Indri [47].
In the MetaMap based approach, for each test instance,
the MetaMap system is queried for both the title and
the abstract of the article. The returned results contain
concepts and their corresponding confidence scores. The
system calculates a final score, weighting differently the
concepts that are obtained for the title and the abstract
and filtering the ones exceeding a predefined threshold for
the confidence score. Finally, the system proposes the m
top-ranked concepts, where m is a free parameter. In the
search based approach the authors index the training data
using the engine Indri. For each test article a query q is
formed and a score is calculated for each document d in
the index. The concepts of the m top-ranked documents
are assigned to the test article.
In the Wishart system [48] a typical flat classifica-

tion approach as well as a k-NN are used. In the flat
approach, a binary SVM is trained for each label present
in the training data using as features unigrams, bigrams
and trigrams extracted from the abstracts of the training
data. In the k-NN based approach, for each test article,
the k-NN method is invoked in order to retrieve docu-
ments from a local index. Additionally, the NCBI Entrez
system is queried in order to retrieve extra documents
along with their labels. All the abstracts are ordered (first

N - empirically set to 100) according to their distance
and the top M (empirically set to 10) labels are retained.
For the final prediction, the two systems are combined by
keeping the common predicted labels; the other labels are
ordered according to their confidence scores. The system
predicts 10-15 labels for each test article.
A learning to rank method has been used in the NCBI

team [49]. More specifically, the systems (all RMAI partic-
ipating systems) follow a three stage approach: (i) first the
k-nearest neighbours of the test article are retrieved from
the MEDLINE database, (ii) next the labels are ordered
using a learning to rank algorithm and (iii) finally a cut-
off method prunes the ordered list. It is interesting to
note that in the definition of the features for the learn-
ing to rank problem, the authors use the results of the
MTIFL baseline system (see next paragraph).More specif-
ically, a binary feature indicates whether a specific label is
observed in the results of MTIFL.
Table 12 summarizes the main technologies that were

employed by the participating systems; it also indicates
whether a hierarchical or a flat approach has been fol-
lowed. Additionally, the last column shows what features
were used from each team for the representation of the
documents. It is clear that the majority of the partici-
pants followed flat methods to tackle the problem using
a variety of technologies from the machine learning and
information retrieval areas. Not surprisingly, the machine
learning approaches used SVM classifiers which are pow-
erful schemes in text classification tasks [32,48]. On the
contrary, these flat systems have large processing and stor-
age requirements in both training and inference stages. In
order to reduce the complexity of the problem in [37], the
authors leveraged the hierarchy information by employ-
ing the classifiers in a top-down manner. In [45] and [49]
the authors follow a two stage approach, thus reducing
the complexity, where they first retrieve relevant articles
using search engines or following a k-nearest neighbors
approach on local indexes of the training data.

Table 12 Technologies used in Task 1a from the
participating systems along with the feature
representation of the documents

Reference Approach Technologies Features

[32] flat SVMs, MetaLabeler [44] unigrams, bigrams

[37] hierarchical SVMs, Bayes networks unigrams, bigrams

[45] flat MetaMap [46], unigrams
information retrieval,
search engines

[48] flat k-NN, SVMs unigrams, bigrams,
trigrams

[49] flat k-NN, learning-to-rank unigrams

Unigrams, bigrams and trigrams refer to the word level.
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Description of Task 1b systems
In the second task of the BIOASQ challenge a total of
three teams participated in both phases with 11 systems.
Only two descriptions were available from these systems
[45,48].
For phase A of Task 1b the Wishart system [48] makes

use of query processing and document ranking tech-
niques. More specifically, each test question in natural
language form is converted by extracting the noun phrases
and referencing them using a thesaurus of biomedical
entities. Then the question is expanded by adding syn-
onyms and relevant biomedical entities using the Poly-
Search tool [50]. The entities found by PolySearch are
used to rank the retrieved set of concepts, articles, triples
and snippets. In phase B of the task a similar approach to
phase A is used in order to augment the set of given con-
cepts. Extracted sentences from the retrieved documents
are ranked according to the cosine similarity with respect
to the augmented concepts. The top-ranked sentences are
concatenated in order to provide an ideal answer.
The MCTeam system participated [45] only in phase A.

In order to form an appropriate query the system first
uses the test question to query MetaMap, which responds
with concept-related words. These words were used to
form a query. In case where no concepts were returned
by MetaMap, the final query was formed by removing the
stopwords from the test question. This query was used
to retrieve the appropriate information from the BIOASQ
web services and also from a local index of PubMed full-
text articlesg. The two lists of the retrieved results were
then merged and formed the final results.

Availability of supporting data
All of the produced datasets in the framework of the
BIOASQ challenge, and the results of all participating
teams, are publicly available for download and usage via
the BIOASQ participants area: http://bioasq.lip6.fr/. Fur-
ther documentation on the organization of the BIOASQ
challenge may be found at the official BIOASQ website:
http://www.bioasq.org/.

Endnotes
aAn in-house stop word list that is specific to the

domain is used.
bMore info about the prizes can be found at: http://

bioasq.org/participate/prizes
cAccording to the rules of BioASQ, each system had to

participate in at least 4 test sets of a batch in order to be
eligible for the prizes.

dPlease consult the description of the evaluation
measures used in the challenge for more information.

eAll of the project deliverables are publicly available at:
http://bioasq.org/project/public_documents

fPublicly available under http://bioasq.lip6.fr.

gThe Indri search engine has been used for indexing
the documents.

hAP approximates the area under a recall–precision
curve; consult [51].

Appendix A
Evaluation measures for Task 1a
As the task concerns the classification in a hierarchical
setting, flat evaluation measures (that ignore the presence
of relations among the classes) are not sufficient for a
proper evaluation of classification systems. A hierarchical
measure can also be included that takes into account the
relations in the given hierarchy (in our case MESH) and
assigns a value accordingly. Thus, for the assessment of
the systems participating in Task 1a, one flat and one hier-
archical measure are used. Specifically, the flat micro-F1
measure is used which is a label-based measure [24]:

MiF1 = 2 ∗ MiP ∗ MiR
MiP + MiR

,

where MiP and MiR are the micro-precision and micro-
recall measures calculated as follows:

MiP =
∑|C|

i=1 tpci∑|C|
i=1(tpci + fpci)

MiR =
∑|C|

i=1 tpci∑|C|
i=1(tpci + fnci)

where tpci , fpci and fnci are respectively the true positives,
false positives and false negatives for class ci.
From the family of hierarchical measures the Lowest

Common Ancestor - F measure (LCaF) [25] is used:

LCaF = 2 ∗ LCaP ∗ LCaR
LCaP + LCaR

(1)

where the corresponding precision and recall measures
(LCaP and LCaR respectively) are calculated as follows:

LCaP = |Ŷaug ∩ Yaug |
|Ŷaug |

(2)

LCaR = |Ŷaug ∩ Yaug |
|Yaug | (3)

where Yaug and Ŷaug are augmented sets of the true and
the predicted classes respectively, based on the hierarchi-
cal relations. Specifically, in the case of LCaF these sets
are constructed as follows:

1. First for each class y in the set of true classes Y the
lowest common ancestor with respect to the set of
predicted classes Ŷ is calculated:

LCA(y, Ŷ ) = argmin
m

γ (m, y),

where γ (u, v) denotes the distance between the
nodes u and v in the graph.

http://bioasq.lip6.fr/
http://www.bioasq.org/
http://bioasq.org/participate/prizes
http://bioasq.org/participate/prizes
http://bioasq.org/project/public_documents
http://bioasq.lip6.fr
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2. Symmetrically, for each class in Ŷ the LCA(ŷ,Y ) is
computed.

3. Then two graphs, Gt and Gp, are defined containing
the shortest paths from each y ∈ Y to LCA(y, Ŷ ) for
Gt and ŷ ∈ Ŷ to LCA(ŷ,Y ) for Gp.

4. Finally, Equation 1 is applied to the sets of the nodes
defined by the two graphs.

LCaF assigns the minimum cost and, thus, handles
the over-penalization of errors that occurs in multi-label
problems withDAG hierarchies. Though the details of the
LCaF measure are presented in detail in [25] in Figure 2
we illustrate the basic concept of the measure. Given a
hierarchy of concepts, in the figure the nodes surrounded
by circles are the true classes, e.g., concepts that should
annotate the input document, while the nodes surrounded
by rectangles are the predicted classes, e.g., concepts that
a system has predicted as true. LCaF ia based on the
notion of adding all ancestors of the predicted (rectangles)
and true (circles) classes. However, adding all the ances-
tors has the undesirable effect of over-penalizing errors
that happen to nodes with many ancestors. Thus, LCaF
uses the notion of the Lowest Common Ancestor to limit
the addition of the ancestors. For the challenge results cal-
culation LCaF is first computed per instance and then
averaged over all instances.
Given the aforementioned descriptions, the winners of

each batch were decided based on their performance
in the Micro F-measure (MiF) from the family of flat
measures, and the Lowest Common Ancestor F-measure
(LCaF) from the family of hierarchical measures. For com-
pleteness, several other flat and hierarchical measures are
reported for all participating systems [38], but which are
not used for the selection of the winner.

Evaluationmeasures for Task 1b
Evaluation process and measures for Task 1b Phase A
In Phase A, the participants were provided with English
questions q1, q2, q3, . . . , qn. For each question qi, each par-
ticipating system was required to return:

A list of relevant concepts ci,1, ci,2, ci,3, . . . from the des-
ignated terminologies and ontologies. The list should be
ordered by decreasing confidence, i.e., ci,1 should be the
concept that the system considers most relevant to the
question qi, ci,2 should be the concept that the system
considers to be the second most relevant etc.
A list of relevant articles (documents) di,1, di,2, di,3, . . .
from the designated article repositories. Again, the list
should be ordered by decreasing confidence, i.e., di,1
should be the article that the system considers most rel-
evant to the question, di,2 should be the article that the
system considers to be the second most relevant etc.

A list of relevant text snippets si,1, si,2, si,3, . . . from the
returned articles. Again, the list should be ordered by
decreasing confidence. Each snippet is represented by the
unique identifier of the article it comes from and the off-
sets (character positions in the article) of the snippet’s
beginning and end (offsets of the first and last characters).
A list of relevant RDF triples ti,1, ti,2, ti,3, . . . from the
designated ontologies. Again, the list should be ordered by
decreasing confidence.

For each question qi, the BIOASQ team of biomedi-
cal experts has constructed the gold (correct) sets of
concepts, articles, snippets, and triples. The biomedical
experts also inspected the concepts, articles, snippets, and
triples of each system in order to add to the correspond-
ing golden sets any correct (relevant) items that they had
missed, but the systems managed to retrieve.
For each system, the lists of returned concepts, articles,

snippets, and triples of all the questions were evaluated
using themean average precision (MAP) measure, defined
below, which is widely used in information retrieval to
evaluate ranked lists of retrieved items. We also used
the geometric mean average precision (GMAP), which
places more emphasis on improvements in low perform-
ing queries (see [51] and [52]). For the sake of complete-
ness, we also computed the mean precision, mean recall,
and mean F-measure of each system, also defined below,
but the official scores for Phase A were based on MAP.
Given a set of golden items (e.g., articles), and a set

of items returned by a system (for a particular question
in our case), precision (P) and recall (R) are defined as
follows:

P = TP
TP + FP

(4)

R = TP
TP + FN

(5)

where TP (true positives) is the number of returned items
that are also present in the golden set, FP (false positives)
is the number of returned items that are not present in the
golden set, and FN (false negatives) is the number of items
of the golden set that were not returned by the system.
The Fβ measure is the weighted harmonic mean of P and
R, defined as follows:

Fβ = (1 + β2) · P · R
(β2 · P) + R

(6)

For β = 1, the same weight is assigned to both precision
and recall, and the resulting measure, often called simply
F-measure, is defined as follows:

F1 = 2 · P · R
P + R

(7)

Given a set of queries (in our case, questions) q1, . . . , qn,
the mean precision, mean recall, and mean F-measure of
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each system is obtained by averaging its precision, recall,
and F-measure for all the queries.
In BIOASQ, we computed the mean precision, mean

recall, andmean F-measure of the concepts, articles, snip-
pets, and triples returned by each system. In the case of
snippets, a complication is that a returned snippet may
overlap with one or more golden snippets, without being
identical to any of them. To take this into account, in the
case of snippets we modify the definitions of precision
and recall. Figure 3 illustrates what we mean by article-
offset pairs. A snippet is determined by the article it comes
from and by the offsets (positions) in the article of the first
and last characters of the snippet. We can also think of
the snippet as a set of (article, offset) pairs, one pair for
each character of the snippet. In the example of Figure 3,
Article 1 has n characters and a golden snippet starting
at offset 3 and ending at offset 10. Let us call S the set of
all the article-offset pairs of all the characters in the snip-
pets returned by a system for a particular question, G the
set of all the article-offset pairs of all the characters in the
golden snippets of the question, and let |s| denote the car-
dinality of a set s. The definitions of precision (Psnip) and
recall (Rsnip) for snippets are:

Psnip = |S ∩ G|
|S| (8)

Rsnip = |S ∩ G|
|G| (9)

In effect, Psnip divides the size (in characters) of the total
overlap between the returned and golden snippets by the
total size of the returned snippets, whereas Rsnip divides
the size of the total overlap by the total size of the golden
snippets. The definitions of Fβ , mean precision, mean
recall, and mean F-measure for snippets are the same as
the corresponding definitions for concepts, articles, and
triples, but they use Psnip and Rsnip instead of P and R.
Precision, recall, and F-measure do not consider the

order of the items returned by a system for each query.
Recall that in BIOASQ we require the lists of concepts,
articles, snippets, and triples that a system returns for
each question to be ordered (ranked) by decreasing con-
fidence. To take the ordering of a particular returned list
(for a particular question) into account, it is common in
information retrieval to compute the (non-interpolated)
average precision (AP) of the list, defined as follows:

AP =
∑|L|

r=1 P(r) · rel(r)
|LR| (10)

where |L| is the number of items in the list, |LR| is the
number of relevant items, P(r) is the precision when
the returned list is treated as containing only its first r
items, and rel(r) equals 1 if the r-th item of the list is
in the golden set (i.e., if the r-th item is relevant) and 0
otherwise.8 In BIOASQ, especially when computing the

average precision of a list of snippets, P(r) is taken to be the
snippet precision Psnip when the returned list of snippets
is treated as containing only its first r snippets; and rel(r)
is taken to be 1 if the r-th returned snippet has a non-zero
overlap (shares at least one article-offset pair) with at least
one golden snippet of the particular question.
By averaging AP over a set of queries (in our case, ques-

tions) q1, . . . , qn, we obtain the mean average precision
(MAP), defined as follows:

MAP = 1
n

·
n∑

i=1
APi (11)

where APi is the average precision of the list returned
for query (question) qi. In our case, each system received
four MAP scores, for the lists of concepts, articles, snip-
pets, and triples, respectively, that it returned for all the
questions.
The geometric mean average precision (GMAP), defined

below, is very similar to MAP, but it uses the geometric
instead of the arithmeticmean, which placesmore empha-
sis on improvements in low performing queries, as already
noted.

GMAP = n

√√√√ n∏
i=1

(APi + ε) (12)

An alternative way to more easily compute GMAP is by
using the following equation:

GMAP = exp
(
1
n

·
n∑

i=1
ln(APi + ε)

)
(13)

In both versions of GMAP, ε is a small number added to
handle cases where APi = 0. As with MAP, in BIOASQ
each system receives four GMAP scores, for the lists of
concepts, articles, snippets, and triples, respectively, that
it returned for all the questions. The official scores for
Task 1b Phase A were based on MAP, as already noted.
Table 13 summarizes the evaluation measures of Phase A;
the official measures are shown in bold.

Evaluation process and measures for Task 1b Phase B
In Phase B, the participants were provided with the same
questions q1, . . . , qn as in Phase A, but this time they were
also given the golden (correct) lists of concepts, articles,

Table 13 Evaluationmeasures for Phase A of Task 1b

Retrieved Unordered retrieval measures Ordered retrieval
items measures

concepts mean precision, recall, F-measure MAP, GMAP

articles mean precision, recall, F-measure MAP, GMAP

snippets mean precision, recall, F-measure MAP, GMAP

triples mean precision, recall, F-measure MAP, GMAP
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snippets, and triples of each question. For each question,
each participating system returned an “ideal” answer, i.e.,
a paragraph-sized summary of relevant information. In
the case of “yes/no”, factoid, and list questions, the sys-
tems also had to return “exact” answers; for summary
questions, no “exact” answers were to be returned. The
participants were told the type of each question.
We first discuss how “exact” answers were evaluated

in Phase B, by considering in turn “yes/no”, factoid, and
list questions. For each “yes/no” question, the “exact”
answer of each participating system had to be either ‘yes’
or ‘no’ . The response was compared against the golden
“exact” answer (again ‘yes’ or ‘no’) that the BIOASQ team
of biomedical experts has associated with the question.
For each system, we computed the accuracy (ACC) of its
responses to “yes/no” questions. Assuming that there are
n “yes/no” questions, accuracy is defined as follows, where
c is the number of correctly answered “yes/no” questions.

ACC = c
n

(14)

For each factoid question, each participating system had
to return a list of up to 5 entity names, ordered by decreas-
ing confidence. The BIOASQ team of biomedical experts
had associated with each factoid question a single golden
entity name, as well as possible synonyms of that name.
We measured the strict accuracy (SACC) and lenient

accuracy (LACC) of each system for factoid questions.
Strict accuracy counts a question as correctly answered
if the golden entity name (or a synonym of that name)
is the first element of the list returned by the system.
By contrast, lenient accuracy counts a question as cor-
rectly answered if the golden entity name (or synonym)
is included, not necessarily as the first element, in the
list returned by the system. In the definitions below, n is
the number of factoid questions, c1 is the number of fac-
toid questions that have been answered correctly when
only the first element of each returned list is consid-
ered, and c5 is the number of factoid questions that have
been answered correctly in the lenient sense, when all the
elements of the returned list are considered.

SACC = c1
n

(15)

LACC = c5
n

(16)

Strict and lenient accuracy were measured for com-
pleteness. The official measure for the “exact” answers of
factoid questions was the mean reciprocal rank (MRR),
which is often used to evaluate factoid questions in ques-
tion answering challenges; consult, for example, [8]. In the
definition below, for each factoid question qi we search the
returned list looking for the topmost position that con-
tains the golden entity name (or one of its synonyms).

If the topmost position is the j-th one, then r(i) = j;
otherwise r(i) → +∞, i.e., 1

r(i) = 0.

MRR = 1
n

·
n∑

i=1

1
r(i)

(17)

In effect, MRR rewards systems that manage to include
the golden responses (or their synonyms) higher in the
returned lists.
For each list question, each participating system had

to return a list of entity names, jointly taken to consti-
tute a single answer (e.g., the most common symptoms of
a disease). The BIOASQ team of biomedical experts had
associated with each list question a golden list of entity
names, also providing possible synonyms for each entity
name of the golden list.
For each list question, the list returned by the system

was compared against the golden list by computing its
precision (P), recall (R), and F-measure (F1), as described
earlier. Here TP is the number of entities that are men-
tioned both in the returned and the golden list; FP is the
number of entities that are mentioned in the returned, but
not in the golden list; and FN is the number of entities that
are mentioned in the golden, but not in the returned list. If
the same entity is mentioned using different synonyms in
the returned and golden lists, it is counted as having been
mentioned in both lists. If an entity is mentioned multiple
times, possibly using different synonyms, in the returned
list, it is counted only once.
By averaging precision, recall, and F-measure over the

list questions, we obtained the mean average precision,
mean average recall, andmean average F-measure score of
each system for list questions. The official measure for list
questions was mean F-measure. Table 14 summarizes the
kinds of responses and the evaluation measures that were
used in Phase B.
In the case of the “ideal” answers evaluation, the

BIOASQ team of biomedical experts had associated each
question with a golden “ideal” answer which can act as
a reference for evaluating the systems’ “ideal” answers.
The maximum allowed length of each “ideal” answer to be
produced was set to be 200 words.
The “ideal” answers of the systems were evaluated both

manually (by the BIOASQ team of biomedical experts)
and automatically (by comparing them to the golden

Table 14 Evaluationmeasures for the “exact” answers in
Phase B of Task 1b

Question Participant Evaluation measures
type response

yes/no yes or no accuracy

factoid up to 5 entity names strict and lenient accuracy,MRR

list a list of entity names mean precision, recall, F-measure
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“ideal” answers). The official scores were based on the
manual evaluation; the automatic evaluation was per-
formed mostly to explore how well automatic evaluation
measures (e.g., frommulti-document text summarization)
correlate with the scores of the biomedical experts.
For the manual evaluation, each one of the “ideal”

answers of each system was inspected by a biomedical
expert, who was asked to evaluate the answer in terms
of information recall (the “ideal” answer reports all the
necessary information), information precision (no irrele-
vant information is reported), information repetition (the
“ideal” answer does not repeat the same information mul-
tiple times, e.g., when sentences of the “ideal” answer that
have been extracted from different articles convey the
same information), and readability (the “ideal” answer is
easily readable and fluent). An 1 − 5 scale was used in all
four criteria (1 for ‘very poor’ , 5 for ‘excellent’). Table 15
summarizes the criteria that were used in the manual
evaluation of the “ideal” answers in Phase B.
The “ideal” answers returned by the systems were

also automatically evaluated using ROUGE; consult [29].
Roughly speaking, ROUGE counts the overlap between an
automatically constructed summary and a set of reference
(golden) summaries constructed by humans. There are
several different versions of ROUGE. ROUGEN, defined
below, uses word n-grams when computing the overlap
between an automatically constructed summary S and a
set Refs of reference summaries:

ROUGEN(S|Refs) =
∑

R∈Refs
∑

gn∈R C(gn, S,R)∑
R∈Refs

∑
gn∈R C(gn,R)

(18)

In the definition above, gn is a word n-gram, C(gn, S,R) is
the number of times that gn co-occurs in S and a reference
summary R, and C(gn,R) is the number of times gn occurs
in reference R.
ROUGES uses skip bigrams, instead of n-grams, when

computing the overlap. A skip bigram is any pair of words,
maintaining the order of the two words and ignoring any
intermediate words. ROUGESU is similar to ROUGES,
but it also counts unigrams (individual words) that occur

Table 15 Criteria for themanual evaluation of the “ideal”
answers in Phase B of Task 1b

Criterion Explanation Score

information recall All the necessary information is
reported.

1–5

information precision No irrelevant information is
reported.

1–5

information repetition The answer does not repeat
the same information multiple
times.

1–5

readability The answer is easily readable
and fluent.

1–5

both in S and Refs. The most widely used versions of
ROUGE are R2 and RSU4, which have been found to
correlate well with human judgements, when multiple ref-
erence summaries are available per question; consult [29].
R2 is ROUGEN with n = 2; and RSU4 is a version
of ROUGESU with the maximum distance between the
words of any skip bigram limited to 4.
In BIOASQ, we used R2 and RSU4, with S being an

“ideal” answer constructed by a system and Refs being
the golden “ideal” answer of the particular question S
was constructed for. Table 16 summarizes the evaluation
measures of Phase B; the official measures are shown in
bold.

Appendix B
Detailed description of the selected data sources
In this appendix, the selected data sources (documents,
databases, ontologies) that were used in the BIOASQ
challenge are described. Ontologies such as the Medical
Subject Headings (MESH) and the Gene Ontology (GENE
ONTOLOGY) play a major role in biology and medicine
since they facilitate data integration and the consistent
exchange of information between different entities. They
can also be used to index and annotate data and liter-
ature, thus enabling efficient search and analysis. In the
past few years, the volume of the biomedical literature
has been growing very fast, expanding by almost 1 mil-
lion new scientific papers per year, indexed by MEDLINE.
This fact makes the task of monitoring the knowledge
and the changes in the biomedical domain extremely dif-
ficult. This in turn affects the maintenance of the existing
biomedical ontologies, but in parallel motivates the cre-
ation of new, larger and more detailed thesauri in the
domain, that may cover very different information needs.
Producing sufficient and concise answers from this

wealth of information that exists in the biomedical
domain is a challenging task for traditional search engines,
which largely rely on term (keyword) indexing. Obtaining
the required information is made even more difficult by
non-standard terminology and the ambiguity of the tech-
nical terms involved. Therefore, indexing at the semantic
(concept) level, rather than at the level of keywords only,
is particularly important. Biomedical concept taxonomies
or, more generally, ontologies are abundant and they pro-
vide concept inventories that can be used in semantic
indices. Hierarchical classification algorithms [3] can clas-
sify documents and questions onto the concepts of these

Table 16 Evaluationmeasures for the “ideal” answers in
Phase B of Task 1b

Question type Participant response Evaluation measures

any paragraph-sized text R2, RSU4,manual scores
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inventories, facilitating the matching of questions, doc-
uments, and also structured data (e.g., RDF triples) that
already have explicit semantics based on the same con-
cepts.
More specifically, for the two BIOASQ challenge tasks,

the selection of resources follows the notion of the triangle
drug-target-disease which defines the prime informa-
tion axes for any medical investigation. This “knowledge-
triangle” supports the conceptual linking of biomedical
knowledge databases and the processing of the related
resources. Based on this notion, systems can address ques-
tions that combine any path connecting the vertices of
the triangle, provided that they can also annotate with
accuracy the natural language questions with ontology
concepts. From this perspective, Table 17 shows the can-
didate resources that were considered for inclusion in
the BIOASQ challenge. The criteria based on which the
selection was made are summarized into the following:

• avoid as much as possible the overlap between the
selected resources,

• cover all aspects of the drug-target-disease
associations,

• re-use as much as possible existing infrastructure
from systems that have been already set up by the
project consortium, e.g., GOPUBMED, and,

• the included resources should be able to provide
documents, snippets, concepts and triples
(statements).

Based on the aforementioned criteria, highlighted in
Table 17 are the selected resources: Jochem for drugs,
GENE ONTOLOGY and UNIPROT for targets, DISEASE
ONTOLOGY for diseases, MESH as a general purpose
domain dictionary, PUBMED and PUBMED CENTRAL for
documents, and LINKED LIFE DATA for triples (state-
ments). A short description of the selected resources
follows.

Jochem Jochem ([53,54]), the Joint Chemical Dictionary,
is a dictionary for the identification of small molecules
and drugs in text, combining information from MESH,

Table 17 The candidate resources that were examined for
inclusion in the BIOASQ challenge by type

Focus Resources

Drugs Jochem, Drug Ontology, ATC Ontology, DrugBank

Targets Gene Ontology, UniProt, SuperTarget, Matador

Diseases Disease Ontology, ICD-10, Diseasome

General Purpose MeSH, SNOMED CT, UMLS

Document Sources PubMed, PubMed Central

Linked Data LinkedLifeData

Highlighted are the final selected resources.

CHEBI, DRUGBANK, KEGG, HMDB, and CHEMIDPLUS.
The included resources were chosen on the basis of free
availability. They are downloadable terminology databases
containing small molecules from human studies. Given
the variety and the population of the different resources
merged in Jochem, it is currently one of the largest publicly
available biomedical resources for drugs and chemicals.

Gene ontology The GENE ONTOLOGY [55] is currently
the most successful case of ontology use in bioinformatics
and provides a controlled vocabulary to describe func-
tional aspects of gene products. The ontology covers three
domains: cellular component, the parts of a cell or its
extracellular environment; molecular function, the ele-
mental activities of a gene product at the molecular level,
such as binding or catalysis; and biological process, opera-
tions or sets of molecular events with a defined beginning
and end, pertinent to the functioning of integrated living
units: cells, tissues, organs, and organisms.

UniProt The Universal Protein Resource [56] (UNIPROT)
provides the scientific community with a comprehen-
sive, high-quality and freely accessible resource of protein
sequence and functional information. Its protein knowl-
edge base consists of two sections: Swiss-Prot, which is
manually annotated and reviewed, and contains approx-
imately 500 thousand sequences, and TrEMBL, which is
automatically annotated and is not reviewed, and con-
tains approximately 23 million sequences. The primary
mission of UNIPROT is to support biological research
by maintaining a stable, comprehensive, fully classified,
richly and accurately annotated protein sequence knowl-
edge base, with extensive cross-references and querying
interfaces freely accessible to the scientific community.
In particular the Swiss-Prot component of UniProt is a
high-quality, manually annotated, non-redundant protein
sequence database which combines information extracted
from scientific literature and biocurator-evaluated com-
putational analysis. The aim of Swiss-Prot is to provide
all known relevant information about a particular protein.
Annotation is regularly reviewed to keep up with cur-
rent scientific findings. Themanual annotation of an entry
involves detailed analysis of the protein sequence and of
the scientific literature.

Disease ontology The DISEASE ONTOLOGY [57] con-
tains data associating genes with human diseases, using
established disease codes and terminologies. Approx-
imately 8,000 inherited, developmental and acquired
human diseases are included in the resource. The DISEASE
ONTOLOGY semantically integrates disease and medical
vocabularies through extensive cross-mapping and inte-
gration of MESH, ICD, NCI’s thesaurus, SNOMED CT
and OMIM disease-specific terms and identifiers. The
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DISEASE ONTOLOGY is utilized for disease annotation by
major biomedical databases (e.g., ARRAY EXPRESS, NIF,
IEDB), as a standard representation of human diseases
in biomedical ontologies and as an ontological cross-
mappings resource between MESH and OMIM. The DIS-
EASE ONTOLOGY has been incorporated into open source
tools (e.g., Gene Answers, FunDO) to connect gene and
disease biomedical data through the lens of human dis-
eases.

The medical subject headings hierarchy Medical Sub-
ject Headings [58] (MESH) is a hierarchy of terms main-
tained by the United States National Library of Medicine
(NLM) and its purpose is to provide headings (terms)
which can be used to index scientific publications in the
life sciences, e.g., journal articles, books, and articles in
conference proceedings. The indexed publications may
be then searched through popular search engines, such
as PUBMED or GOPUBMED, using the MESH headings
to filter semantically the results. This retrieval method-
ology seems to be in some cases beneficial, especially
when precision of the retrieved results is important ([2]).
MESH includes three types of data: (i) descriptors, also
known as subject headings, (ii) qualifiers, and, (iii) supple-
mentary concept records. Descriptors are the main terms
that are used to index scientific publications. The descrip-
tors are organized into 16 trees, and as of 2013 they are
26,853. They include a short description or definition of
the term, and they frequently have synonyms, known as
entry terms.Qualifiers, also known as subheadings, may be
used additionally to narrow down the topic of each of the
descriptors. In total there are approximately 80 qualifiers
in MESH. Supplementary concept records, approximately
214,000 in the most recent MESH release, describe mainly
chemical substances and are linked to respective descrip-
tors in order to enlarge the thesaurus with information for
specific substances. MESH is the main resource used by
PUBMED to index the biomedical scientific bibliography
in MEDLINE.

PubMed and PubMed central The primary corpora for
text-based QA in the biomedical domain are accessi-
ble through PUBMED [59] and PUBMED CENTRAL [60].
PUBMED, a service provided by the National Library of
Medicine (NLM), under the U.S. National Institutes of
Health (NIH), contains over 23 million citations from
MEDLINE, a bibliographic database (DB) of biomedical
literature, and other biomedical and life science journals
dating back to the 1950s. It is accessible through the
National Center for Biotechnology Information (NCBI).
PUBMED CENTRAL is a digital archive of full-text biomed-
ical and life science articles. The full text of all PubMed
Central articles is freely available, but not for bulk

download. As of July 2011, the archive contains approxi-
mately 2.2 million items, including articles, editorials and
letters.

Linked life data The LLF project [61] provides the
LinkedLifeData platform. LinkedLifeData is a data ware-
house that syndicates large volumes of heterogeneous
biomedical knowledge in a common data model. The plat-
form uses an extension of the RDF model that is able
to track the provenance of each individual fact in the
repository and thus update the information. It contains
currently more than 8 billion statements, with almost
2 billion entities involved. The statements are extracted
from 26 biomedical resources, such as PUBMED, UMLS,
DRUGBANK, DISEASOME, and GENE ONTOLOGY. The
statements are publicly available, and the project provides
also a wide list of instance mappings.

Additional files

Additional file 1: An example of a participating system answering a
question progressing through the BIOASQ tasks. This pdf file presents
an example of how one of the participating systems to the BIOASQ
competition is answering an input natural language question progressing
through the BIOASQ competition tasks. The output of the system for each
of the tasks is compared with the “gold” answers, e.g., MESH concepts,
relevant documents, snippets, triples, and ideal answer to the input
question.

Additional file 2: Selected journal list for Task 1a test datasets
creation. This text file contains the list of the 1993 selected journals based
on which the test datasets for Task 1a were created. Each line corresponds
to a name of a journal indexed by PUBMED. The scientific articles published
in any of the journals in this list have an average annotation time with
MESH labels from the NLM curators of 90 days or less. The list can also be
found online at: http://bioasq.lip6.fr/journals/.

Additional file 3: Example of a PUBMED query that is used to
generate a test dataset for BIOASQ Task 1a. The text file contains an
example of a PUBMED query that is issued automatically by the respective
BIOASQ web service, in order to create a test data set for Task 1a. All three
restrictions set for the generation of test datasets in Task 1a are included in
this query. In this specific example, this query would generate a test
dataset for the period 02/12/2013 − 16/12/2013.

Additional file 4: Roll-out of the challenge. The challenge resources are
made available to the participants via the participants’ platform. The
challenge data are being prepared by the experts via the tools and services
of the BIOASQ consortium based on guidelines, besides the data of Task 1a,
which are based on the backlog of NLM’s documents which are still not
annotated with MESH concepts, and are retrieved automatically. The social
network helps the experts to review the questions, and exchange
comments. The challenge data are distributed to the participants in
batches, with a limited time for submitting responses. The participants
submit their answers via the participant’s platform, and results are
produced automatically. In addition to the automated evaluation, experts
review the answers of the systems based on several criteria, such as
readability, and repetition.
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